• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fuzzy immune algorithm and its application in solvent tower soft sensor modeling

    2015-03-03 08:01:24MENGKeDONGZhaoyangGAOXiaodanWANGHaimingLIXiao
    關(guān)鍵詞:計(jì)算精度測試函數(shù)徑向

    MENG Ke, DONG Zhao-yang, GAO Xiao-dan, WANG Hai-ming, LI Xiao

    (1. Centre for Intelligent Electricity Networks, The University of Newcastle, Callaghan 2308, Australia;2. School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia;3. School of Computer Science and Control Engineering, North University of China, Taiyuan 030051, China)

    ?

    A fuzzy immune algorithm and its application in solvent tower soft sensor modeling

    MENG Ke1,2, DONG Zhao-yang2, GAO Xiao-dan1, WANG Hai-ming1, LI Xiao3

    (1.CentreforIntelligentElectricityNetworks,TheUniversityofNewcastle,Callaghan2308,Australia;2.SchoolofElectricalandInformationEngineering,TheUniversityofSydney,Sydney2006,Australia;3.SchoolofComputerScienceandControlEngineering,NorthUniversityofChina,Taiyuan030051,China)

    An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method is presented by using the fuzzy system to realize the adaptive selection of two key parameters (possibility of crossover and mutation). By comparing and analyzing the results of several benchmark functions, the performance of fuzzy immune algorithm (FIA) is approved. Not only the difficulty of parameters selection is relieved, but also the precision and stability are improved. At last, the FIA is applied to optimization of the structure and parameters in radial basis function neural network (RBFNN) based on an orthogonal sequential method. And the availability of algorithm is proved by applying RBFNN in modeling in soft sensor of solvent tower.

    immune algorithm; fuzzy system; radial basis function neural network (RBFNN); soft sensor

    0 Introduction

    With the development of immunology and its research methods, the mechanism of biologic immune system has attracted increasing attention from researchers in recent years. Due to the powerful ability of information processing and special characteristics such as diversity, adaptive trait, biologic immune system has become a hot spot of artificial intelligence.

    Being the defense system of mammal, immune system plays a significant role in keeping the normal life activities of animals. If it is weakened or destroyed, lives will be endangered. The process that immune system annihilates viruses can be briefly described as follows:

    Once bacteria invade and enter the bloodstream or lymphatic system, they will encounter B cell and the antibodies withheld within B cell’s membrane will detect antigens in the bacteria. Thenceforth, T cells communicate with B cells based on the received information about the antigen from macrophages earlier and by so doing, B cells are inspired to propagate. The propagated B cells are converted into memory cells and antibodies are produced. With the aid of macrophages and other proteins within biologic bodies, antibodies bind to antigens and kill the antigens after they enter into blood system through the heart.

    Being an innovative optimization algorithm based on immune mechanism, the immune algorithm (IA)[1]is employed to address the multi-modal function optimization problem. It imitating the principle of our defense system annihilating foreign disease-causing bacteria or viruses through self-learning and self-adjusting. The capability of somatic theory and network hypothesis of immune system of multi-modal optimization problems has been examined in Ref.[2]. An IA is introduced in Ref.[3] to search for diverse solutions to design problems for electromagnetic devices, where optimal solutions are aggregated in memory cells.

    Differences in the production system for memory and antibodies distinguish IA from genetic algorithm (GA) although they are quite similar. Besides, IA manipulates a population of candidates simultaneously in the search space whereas GA manipulates just one. Compared with GA and other evolution programming, IA promotes the general search ability through the mechanism based on memory pool. At the same time, it realizes the function of self-adjusting by calculating affinity and concentration. To some extent, it avoids premature convergence.

    1 Soft sensor and RBF neural network

    In order to get eligible production, quality control wields an important role in industrial manufacture. Because of the complexity of industrial process especially in the petrochemical industry, it is very difficult to realize the real-time strict control of the quality of some products. Under many circumstances, the qualities of many products are tested off-line by labor because of the high price, difficulty of maintenance, time latency of on-line measure meters.

    The conception of soft sensors, which combines control knowledge and technologic theories together, was firstly brought forward in Ref.[4]. Some variables which can be easily measured are selected to compute real-time reliable estimates data of other ones which can not or is difficult to be measured by designing proper algorithms. Nonlinear modeling techniques are usually utilized to develop soft sensors to handle the peculiar nonlinearities of processes[4]. Not only can soft sensors be operated alone as a valuable, economic replacement of costly hardware sensors, but also work in parallel with real sensors to allow model-based techniques to be adopted in order to develop fault detection functions devoted to the analysis of the sensor’s health status.

