摘要:【目的】建立一種方便的檢測對(duì)苯二酚(hydroquinone,HQ)的方法?!痉椒ā坎捎没瘜W(xué)摻雜法合成Fe-ZIF-8前驅(qū)體,對(duì)前驅(qū)體熱解處理,得到Fe-N-C納米酶粉末;通過活性對(duì)比、自由基捕獲和動(dòng)力學(xué)實(shí)驗(yàn),系統(tǒng)探究Fe-N-C的類酶活性;依據(jù)HQ具有還原性強(qiáng)、可將3,3',5,5′-四甲基聯(lián)苯胺(TMB)顯色體系還原為無色狀態(tài)的特性,構(gòu)建比色法檢測HQ的傳感平臺(tái)?!窘Y(jié)果】Fe-N-C表現(xiàn)出優(yōu)異的過氧化物酶樣活性,可以快速將顯色底物TMB催化氧化為藍(lán)色;Fe-N是Fe-N-C主要的活性位點(diǎn),羥基自由基(·OH)、超氧自由基(O?-)和單線態(tài)氧(1O?)是起主要作用的活性氧;Fe-N-C納米酶對(duì)TMB的親和力優(yōu)于天然辣根過氧化物酶,該方法檢測HQ的線性范圍為0~33 μmol/L,檢測限為0.356 μmol/L,同時(shí)具有良好的抗干擾能力?!窘Y(jié)論】構(gòu)建一種用于環(huán)境分析的金屬有機(jī)骨架化合物(metal organic framework,MOFs)衍生物納米酶,可實(shí)現(xiàn)HQ的簡單和靈敏檢測。
關(guān)鍵詞:納米酶;金屬-有機(jī)骨架;比色檢測;對(duì)苯二酚
中圖分類號(hào):0657.32;TQ426.97;TB383文獻(xiàn)標(biāo)志碼:A
引用格式:
張?jiān)?,李金凱,劉宗明.MOFs衍生的Fe-N-C納米酶用于對(duì)苯二酚的比色檢測[J].中國粉體技術(shù),2024,30(4):128-138.
ZHANG Yuanjie,LIJinkai,LIUZongming.MOFs-derived Fe-N-C nanozyme for colorimetric detection of hdroquinone[J].China Powder Science and Technology,2024,30(4):128-138.
對(duì)苯二酚(hydroquinone,HQ)是一種酚類化合物,廣泛用于醫(yī)藥、染料、塑料、農(nóng)藥和造紙等領(lǐng)域。HQ毒性強(qiáng)且化學(xué)性質(zhì)穩(wěn)定,很難自然降解,在環(huán)境中積累會(huì)導(dǎo)致嚴(yán)重的污染問題3。此外,HQ也被世界衛(wèi)生組織認(rèn)證為致癌物之一,對(duì)公眾健康構(gòu)成嚴(yán)重威脅。目前,檢測HQ的方法包括電化學(xué)、化學(xué)發(fā)光、液相色譜和熒光方法等,存在耗時(shí)長、樣品預(yù)處理復(fù)雜和設(shè)備昂貴等缺點(diǎn),因此,構(gòu)建簡單和靈敏的HQ檢測方法對(duì)環(huán)境保護(hù)和人類健康具有重要意義。
比色法具有操作簡單、成本低、可視化和無需大型儀器等優(yōu)點(diǎn),是檢測HQ的良好選擇。天然酶具有很高的催化活性和底物特異性,但存在易變性失活、成本高且分離純化困難等缺點(diǎn),因此很難被廣泛使用9。具有高催化穩(wěn)定性、低成本和可持續(xù)性的納米酶是天然酶的理想替代品[10]。迄今為止,已經(jīng)報(bào)道了大量具有模擬天然酶活性的納米材料,包括貴金屬納米顆粒、過渡金屬氧化物、碳基材料和金屬有機(jī)骨架化合物(metal organic framework,MOFs)基納米材料等11。
MOFs由于具有比表面積大、結(jié)構(gòu)多孔及活性位點(diǎn)豐富等優(yōu)點(diǎn),是一種制備納米酶的理想前驅(qū)體。熱解后的MOFs衍生物繼承了前驅(qū)體的優(yōu)點(diǎn),與普通的碳材料不同,MOFs衍生的多孔碳材料整合了比表面積大、孔隙率可調(diào)、催化效率高和穩(wěn)定性好等優(yōu)點(diǎn)[12]。其中,沸石咪唑骨架(zeolite imidazoleframework,ZIF)與其他種類的MOFs相比,具有易于合成、結(jié)構(gòu)穩(wěn)定,內(nèi)部孔徑均勻的優(yōu)勢,是一種有潛力的候選材料。金屬元素?fù)诫s被證明是增強(qiáng)MOFs基納米酶催化活性的有效方法。過渡金屬元素鐵具有價(jià)格便宜、多價(jià)態(tài)及催化效率高等優(yōu)點(diǎn),是構(gòu)建高效納米酶的良好選擇[13]。此外,形貌結(jié)構(gòu)也是影響納米材料類酶催化能力的因素之一。二維納米材料因其較大的比表面積而備受關(guān)注,但是,目前缺乏對(duì)高催化活性的二維鐵基MOFs納米酶的研究。由此可見,設(shè)計(jì)合成高催化效率的二維鐵基MOFs衍生物納米酶具有實(shí)際意義。
本文中采用化學(xué)摻雜的方法合成了Fe-ZIF-8前驅(qū)體,對(duì)其熱解處理得到Fe-N-C催化劑。在ZIF-8的二維骨架內(nèi),不同于物理吸附Fe3+,F(xiàn)e3+部分取代Zn2+直接鍵合到咪唑配體上。通過活性對(duì)比、自由基捕獲和動(dòng)力學(xué)實(shí)驗(yàn),系統(tǒng)探究了Fe-N-C的類酶活性。HQ具有很強(qiáng)的還原性,可以將3,3',5,5'-四甲基聯(lián)苯胺(3,3',5,5′-tetramethylbenzidine,TMB)顯色體系還原為無色狀態(tài)。受此啟發(fā),構(gòu)建一種比色檢測HQ的傳感平臺(tái)。
1材料與方法
1.1試劑材料和儀器設(shè)備
試劑材料:無水醋酸鋅(Zn(OAc)?,純度(質(zhì)量分?jǐn)?shù),下同)為99.99%)、間苯二酚(resorcinol,分析純)、無水乙酸鈉(CH?COONa,分析純)、氯化硝基四氮唑藍(lán)(nitrotetrazolium chloride blue,NBT,純度為98%)、苯酚(phenol,分析純)、3,3',5,5′-四甲基聯(lián)苯胺(3,3',5,5'-tetramethylbenzidine,TMB,純度為99%)、2,2-聯(lián)氮-雙(3-乙基苯并噻唑-6-磺酸)二銨鹽(2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt,ABTS,純度為98%)、鄰苯二胺(o-phenylenediamine,OPD,純度為99.5%)對(duì)硝基苯酚(p-nitrophenol,分析純)(上海麥克林生化科技有限公司);九水合硝酸鐵(Fe(NO)?·9H?O,分析純)、2-甲基咪唑(2-methylimidazole,純度為98%)、硫脲(thiourea,TH,純度為99%)、鄰氯苯酚(o-chlorophenol,純度為99%(上海阿拉丁生化科技有限公司);對(duì)苯二酚(hydroquinone,HQ,分析純,國藥集團(tuán)化學(xué)試劑有限公司);可溶性淀粉(starch soluble)、葡萄糖(glucose)、氯化鋇(BaCl?)(均為分析純,天津市大茂化學(xué)試劑廠);氯化鈉(NaCl)、甲醇(methanol)、無水乙醇(ethanol)、乙酸(acetic acid)(均為分析純,天津市富宇精細(xì)化工有限公司);三水合硝酸銅(Cu(NO?)?·3H?O,分析純,天津市百世化工有限公司);無水硫酸鎂(MgSO?,分析純,天津市恒興化學(xué)試劑制造有限公司)。
儀器設(shè)備:BSA224S型分析天平(北京賽多利斯科學(xué)儀器有限公司);HJ-4型磁力攪拌器(鞏義市予華儀器有限責(zé)任公司);KH-1000DB型數(shù)控超聲波清洗器(昆山禾創(chuàng)超聲儀器有限公司);TDZ5-WS型臺(tái)式低速離心機(jī)(長沙維爾康湘鷹離心機(jī)有限公司);DZF-6020型真空干燥箱(北京中儀國科科技有限公司);OTF-1200X型單溫區(qū)真空管式爐(合肥科晶材料技術(shù)有限公司);SmartLab 9KW型X射線衍射儀(XRD,日本理學(xué)公司);JEM-2100F型高分辨透射電子顯微鏡(SEM,日本電子株式會(huì)社JEOL);Gemini300型場發(fā)射掃描電子顯微鏡(TEM,德國蔡司公司);ESCALAB Xi+型X射線光電子能譜儀(賽默飛世爾科技公司);Nicolet iS10型傅里葉變換紅外光譜儀(美國Thermo公司);UV-6100型紫外-可見分光光度計(jì)(上海元析儀器有限公司)。
1.2 Fe-N-C制備