    Radial basis function neural networks (RBFNN) is an excellent neural network in performance. In 1990, Girosi and Poggio had proved RBFNN can approach any nonlinear functions by discretionary precision[5]. RBF networks are gaining increasing popularity in many scientific and engineering fields as a result of their strengths compared with other types of artificial neural networks (ANN), e.g. improved approximation capabilities, simpler network structures and faster learning algorithms.

    RBF networks are composed of three layers, including the input, hidden and output layers, which form an unique neural network architecture. The input layer communicates the entire network to its outside environment. In the hidden layer, all the nodes are connected with centers, and they are vectors with a dimension identical to the number of inputs to the network. A RBF is employed to pass the node activity; the feedback from a hidden node is generated. Lastly, the output serves as a summation unit, which is linear. The structure of a typical RBFNN is presented in Fig.1.

    Fig.1 Typical MISO RBFNN

    But how to decide the number of neurons within the hidden layer has always been the problem counteracting the application of RBFNN. There is a possibility that a small network never converges, however, a large network converges fast but lacks the generalization ability. Besides a suitable network size, there are many other questions that need to be answered to use a network for a particular problem. Learning step, proper training procedure, number of layers, network initialization, value of gain and the number of neurons in each layer are some difficulties which block the wide application of neural network. In this paper an orthogonal sequential method[6]is represented producing RBFNN models based on an improved IA, which is used to auto-configure the structure of the network and obtain the model parameters.

    2 Fuzzy immune algorithm

    2.1 Basic principles of immune algorithm

    For the optimization problem, the antigens and antibodies in the immune system are represented as the objective functions and feasible solutions, respectively.

    The coding method for traditional IA is similar to that for the GA, which is coded in binary. In this paper a new real-coding based evolution IA because of the advantages of real coding algorithm in training neural network[7]is represented, which effectively improves the performance of traditional IA, solving the problems such as premature convergence, low speed of calculation and low precision.

    2.2 Calculation strategy of FIA

    The steps of FIA are illustrated as shown in Fig.2.

    Fig.2 Flow chart of FIA

    Step 1 (Recognize antigen)

    Antigen: objective function (generally minimum value).

    Antibody: feasible solutions.

    Step 2 (Produce initial antibody population and memory pool)

    In this step, the antibodies are generated randomly and then compartmentalized to the given intervals. The memory pool is a zero matrix of given size.

    Step 3 (Calculate the affinity values of all antibodies)

    IA uses affinity value as a discriminator of the quality of solutions represented by the antibodies in a population. Because the final target of the algorithm is searching the minimum value, function values of all the antibodies are calculated and sorted in ascending sequence.

    To calculate the affinity valueaffinity(i) of antibodyi, it is given by

    (1)

    whereris a random number in the interval [0.01,0.3].

    Step 4 (Update memory pool)

    Eminent antibodies from the present population are selected by their affinity values and concentrations in order to update memory pool which can be used to generate the offspring antibodies population.

    Step 5 (Select antibodies)

    1) To calculate the concentrationcon(i) of antibodyi, it is given by

    (2)

    where

    (3)

    2) To calculate the selection probabilityPs(i) of antibodyi, it is given by

    (4)

    3) A roulette selection is implemented based on the computed selection probability for the antibodies. This allocates each antibody a probability of being selected proportional to its relative affinity and concentration. A new antibody generation can therefore be formed by spinning the designed roulette.

    Step 6 (Determine crossover and mutation rates through fuzzy method)

    In IA, many parameters play an important role in determining convergence and convergent rate, such as crossover and mutation rates. Crossover is one key IA operator that promotes the new region exploration ability in the search space. Generally, crossover rate should be chosen comparatively big[8], between 0.7 and 1.0. Mutation is another IA operator which guarantees the diversity of the population. In Ref. [8], the mutation rate should be chosen between thousandths and hundredths.

    According to Ref.[9], statistical method, support vector machine or neural network can be utilized to adjust crossover and mutation rates. However, we have found that fuzzy system approach makes better contributions to the IA in both time consumption and precision when compared with above methodologies.

    Themembershipfunctionsforinputfd(t),andoutputΔPcareshowninFigs.3-6.Inthesamewaythemembershipfunctionsforinputfd(t), Pm,ΔPmandfuzzydecisiontableforΔPmcanbedrawn.

    Fig.3 Membership function of fd(t)

    Fig.4 Membership function of Pc

    Fig.5 Membership function of ΔPc

    Fig.6 Membership function of ΔPm

    According to a great deal of experimental data and expert knowledge, the fuzzy decision for ΔPcis made and presented in Table 1. By virtue of the same theory, the fuzzy decision table for ΔPmcan be generated. In the table, NH, NL, NM, NS, ZE, PS, PM, PL and PH are abbreviated for Negative Huge, Negative Large, Negative Medium, Negative Small, Zero, Positive Small, Positive Medium, Positive Large and Positive Huge, respectively.