根據(jù)文獻(xiàn)[15]報(bào)道的方法合成Fe-N-C催化劑,合成示意圖如圖1所示。將2 mmol的Zn(OAc)?和0.05 mmol的Fe(NO?)?·9H?O溶于40 mL的去離子水中形成均勻溶液,然后向溶液中加入40 mL含有24 mmol的2-甲基咪唑的去離子水。將混合溶液超聲作用30 min,最后在室溫下攪拌12 h。將所得產(chǎn)物離心,用去離子水和無水乙醇洗滌3次,得到沉淀。最后將所得沉淀在60℃下干燥12 h,得到Fe-ZIF-8粉末。在不添加Fe(NO?)?·9H?O的情況下,采用相同的方法合成ZIF-8粉末。將上述合成的Fe-ZIF-8粉末作為前驅(qū)體,轉(zhuǎn)入管式爐中,在氬氣保護(hù)下以5℃·min-1的升溫速率升溫至900 ℃并保溫3 h,所得產(chǎn)物命名為Fe-N-C。ZIF-8采用相同的煅燒處理制備樣品,記為N-C。
1.3 Fe-N-C的類酶活性
選擇TMB、ABTS和OPD作為顯色底物評(píng)估Fe-N-C的類酶活性。以TMB為例,將35 μL的Fe-N-C溶液(質(zhì)量濃度為200 mg/L)、70 μL的H?O?溶液(濃度為100 mmol/L)、35 μL的TMB溶液(濃度為8 mmol/L)和860 μL醋酸緩沖溶液(pH為4.0,濃度為0.2 mol/L)加入到1.5 mL離心管中?;旌先芤涸?5℃下孵育10 min后,用紫外-可見分光光度計(jì)測量并記錄吸收光譜。OPD和ABTS溶液的濃度分別為3010 mmol/L。
1.4催化作用
將820 μL的醋酸緩沖溶液(pH為4.0,濃度為0.2 mol/L)、35μL的Fe-N-C溶液(質(zhì)量濃度為200 mg/L)70 μL的H?O?溶液(濃度為100 mmol/L)、35 μL TMB的溶液(濃度為8 mmol/L)和40μL不同的自由基清除劑,包括TH、NaN?和NBT充分混合。在25℃下孵育10 min,測量并記錄反應(yīng)體系的吸收光譜。
1.5穩(wěn)態(tài)動(dòng)力學(xué)
在室溫下進(jìn)行穩(wěn)態(tài)動(dòng)力學(xué)實(shí)驗(yàn)。將860 μL的醋酸緩沖溶液(pH為4.0,濃度為0.2 mol/L)、35 μL的Fe-N-C溶液(質(zhì)量濃度為200 mg/L)、70 μL的H?O?溶液(濃度為100 mmol/L)和35 μL不同濃度的TMB溶液混合,監(jiān)測時(shí)間反應(yīng)變化曲線。同樣地,將860 μL的醋酸緩沖溶液(pH為4.0,濃度為0.2 mol/L)35 μL的Fe-N-C溶液(質(zhì)量濃度為200 mg/L)、35 μL的TMB溶液(濃度為8 mmol/L)和70 μL不同濃度的H?O?溶液混合,得到H?O?的動(dòng)力學(xué)數(shù)據(jù)。通過Michaelis-Menten方程計(jì)算穩(wěn)態(tài)動(dòng)力學(xué)參數(shù)(vm和Km):
式中:v為初始反應(yīng)速率;KM為米氏常數(shù);c為底物濃度;vmax為最大反應(yīng)速率。
1.6比色測定HQ
將820μL的醋酸緩沖溶液(pH為4.0,濃度為0.2 mol/L)、35 μL的Fe-N-C溶液(質(zhì)量濃度為200 mg/L)70μL的H?O?溶液(濃度為100 mmol/L)和35μL的TMB溶液(濃度為8 mmol/L)混合均勻后,在25℃下孵育9 min。然后向顯色體系中加入40μL不同濃度的HQ溶液,混合均勻反應(yīng)1 min,測量并記錄該體系的的紫外-可見吸收光譜。
2結(jié)果與分析
2.1納米酶的形貌與結(jié)構(gòu)表征
根據(jù)Zhou等15的報(bào)道,以摻雜Fe3+的分子篩咪唑骨架Fe-ZIF-8為前驅(qū)體,通過高溫?zé)峤馓幚碇苽淞硕S納米片結(jié)構(gòu)的Fe-N-C。ZIF-8中的Zn在高溫(溫度900℃)處理過程中容易蒸發(fā),此時(shí)ZIF晶體中的碳?xì)浠衔锞W(wǎng)絡(luò)完全碳化,形成多孔碳結(jié)構(gòu)。圖2所示為Fe-N-C的形貌表征結(jié)果。由圖2(a)可見,制備的Fe-N-C樣品為薄碳片組成的納米片層狀結(jié)構(gòu),厚度均勻。圖2(b)所示沒有觀察到明顯的Fe納米顆粒,表明Fe元素的分散性良好。