    Table 1 Fuzzy decision table for ΔPc

    Step 7 (Crossover implementation)

    The crossover operator represents the mixing of antibiotic material from two selected parent antibodies to produce one or two child offspring antibody population. The amount of antibodies take part in crossover implementation is determined by crossover ratePc, which is adjusted by fuzzy method.

    An improved arithmetic crossover operator is described as

    (5)

    whereb1=0.5+b,b2=0.5-b, andbis a random number in interval [0,1].

    If the offspring antibody exceeds the given intervals, another operator will be selected.

    (6)

    Step 8 (Mutation implementation)

    An uneven mutation method[10-11]is described as follows:

    For one given parent antibody, if its elementxmis randomly selected to mutation, the corresponding element in its offspring is likely to change in two possibilities

    (7)

    (8)

    whereTis maximum generation;tis current generation;ris a fixed uneven parameter, usuallyr=2;bis a random number in the interval [0,1].

    In this paper, an improved mutation method is introduced, and its idea mainly comes from differential algorithm[12].

    (9)

    whereantibodybestis the optimal antibody of the current generation which is stored in memory pool.

    Step 9 (Generate new antibody population and update memory pool)

    Antibodies with high affinity value will evolve into next generation and be added into memory pool. Given number of new antibodies will be added into antibody population replacing antibodies with low affinity value.

    Step 10 (Termination criterion).

    For this step, the search is terminated if the following conditions are satisfied:

    1) The values for minvaluedo not change for several generations.

    2) When the set number of evolutionTis achieved.

    2.3 Test examples

    Several standard test functions are used to examine the ability of FIA and its advantages superior to other algorithms in the same test environment and condition. Except for parameters adaptive selection, the FIA is similar to other algorithms in flow and thought. The standard test functions and test results are shown in Table 2 and Table 3, respectively.

    Table 2 Three standard test functions

    Table 3 Results of test functions

    The above data indicate that FIA can effectively solve the premature problem and is suitable for complex optimization problems. The algorithm is not trapped by the local optimal solution and can promptly and accurately obtain a full set of global optimal solutions, which are incomparable in other similar algorithms.

    3 Configuration of RBFNN using FIA

    Like GA and other evolution algorithms[7,13], IA has three main applications in neural network:

    1) The parameters learning of neural network;

    2) The topology structure selection of neural network;

    3) The parameters and structure optimization of neural network.

    And the standard procedure for RBF networks learning problem can be decomposed into two steps: The first one is obtaining the number and centers of the nodes in hidden layer and the second one is calculation of the connection weights using simple linear regression.

    3.1 General ideas and theories[6]

    For typical RBFNN, ifwidenotes output weights, φi(X,Ci)denotestheoutputofithneuron, X=[x1,x2,…,xm]isinputvector, Cidenotesthehiddennodecenterlocationsofithneuronandydenoteslinearsummationofoutputofhiddenlayerneurons.IftheRBFisGaussfunction,

    (10)

    (11)

    Foronesetoftrainingdata,theequationcanbetransformedinto

    (12)

    Andthen

    (13)

    (14)

    (15)

    Sothegivenequationscanbetransformedinto

    (16)

    (17)

    (18)

    3.2 Two-step learning strategy of RBFNN

    3.2.1 Design of network structure

    Real-coded algorithm is suitable for neural network training because the antibodies are the real values in neural network. The real-coded method forithantibody is that the formern+1 columns are relevantncenters and one warp and the last column is affinity value of the antibody.

    The steps of RBFNN training are depicted as:

    Step 1: Initialization.i=1, E0=Y.

    Step 3: If output satisfies stopping criterion, network training will stop. Otherwise,i=i+1, and another neuron will be added.

    3.2.2 Design of network output layer

    Because of the output layer is linear and it serves as a summation unit, the least square method can be chosen to calculate

    (19)

    3.3 Result of soft sensor

    One pure-terephthalic acid (PTA) solvent tower is chosen as research object in this paper and the ultimately target is to establish the soft sensor model for acid content of the bottom flow of the solvent tower. Solvent dehydration is an important unit in PTA manufacture process. Because of the long delay and slow dynamic response of the rectify process, it is very difficult to realize the real-time control of the production quality. The running situation of the control system largely depends on the operators’ technical levels and habits. Although the set can run smoothly in a short time, it cannot reach the optimal state. Great care was taken in both selecting the appropriate set of training examples, which covered all the operating conditions of the plant. According to technologic flow, three parameters (conductance, temperature and pressure) are selected as inputs to the RBF neural network, whereas the output is the relevant acid content. For 175 metrical data, former 100 are chosen to train neural network and the other 75 are used to determine the availability and generalization ability of the neural network.

    To avoid over-learning phenomena, an early stopping approach is used. The parameters in FIA are set as

    Popsize=50, Memorypool=20,

    And the results of training and estimation are shown in Figs.7 and 8. Parameters comparison between different neural netowkrs are presented in Table 4.

    Fig.7 RBFNN training result

    Fig.8 Comparison between NN estimation and corresponding actual data

    Table 4 Parameters comparison between different neural networks

    NetworksNumberofnodesinhiddenlayerMSEMaxrelativeerrorStandardrelativeerrorFIARBF80.11680.01870.0028OLSRBF90.13360.02240.0031ConventionalRBF120.14190.023540.0033

    4 Conclusion

    The simulation results indicate that the proposed methodology is effective and accurate. The parameters of neural network are optimized by using FIA, not only the number of nodes in hidden layer can be reduced, but also the generalization ability can be improved. As the study of combining FIA and RBFNN in soft sensor modeling is emerging recently, there are many aspects we can borrow from the immune system and fuzzy system, and further research is needed.

    [1] Liao G C, Tsao T P. Application embedded chaos search immune genetic algorithm for short-term unit commitment. Electric Power Systems Research, 2004, 71(2): 135-144.

    [2] Fukuda T, Mori K, Tsukiyama M. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm. Artificial Immune Systems and Their Applications, 1999: 210-220.

    [3] Chun J S, Lim, J P, Jung H K, et al. Multisolution optimization of permanent magnet linear synchronous motor for high thrust and acceleration operation. In: Proceedings of International Conference on Electric Machines and Drives (IEMD 99), 1999: 57-59.

    [4] Fortuna L, Rizzo A, Sinatra M, et al. Soft analyzers for a sulfur recovery unit. Control Engineering Practice, 2003, 11(12): 1491-1500.

    [5] Girosi F, Piggio T. Networks and the best approximation property. Biological Cybernetics, 1990, 63(3): 169-179.

    [6] BAO Zhi-jun, WANG Xian-lai. RBF neural networks based on orthogonal sequential genetic algorithm. In: Proceeding of the 22nd Chinese Control Conference, Yichang, China, 2003: 1.

    [7] Michalewicz Z. Genetic algorithms + data structures=evolution program. New York: Springer Verlag, 1994.

    [8] Braberman V A. Verification of real-time design: combining scheduling theory with automatic formal verficaton. Software Engineering Notes, 1999, 24(6): 494-511.

    [9] Shi Y, Eberhart R, Chen Y. Implementation of evolutionary fuzzy system. IEEE Transactions on Fuzzy System, 1999, 7(2): 109-119.

    [10] Thompson J M, Miller S P. Specification-based prototyping for embedded. Software Engineering Notes, 1999, 24(6): 163-180.

    [11] Fierz H. The CIP method: component- and model-based construction of embedded system. Software Engineering Notes, 1999, 24(6): 375-393.

    [12] Lopez-Cruz I L, van Willigenburg L G, van Straten G. Efficient differential evolution algorithms for multimodal optimal control problems. Applied Soft Computing, 2003, 3: 97-122.

    [13] Goldberg D E. Genetic Algorithms in search, optimization and machine learning. MA: Addison-Wesley, 1989.

    模糊免疫算法及其在溶劑脫水塔軟測量建模中的應(yīng)用

    孟 科1, 2, 董朝陽2, 高曉丹1, 王海明1, 李 曉3

    (1. Centre for Intelligent Electricity Networks, The University of Newcastle, Callaghan 2308, Australia;2. School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia;3. 中北大學(xué) 計(jì)算機(jī)與控制工程學(xué)院, 山西 太原 030051)

    本文針對(duì)基本免疫算法收斂速度慢、 計(jì)算精度低等缺點(diǎn), 提出了模糊免疫算法。 該算法引入模糊技術(shù), 對(duì)關(guān)鍵參數(shù)(交叉概率和變異概率)實(shí)現(xiàn)了模糊自適應(yīng)調(diào)整。 通過標(biāo)準(zhǔn)測試函數(shù)實(shí)驗(yàn)結(jié)果的對(duì)比, 其可行性和有效性得到證明, 不僅減輕了原始算法中參數(shù)確定存在的困難, 而且提高了算法的計(jì)算速度和精度。 其次, 本文將模糊免疫算法用于徑向基神經(jīng)網(wǎng)絡(luò)的訓(xùn)練, 并將該神經(jīng)網(wǎng)絡(luò)應(yīng)用于溶劑脫水塔軟測量模型。 仿真實(shí)驗(yàn)證明, 模糊免疫算法優(yōu)化的徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)具有良好的泛化性能。

    免疫算法; 模糊系統(tǒng); 徑向基神經(jīng)網(wǎng)絡(luò); 軟測量

    MENG Ke, DONG Zhao-yang, GAO Xiao-dan, et al. A fuzzy immune algorithm and its application in solvent tower soft sensor modeling. Journal of Measurement Science and Instrumentation, 2015, 6(2): 197-204.