圖3所示為Fe-N-C的晶體結(jié)構(gòu)、官能團(tuán)及元素價(jià)態(tài)。從圖3(a)中可以看出,N-C和Fe-N-C在24.9°和43.4°處均有2個(gè)寬的特征峰,分別對(duì)應(yīng)于石墨碳的(002)和(101)晶面15,證明前驅(qū)體經(jīng)過熱解后形成了結(jié)晶度良好的氮摻雜碳雜化物。此外,在Fe-N-C中不存在XRD可識(shí)別的鐵物種的衍射峰。圖3(b)的FTIR光譜表明,F(xiàn)e3*的摻雜不會(huì)改變氮摻雜碳納米片表面官能團(tuán)的類型。波數(shù)為3427、2 977、1 636、1384 cm-1處的吸收峰分別歸屬于0—H、C—H、C=0和N—H鍵。在圖3(c)的XPS全譜中,存在Fe、C和N元素的特征峰,進(jìn)一步證明材料的成功合成。圖3(d)顯示,在結(jié)合能為283.66、284.80、288.20 eV處出現(xiàn)3個(gè)特征峰,其中以sp2雜化石墨碳為主[17]。如圖3(e)所示,氮主要以吡啶N和吡咯N的形式存在。從圖2(f)中可以看出,F(xiàn)e3+在結(jié)合能為728.79 eV處出現(xiàn)了一個(gè)屬于Fe2p??的特征峰。此外,還存在著2個(gè)衛(wèi)星峰,分別位于結(jié)合能為718.39、731.49 eV。
2.2 納米酶的類酶活性
圖4所示為Fe-N-C的納米酶活性結(jié)果。如圖4(a)所示,在H?O?存在時(shí),F(xiàn)e-N-C可將無色底物TMB氧化為明顯的藍(lán)色,表明Fe-N-C具有良好的類過氧化物酶(peroxidase, POD)活性。在沒有H?O?的情況下,F(xiàn)e-N-C-TMB體系的吸光度相對(duì)較小,藍(lán)色相對(duì)較淺,表明Fe-N-C還具有較弱的類0XD活性。此外,采用另外2種典型的顯色底物OPD和ABTS進(jìn)一步驗(yàn)證了其類酶活性。從圖4(b)、(c)可以看出,在Fe-N-C催化劑和H?O?的作用下,OPD和ABTS被催化氧化為黃色和綠色產(chǎn)物,分別在416、448 nm處出現(xiàn)了相應(yīng)的特征吸收峰。以上結(jié)果證明Fe-N-C催化劑具有優(yōu)異的類過氧化物酶催化能力和較弱的氧化酶樣活性。眾所周知,在酸性條件下,SCN-可以毒害Fe催化位點(diǎn)19,因此,采用硫氰酸鉀(potassium thiocyanate,KSCN)作為阻斷劑進(jìn)行毒化實(shí)驗(yàn),研究Fe-N-C催化過程中有效的結(jié)構(gòu)位點(diǎn)。如圖4(d)所示,F(xiàn)e-N-C的POD活性隨著SCN-濃度的增加而降低,并且POD活性將被不可逆地抑制到其原始活性的5%左右,表明Fe-N是主要的活性位點(diǎn)[20]。
2.3 Fe-N-C催化機(jī)制研究
為了更好地理解Fe-N-C納米酶的催化機(jī)制,對(duì)催化反應(yīng)中間體進(jìn)行了研究,結(jié)果見圖5。采用TH、NBT和NaN?分別作為羥基自由基(·OH)、超氧自由基(O?-)和單線態(tài)氧('O?)的清除劑[21-22]。從圖中可以看出,加入TH、NBT和NaN?后,體系的吸光度下降明顯,這一結(jié)果說明·OH、O?-和'O?在TMB氧化的催化反應(yīng)中是起主要作用的活性氧自由基。
2.4納米酶的反應(yīng)動(dòng)力學(xué)
利用穩(wěn)態(tài)動(dòng)力學(xué)分析進(jìn)一步研究了Fe-N-C納米酶的催化活性,通過計(jì)算得到了動(dòng)力學(xué)參數(shù),結(jié)果見圖6,其中圖6(a)、(c)分別為TMB和H?O?的米氏方程曲線。通過雙倒數(shù)處理后,經(jīng)計(jì)算得到了Km和Vmx。如圖6(b)、(d)所示,F(xiàn)e-N-C對(duì)TMB和H?O?的K值分別為0.134、16.535 mmol/L,相應(yīng)的Vmx值分別為0.754×10-7、2.533×10-7mol/(L·s-1)。Km代表酶對(duì)底物的親和力,Km值越小,酶對(duì)底物的親和力越強(qiáng);vm表示酶在底物飽和時(shí)的反應(yīng)活性,vm值越大,酶的催化活性越強(qiáng)23。辣根過氧化物酶(horseradish peroxidase,HRP)對(duì)TMB的KM值為0.434 mmol/L241,對(duì)比可知Fe-N-C納米酶對(duì)TMB的親和力優(yōu)于HRP,表明其具有優(yōu)良的過氧化物酶樣活性。
2.5比色檢測HQ
HQ具有毒性強(qiáng)和難降解性的特性,人體直接接觸HQ可引起皮膚炎癥、頭痛、水腫和惡心等癥狀,這些都凸顯了HQ的靈敏檢測在環(huán)境保護(hù)和醫(yī)療保健中的重要意義。雖然HQ具有很強(qiáng)的還原性,可以有效地抑制一些顯色反應(yīng),但比色法檢測HQ的報(bào)道仍然較少。圖7所示為Fe-N-C比色檢測HQ及抗干擾能力結(jié)果。如圖7(a)所示,將HQ混合到預(yù)反應(yīng)的Fe-N-C與H?O?-TMB顯色體系中,可以明顯觀察到波長為652 nm處吸光度的急劇減少,伴隨著藍(lán)色溶液變?yōu)闊o色狀態(tài),這一現(xiàn)象證實(shí)HQ可以非常迅速地還原oxTMB。此外,衰減的吸光度至少在15 min內(nèi)無法恢復(fù),表明HQ可能消耗了活性氧自由基(即·OH、O?-和1O?),因此,推斷HQ可以通過還原oxTMB和消耗活性氧自由基來抑制Fe-N-C催化的TMB氧化。基于此,構(gòu)建了一種比色檢測HQ的傳感平臺(tái)。從圖7(b)可以看出,當(dāng)HQ濃度從0增加到33 μmol/L時(shí),檢測系統(tǒng)在波長為652 nm處的吸光度逐漸減少。當(dāng)HQ濃度達(dá)到33 μmol/L時(shí),波長為652 nm處的吸光度基本為0,與檢測系統(tǒng)的顏色變化趨勢一致。此外,HQ的濃度與檢測體系在波長為652 nm處的吸光度具有良好的線性關(guān)系。如圖7(c)所示,線性回歸方程為y=1.01496-0.02912x(R2=0.996),線性范圍為0~33 μmol/L,檢測限計(jì)算值為0.356 μmol/L。檢測限通過3σ/s計(jì)算,其中σ為空白樣本的標(biāo)準(zhǔn)差,s為線性范圍擬合線的斜率。與許多先前報(bào)道(見表1)相比,該方法具有更低的檢測限,表現(xiàn)出更高的靈敏度。
檢測方法的抗干擾能力對(duì)其在實(shí)際樣品檢測中的應(yīng)用至關(guān)重要。為了驗(yàn)證該比色傳感器測定HQ的選擇性,進(jìn)行了一系列干擾實(shí)驗(yàn)。在相同條件下,比較了可能共存的干擾物質(zhì)對(duì)體系吸光度的影響,例如酚類(苯酚、對(duì)硝基苯酚、間苯二酚、鄰氯苯酚)、有機(jī)物分子(可溶性淀粉、葡萄糖)、陽離子(Ba2+、Nat、Cu2+、Mg2+)和陰離子(Cl-、SO?2-、NO?)。如圖7(d)所示,干擾物的存在對(duì)反應(yīng)體系的吸光度變化沒有明顯影響,只有HQ對(duì)顯色反應(yīng)表現(xiàn)出顯著的抑制作用,說明所建立的比色傳感平臺(tái)對(duì)檢測HQ具有良好的抗干擾能力和選擇性。
3結(jié)論
1)采用一種簡單的化學(xué)摻雜法合成了Fe-ZIF-8前驅(qū)體,不需要外加氮源,利用2-甲基咪唑配體本身的氮源,通過一步熱解將其碳化為具有豐富官能團(tuán)的二維納米片結(jié)構(gòu)的Fe-N-C納米酶。
2)在H?O?存在的情況下,F(xiàn)e-N-C通過生成·OH、O?-和1O?可以催化TMB氧化為藍(lán)色的oxTMB,表現(xiàn)出優(yōu)異的POD樣活性。此外,F(xiàn)e-N、被證明是Fe-N-C納米酶中主要的活性位點(diǎn)。動(dòng)力學(xué)分析表明,F(xiàn)e-N-C對(duì)TMB的親和能力優(yōu)于HRP。
3)基于Fe-N-C優(yōu)異的過氧化物酶活性,構(gòu)建了一種靈敏和快速的比色檢測HQ的方法,線性范圍為0~33 μmol/L,檢測限為0.356 μmol/L,對(duì)HQ具有良好的靈敏度和選擇性,擴(kuò)展了MOFs基納米酶在環(huán)境污染物檢測領(lǐng)域的應(yīng)用
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Authors'Contributions)
張?jiān)苓M(jìn)行了方案設(shè)計(jì)、論文的寫作和修改,劉宗明指導(dǎo)并參與了論文寫作,李金凱進(jìn)行了審閱與修改。所有作者均閱讀并同意了最終稿件的提交。