    10.3969/j.issn.1674-8042.2015.02.016

    MENG Ke (ke.meng@newcastle.edu.cn)

    1674-8042(2015)02-0197-08 doi: 10.3969/j.issn.1674-8042.2015.02.016

    Received date: 2015-02-25

    CLD number: TP273+.4 Document code: A

    猜你喜歡
    計(jì)算精度測試函數(shù)徑向
    淺探徑向連接體的圓周運(yùn)動(dòng)
    RN上一類Kirchhoff型方程徑向?qū)ΨQ正解的存在性
    基于PID+前饋的3MN徑向鍛造機(jī)控制系統(tǒng)的研究
    一類無窮下級(jí)整函數(shù)的Julia集的徑向分布
    基于SHIPFLOW軟件的某集裝箱船的阻力計(jì)算分析
    廣東造船(2018年1期)2018-03-19 15:50:50
    具有收縮因子的自適應(yīng)鴿群算法用于函數(shù)優(yōu)化問題
    帶勢函數(shù)的雙調(diào)和不等式組的整體解的不存在性
    約束二進(jìn)制二次規(guī)劃測試函數(shù)的一個(gè)構(gòu)造方法
    單元類型和尺寸對(duì)拱壩壩體應(yīng)力和計(jì)算精度的影響
    鋼箱計(jì)算失效應(yīng)變的沖擊試驗(yàn)
    久久久久久久久久久丰满| 久久久成人免费电影| 中文字幕熟女人妻在线| 一级黄片播放器| 人妻丰满熟妇av一区二区三区| 国产毛片a区久久久久| 在线a可以看的网站| 少妇人妻一区二区三区视频| 亚洲av第一区精品v没综合| 在线免费观看不下载黄p国产| 精品一区二区三区av网在线观看| 中文亚洲av片在线观看爽| 日韩欧美精品v在线| 九九热线精品视视频播放| 午夜精品在线福利| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 久久这里只有精品中国| av卡一久久| 美女高潮的动态| 成人综合一区亚洲| 欧美日韩一区二区视频在线观看视频在线 | 午夜激情福利司机影院| 成人一区二区视频在线观看| 久久久欧美国产精品| av在线老鸭窝| 精品久久久久久久久av| 国产国拍精品亚洲av在线观看| 深夜a级毛片| 人人妻人人澡欧美一区二区| 永久网站在线| 三级男女做爰猛烈吃奶摸视频| 波野结衣二区三区在线| 欧美日韩国产亚洲二区| 尾随美女入室| 在线播放无遮挡| 免费人成在线观看视频色| 午夜福利在线在线| 在线a可以看的网站| 人人妻人人澡人人爽人人夜夜 | 日本与韩国留学比较| 国产男人的电影天堂91| 成人无遮挡网站| 色尼玛亚洲综合影院| 人妻制服诱惑在线中文字幕| 久久国产乱子免费精品| 俄罗斯特黄特色一大片| 久久99热6这里只有精品| 日韩欧美在线乱码| 亚洲美女黄片视频| 搡老妇女老女人老熟妇| 夜夜夜夜夜久久久久| 亚洲精华国产精华液的使用体验 | 亚洲熟妇熟女久久| 最近在线观看免费完整版| 尤物成人国产欧美一区二区三区| 黄色一级大片看看| 国产成人91sexporn| 亚洲五月天丁香| 特大巨黑吊av在线直播| 亚洲成人av在线免费| 一a级毛片在线观看| 男女之事视频高清在线观看| 午夜福利成人在线免费观看| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 一区二区三区免费毛片| 天堂网av新在线| 国产亚洲精品久久久久久毛片| 国产伦精品一区二区三区视频9| 日本免费a在线| 国产黄色视频一区二区在线观看 | 国产精品久久久久久久久免| 人人妻人人澡人人爽人人夜夜 | 最近2019中文字幕mv第一页| 日韩成人伦理影院| 久久精品国产自在天天线| 一个人免费在线观看电影| 久久草成人影院| 色5月婷婷丁香| 午夜福利在线在线| 日日摸夜夜添夜夜爱| 亚洲av电影不卡..在线观看| 日本黄色视频三级网站网址| 亚洲无线在线观看| 色av中文字幕| 熟女电影av网| 少妇的逼好多水| 国产人妻一区二区三区在| 成人一区二区视频在线观看| 老熟妇乱子伦视频在线观看| 波野结衣二区三区在线| 淫秽高清视频在线观看| 99久久精品国产国产毛片| 夜夜夜夜夜久久久久| 又爽又黄无遮挡网站| 小蜜桃在线观看免费完整版高清| 日本-黄色视频高清免费观看| 国产精品一区二区三区四区免费观看 | 99久久九九国产精品国产免费| 国产 一区精品| 免费av毛片视频| 久久久久久久久久黄片| 国产亚洲91精品色在线| 久久久久久久午夜电影| 我要看日韩黄色一级片| 九九久久精品国产亚洲av麻豆| 久久综合国产亚洲精品| 成人性生交大片免费视频hd| 国产亚洲欧美98| 国内久久婷婷六月综合欲色啪| 少妇熟女欧美另类| 亚洲成a人片在线一区二区| 亚洲国产色片| 禁无遮挡网站| 一进一出抽搐动态| 性色avwww在线观看| 美女cb高潮喷水在线观看| 国产精品爽爽va在线观看网站| 97热精品久久久久久| 国内精品宾馆在线| 欧美丝袜亚洲另类| 可以在线观看的亚洲视频| 我要搜黄色片| 乱系列少妇在线播放| 久久天躁狠狠躁夜夜2o2o| 激情 狠狠 欧美| 国产精品女同一区二区软件| 91在线精品国自产拍蜜月| 丰满的人妻完整版| 亚洲av.av天堂| 91麻豆精品激情在线观看国产| 国产精品无大码| 亚洲美女黄片视频| 亚洲国产欧美人成| 欧美性感艳星| 亚洲精品国产av成人精品 | 成人av一区二区三区在线看| 久久精品国产亚洲av香蕉五月| 97人妻精品一区二区三区麻豆| 99视频精品全部免费 在线| 最好的美女福利视频网| 深夜a级毛片| 精品一区二区免费观看| 色综合亚洲欧美另类图片| 国产精品一区二区三区四区久久| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲av香蕉五月| 草草在线视频免费看| 国产欧美日韩精品一区二区| 特级一级黄色大片| 男女啪啪激烈高潮av片| 日产精品乱码卡一卡2卡三| 中文字幕av成人在线电影| www日本黄色视频网| 日韩欧美三级三区| 免费人成视频x8x8入口观看| 麻豆成人午夜福利视频| 99久久成人亚洲精品观看| 午夜日韩欧美国产| 少妇高潮的动态图| 国产三级在线视频| 悠悠久久av| 亚洲综合色惰| 欧美日韩乱码在线| 免费大片18禁| 能在线免费观看的黄片| 六月丁香七月| 超碰av人人做人人爽久久| 一夜夜www| 少妇人妻精品综合一区二区 | 久久久久久久久久黄片| 我要搜黄色片| 色播亚洲综合网| 狠狠狠狠99中文字幕| 欧美xxxx黑人xx丫x性爽| 两个人视频免费观看高清| 亚洲五月天丁香| 日韩欧美精品免费久久| 成人鲁丝片一二三区免费| 国产乱人偷精品视频| 精品日产1卡2卡| 男人狂女人下面高潮的视频| 最近的中文字幕免费完整| 亚洲第一电影网av| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女欧美另类| 看片在线看免费视频| 日本黄大片高清| 日韩三级伦理在线观看| 在线免费观看的www视频| 久久久精品94久久精品| 在线观看一区二区三区| 男女做爰动态图高潮gif福利片| 大型黄色视频在线免费观看| 大型黄色视频在线免费观看| 国产免费一级a男人的天堂| 婷婷色综合大香蕉| 又粗又爽又猛毛片免费看| 十八禁网站免费在线| АⅤ资源中文在线天堂| 美女免费视频网站| 成人漫画全彩无遮挡| 一本一本综合久久| 夜夜夜夜夜久久久久| 久久久久久久久中文| 成人精品一区二区免费| 国产免费一级a男人的天堂| 国产精品综合久久久久久久免费| 三级国产精品欧美在线观看| 熟女电影av网| 中文亚洲av片在线观看爽| 久久中文看片网| 精品一区二区三区视频在线| 赤兔流量卡办理| 国产精品久久久久久久电影| 国内揄拍国产精品人妻在线| or卡值多少钱| 99在线视频只有这里精品首页| 欧洲精品卡2卡3卡4卡5卡区| 又黄又爽又免费观看的视频| 成人av一区二区三区在线看| 五月玫瑰六月丁香| av在线播放精品| 99热这里只有是精品在线观看| 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 