ZHANG Yuanjie carried out the study design as well as the writing and revision of the manuscript.LIUZongming supervised and participated in the writing of the paper.LI Jinkai reviewed and revised themanuscript.All authors have read the final version of the paper and consented to its submission.
參考文獻(xiàn)(References)
[1]MARTONILV L,GOMESN O,PRADO T M,etal.Carbon spherical shells in aflexible photoelectrochemical sensor todetermine hydroquinone in tap water [J].Journal of Environmental Chemical Engineering,2022,10(3):107556.
[2]ZHANGX,LIU B,WEIT,etal.Self-propelled Janus magnetic micromotors as peroxidase-like nanozyme for colorimetricdetection and removal of hydroquinone [J].Environmental Science:Nano,2023,10(2):476-488.
[3]LU W,YUAN M,CHEN J,etal.Synergistic Lewis acid-base sites of ultrathin porous Co?O?nanosheets with enhanced per-oxidase-like activity [J].Nano Research,2021,14(10):3514-3522.
[4]HELUANYCS,DE PALMA A,DAYNJ,etal.Hydroquinone,an environmental pollutant,affects cartilage homeostasisthrough the activation of the aryl hydrocarbon receptor pathway [J].Cells,2023,12(5):690.
[5]MOVAHEDV,ARSHADIL,GHANAVATIM,etal.Simultaneous electrochemical detection of antioxidants hydroquinone,mono-tert-butyl hydroquinone and catechol in food and polymer samples using ZnO@MnO?-rGO nanocomposite as sensinglayer[J].Food Chemistry,2023,403:134286.
[6]MO G,HE X,ZHOU C,etal.Sensitive detection of hydroquinone based on electrochemiluminescence energy transferbetween the exited ZnSe quantum dots and benzoquinone [J].Sensors and Actuators B:Chemical,2018,266:784-792.
[7]DE CARVALHO BRAGAVC,PIANETTIGA,CESARIC.Comparative stability of arbutin in arctostaphylos uva-ursi by anew comprehensive stability-indicating HPLC method [J].Phytochemical Analysis,2020,31(6):884-891.
[8]zHAO XE,ZUO YN,XIA Y,etal.Mulifunctional NH?-Cu-MOF based ratiometric fluorescence assay for discriminatingcatechol from its isomers [J].Sensors and Actuators B:Chemical,2022,371:132548.