性欧美人与动物交配| 精品熟女少妇av免费看| 一个人观看的视频www高清免费观看| 欧美潮喷喷水| 婷婷六月久久综合丁香| 国产69精品久久久久777片| 插逼视频在线观看| 国产黄色小视频在线观看| 久久久精品大字幕| 成人三级黄色视频| 可以在线观看的亚洲视频| 国产精品国产高清国产av| 男女边吃奶边做爰视频| 精品久久久久久久久久久久久| 久久久久久九九精品二区国产| 欧美成人a在线观看| 亚洲成av人片在线播放无| 久久中文看片网| 又爽又黄无遮挡网站| 成年女人看的毛片在线观看| 观看美女的网站| 久久久精品大字幕| 国产高清激情床上av| 三级毛片av免费| 亚洲精品一卡2卡三卡4卡5卡| 色哟哟·www| 欧美高清性xxxxhd video| 国产精品久久久久久亚洲av鲁大| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 中文字幕熟女人妻在线| 美女被艹到高潮喷水动态| 成人国产麻豆网| 日本爱情动作片www.在线观看 | 97超视频在线观看视频| 一区二区三区免费毛片| 亚洲国产精品国产精品| 亚洲av中文av极速乱| 欧美xxxx黑人xx丫x性爽| 欧美日韩国产亚洲二区| 亚洲自偷自拍三级| 精品日产1卡2卡| 亚洲精品成人久久久久久| 精品欧美国产一区二区三| 免费无遮挡裸体视频| 变态另类丝袜制服| 乱码一卡2卡4卡精品| 色在线成人网| 别揉我奶头~嗯~啊~动态视频| 国产高清不卡午夜福利| 91久久精品国产一区二区成人| 国产亚洲精品综合一区在线观看| 亚洲精品色激情综合| 如何舔出高潮| 日韩av不卡免费在线播放| 高清毛片免费观看视频网站| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| 91在线观看av| 国产精品日韩av在线免费观看| 亚洲第一电影网av| 美女大奶头视频| 一级黄片播放器| 你懂的网址亚洲精品在线观看 | 国产亚洲91精品色在线| 观看免费一级毛片| 日韩欧美精品v在线| 成人性生交大片免费视频hd| 国产女主播在线喷水免费视频网站 | 99精品在免费线老司机午夜| 又爽又黄a免费视频| 欧美日韩乱码在线| 亚洲内射少妇av| 免费大片18禁| 久久久久久伊人网av| ponron亚洲| 日本黄色片子视频| 久久精品国产亚洲av香蕉五月| 国产精品亚洲美女久久久| 一级av片app| 少妇猛男粗大的猛烈进出视频 | 少妇的逼好多水| 亚洲中文字幕一区二区三区有码在线看| 国产精品国产高清国产av| 精品久久久噜噜| 久久久久久久亚洲中文字幕| 午夜精品一区二区三区免费看| 天堂网av新在线| 成熟少妇高潮喷水视频| 精品一区二区免费观看| 久久精品夜色国产| 亚洲成人中文字幕在线播放| 亚洲一区二区三区色噜噜| 午夜a级毛片| 俺也久久电影网| 国产伦精品一区二区三区四那| 国产精品国产高清国产av| 中文在线观看免费www的网站| 俄罗斯特黄特色一大片| 亚州av有码| 香蕉av资源在线| 亚洲色图av天堂| 欧美丝袜亚洲另类| 高清日韩中文字幕在线| 免费观看在线日韩| 大又大粗又爽又黄少妇毛片口| 99久久久亚洲精品蜜臀av| 香蕉av资源在线| 午夜福利18| 国产精品女同一区二区软件| 人妻丰满熟妇av一区二区三区| 国产淫片久久久久久久久| 听说在线观看完整版免费高清| 校园人妻丝袜中文字幕| 亚洲av成人精品一区久久| 亚洲在线观看片| 99久久成人亚洲精品观看| 亚洲真实伦在线观看| 99热这里只有精品一区| 国产精品一区二区三区四区久久| h日本视频在线播放| 成人毛片a级毛片在线播放| 免费大片18禁| 1024手机看黄色片| 欧美日韩乱码在线| 国产精品国产高清国产av| ponron亚洲| 国产aⅴ精品一区二区三区波| 成人av在线播放网站| 97热精品久久久久久| 美女内射精品一级片tv| 99riav亚洲国产免费| 精品免费久久久久久久清纯| h日本视频在线播放| 夜夜夜夜夜久久久久| 天堂动漫精品| 日韩av不卡免费在线播放| 国产亚洲91精品色在线| 