[9]wANG Y,DING Y,TAN Y,etal.Ag-Fe?O?nanozyme with peroxidase-like activity for colorimetric detection of sulfide ionsand dye degradation [J].Journal of Environmental Chemical Engineering,2023,11(1):109150.
[10]LI M,CHEN J,WU W,etal.Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation[J].Journal of the American Chemical Society,2020,142(36):15569-15574.
[11]YANG L,DONG S,GAIS,etal.Deep insight of design,mechanism,and cancer theranostic strategy of nanozymes [J].Nano-Micro Letters,2024,16(1):28.
[12]LI J,LUO H,LI B,etal.Application of MOF-derived materials as electrocatalysts for CO?conversion [J].MaterialsChemistry Frontiers,2023,7(23):6107-6129.
[13]HANJ,GUANJ.Applications of single-site iron nanozymes in biomedicine [J].Coordination Chemistry Reviews,2023,490:215209.
[14]YANG J,DAI H,SUN Y,et al.2D material-based peroxidase-mimicking nanozymes:catalytic mechanisms and bioappli-cations [J].Analytical and Bioanalytical Chemistry,2022,414(9):2971-2989.
[15]ZHOUx,CHU S,JIN Z,etal.Revealing the synergistic enhancement effect of dual metal RuFe(Co)sites for bifunc-tional oxygen catalysis [J].ACS Materials Letters,2023,5(6):1656-1664.
[16]wANG Q,INAT,CHEN WT,etal.Evolution of Zn(II)single atom catalyst sites during the pyrolysis-induced transfor-mation of ZIF-8 to N-doped carbons [J].Science Bulletin,2020,65(20):1743-1751.
[17]wANG Y,CHO A,JIA G,etal.Tuninglocal coordination environments of manganese single-atom nanozymes with multi-enzyme properties for selective colorimetric biosensing [J].AngewandteChemie International Edition,2023,62(15):e202300119.
[18]SHEN Z,XU D,WANG G,etal.Novel colorimetric aptasensor based on MOF-derived materials and its applications fororganophosphorus pesticides determination [J].Journal of Hazardous Materials,2022,440:129707.
[19]XU Y,XUE J,ZHOU Q,etal.The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capableof accessing drug -drug interactions [J].AngewandteChemie International Edition,2020,59(34):14498-14503.
[20]MIAO Y,XIA M,TAO C,etal.Iron-doped carbon nitride with enhanced peroxidase-like activity for smartphone-basedcolorimetric assay of total antioxidant capacity [J].Talanta,2024,267:125141.
[21]CAI C,ZHU C,LVL,etal.Distinct dual enzyme-like activities of Fe-N-C single-atom nanozymes enable discriminativedetection of cellular glutathione [J].Chemical Communications,2023,59(75):11252-11255.
[22]BINGX,ZHANGX,LIJ,et al.3D hierarchical tubular micromotors with highly selective recognition and capture for anti-biotics [J].Journal of Materials Chemistry A,2020,8(5):2809-2819.
[23]ZHU J,PENG X,NIE W,etal.Hollow copper sulfide nanocubes as mulifunctional nanozymes for colorimetric detectionof dopamine and electrochemical detection of glucose [J].Biosensors and Bioelectronics,2019,141:111450.
[24]GAO L,ZHUANGJ,NIE L,etal.Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J].Nature Nanotech-nology,2007,2(9):577-583.
[25]XIN J,PANG H,GóMEZ-GARCíACJ,etal.One-step synthesis of hollow CoS?spheres derived from polyoxometalate-based metal-organic frameworks with peroxidase-like activity [J].Inorganic Chemistry,2024,63(1):860-869.
[26]LIU Y,WANG Q,GUO S,etal.Highly selective and sensitive fluorescence detection of hydroquinone using novel siliconquantum dots [J].Sensors and Actuators B:Chemical,2018,275:415-421.
[27]ZHAOL,YU J,YUES,etal.Nickeloxidelcarbon nanotube nanocomposites prepared by atomic layer deposition for elec-trochemical sensing of hydroquinone and catechol [J].Journal of Electroanalytical Chemistry,2018,808:245-251.
[28]SIVARAMANN,DURAISAMY V,SENTHILKUMARSM,etal.N,S dual doped mesoporous carbon assisted simultaneouselectrochemical assay of emerging water contaminant hydroquinone and catechol [J].Chemosphere,2022,307:135771.
[29]ZHUx,XUE Y,HOU S,etal.Highly selective colorimetric platinum nanoparticle-modified core-shell molybdenumdisulfidelsilica platform for selectively detecting hydroquinone [J].Advanced Composites and Hybrid Materials,2023,6(4):142.
[30]ZHUANG Z,ZHANG C,YU Z,etal.Turn-on colorimetric detection of hydroquinone based on Au/CuOnanocompositenanozyme [J].Microchimica Acta,2022,189(8):293.
[31]GE H,ZHANGH.Fungus-based MnO/porous carbon nanohybrid as efficient laccase mimic for oxygen reduction catalysisand hydroquinone detection [J].Nanomaterials,2022,12(9):1596.
[32]ZHENG X,LIU Z,LIAN Q,etal.Preparation of flower-like NiMnO?as oxidase mimetics for colorimetric detection ofhydroquinone [J].ACS Sustainable Chemistry amp;Engineering,2021,9(38):12766-12778.
[33]DANG TV,HEO NS,CHO HJ,etal.Colorimetric determination of phenolic compounds using peroxidase mimics basedon biomolecule-free hybrid nanoflowers consisting of graphitic carbon nitride and copper [J].Microchimica Acta,2021,188(9):293.
MOFs-derived Fe-N-C nanozyme for colorimetricdetection of hdroquinone
ZHANG Yuanjie,LIJinkai,LIUZongming
School of Materials Science and Engineering,University of Jinan,Jinan 250022,China
Abstract
Objective Hydroquinone is a phenolic compound widely used in industry.It is difficult to degrade in the aquatic ecological envi-ronment and is harmful to human health.Therefore,constructing a simple and sensitive method for the detection of hydroqui-none is of great significant.
Methods In this study,an MOFs-derived Fe-N-C catalyst was synthesized through a simple chemical doping method and high-temperature pyrolysis,using an Fe-ZIF-8 precursor.The physicochemical properties of Fe-N-C were characterized in detailthroughSEM,TEM,XRD,F(xiàn)TIR,andXPS.The effect of the introducing Fe3+on the enzyme activity of the catalyst was stud-ied.The enzyme-like activity,catalyticmechanism,and kinetic parameters of Fe-N-C were systematically investigated.Basedon the enzyme-like activity of Fe-N-C,a colorimetric sensor for the detection of hydroquinone was developed.
Results and Discussion Based on the aforementioned characterization and experimental findings,F(xiàn)e-N-C exhibited excellentperoxidase-like activity and weak oxidase-like activity.Inaddition,in the presence of hydrogen peroxide,OPD and ABTSas substrates were also oxidized to yellow and blue products by Fe-N-C,with characteristic absorption peaks at 448 nm and416 nm,respectively.Additionally,the poisoning experiment with KSCN showed that Fe-N、was the main active site in Fe-N-Ccatalyst.The study of the catalytic mechanism confirmed that ·OH,O?-and 1O?were active oxygen radicals playing a majorrole in the catalytie oxidation of TMB.The catalytic activity of Fe-N-C nanozymes was further studied through steady-statekineticanalysis.The K and Vm of Fe-N-C for TMB were 0.134 mmol/L and 0.754×107M·s1,respectively,while those forH?O?were 16.535 mmol/L and 2.533×107M·s1,respectively.Finally,the colorimetric sensor detected HQ in a linearrange of 0~33 μmol/L with a detection limit of 0.356 μmol/L.Through anti-interference experiments,the established colorimet-ric sensing platform showed robust anti-interference ability and selectivity in detecting hydroquinone.
Conclusion The introduction of Fe?significantly improves the enzyme-like activity of N-C nanomaterials.Fe-N-C exhibitsexcellent peroxidase-like activity,which can rapidly oxidize the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB)to blue.Fe-N is the main active site of Fe-N-C nanozymes,and hydroxyl radical(·OH),superoxide radicals(O?-)and singletoxygen(1O?)are the main reactive oxygen species(ROS).Hydroquinone is a strong reducing organic pollutant that can reduceblueoxTMB to a colorless state.Based on this,a sensing platform for colorimetric detection of HQ was constructed.Thismethod has good sensitivity and selectivity for hydroquinone,which expands the application of MOFs-based nanozymes in thefield of environmental pollutant detection.
Keywords:nanozyme;metal-organicframework;colorimetricdetection;hydroquinone
(責(zé)任編輯:吳敬濤)