欧美另类亚洲清纯唯美| 国产乱人偷精品视频| 亚洲一区高清亚洲精品| 午夜福利18| 亚洲丝袜综合中文字幕| 男人狂女人下面高潮的视频| or卡值多少钱| 欧美xxxx性猛交bbbb| 精品久久久久久久久久免费视频| 久久草成人影院| 搡老岳熟女国产| 大又大粗又爽又黄少妇毛片口| 午夜福利成人在线免费观看| 99久国产av精品国产电影| 在线观看美女被高潮喷水网站| 久久久国产成人免费| 亚洲一区高清亚洲精品| 一个人免费在线观看电影| 亚洲最大成人中文| 精品久久久久久久久久久久久| 能在线免费观看的黄片| 我要搜黄色片| 啦啦啦啦在线视频资源| 久久精品91蜜桃| 国产精品精品国产色婷婷| 成人综合一区亚洲| 一级毛片aaaaaa免费看小| 精品欧美国产一区二区三| ponron亚洲| 自拍偷自拍亚洲精品老妇| 亚洲自偷自拍三级| 成人漫画全彩无遮挡| 在线看三级毛片| 一进一出抽搐gif免费好疼| 国模一区二区三区四区视频| 日韩欧美国产在线观看| 黄色配什么色好看| 国产精品久久久久久久电影| 人妻夜夜爽99麻豆av| 欧美日韩一区二区视频在线观看视频在线 | 色5月婷婷丁香| 九九在线视频观看精品| 亚洲精品一区av在线观看| 亚州av有码| 日韩欧美免费精品| 国产精品美女特级片免费视频播放器| 国产成人a区在线观看| 亚洲精品在线观看二区| 日韩亚洲欧美综合| 成人亚洲欧美一区二区av| 欧美zozozo另类| 久久久久国产精品人妻aⅴ院| 长腿黑丝高跟| 国产片特级美女逼逼视频| 人妻丰满熟妇av一区二区三区| 99久久久亚洲精品蜜臀av| 久久久精品欧美日韩精品| 色视频www国产| 直男gayav资源| 老熟妇乱子伦视频在线观看| 亚洲精品在线观看二区| 亚洲18禁久久av| 欧美成人a在线观看| 直男gayav资源| 自拍偷自拍亚洲精品老妇| 熟女人妻精品中文字幕| 白带黄色成豆腐渣| 色综合站精品国产| 少妇人妻精品综合一区二区 | 搞女人的毛片| 国内少妇人妻偷人精品xxx网站| 色吧在线观看| 色播亚洲综合网| 欧美+日韩+精品| 91麻豆精品激情在线观看国产| 亚洲欧美精品综合久久99| 中文亚洲av片在线观看爽| 丰满人妻一区二区三区视频av| 最近视频中文字幕2019在线8| 日本a在线网址| 国产人妻一区二区三区在| 内地一区二区视频在线| 中国美白少妇内射xxxbb| 亚洲一区二区三区色噜噜| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 毛片女人毛片| 99热全是精品| 少妇的逼水好多| 国产精品久久久久久久电影| 午夜a级毛片| 3wmmmm亚洲av在线观看| 成年免费大片在线观看| 两个人的视频大全免费| 简卡轻食公司| 国产真实伦视频高清在线观看| 三级毛片av免费| 无遮挡黄片免费观看| 国产亚洲欧美98| www日本黄色视频网| 国产v大片淫在线免费观看| 国产精品久久久久久久电影| 国产一区二区三区在线臀色熟女| 亚洲精品久久国产高清桃花| 欧美成人免费av一区二区三区| 久久鲁丝午夜福利片| 在线观看av片永久免费下载| 日日摸夜夜添夜夜添av毛片| 看免费成人av毛片| 高清日韩中文字幕在线| 午夜爱爱视频在线播放| 亚洲精华国产精华液的使用体验 | 久久精品国产清高在天天线| 色吧在线观看| 简卡轻食公司| 亚洲色图av天堂| 亚洲精品国产成人久久av| 精品午夜福利视频在线观看一区| 久久久久久久久中文| 日韩欧美精品v在线| 女人十人毛片免费观看3o分钟| 国产精品伦人一区二区| 国产午夜精品论理片| 少妇人妻一区二区三区视频| 国产成人a∨麻豆精品| 美女被艹到高潮喷水动态| 国产一区亚洲一区在线观看| 最近手机中文字幕大全| 国产精品一区二区免费欧美| 亚洲欧美日韩无卡精品| 欧美精品国产亚洲| 国产真实乱freesex| 亚洲在线观看片| 12—13女人毛片做爰片一| 精品人妻视频免费看| 亚洲国产欧美人成| 亚洲第一电影网av| 丰满的人妻完整版| 内地一区二区视频在线| 欧美日韩在线观看h| 天美传媒精品一区二区| 国内精品宾馆在线| 直男gayav资源| 白带黄色成豆腐渣| 精品久久久久久久久亚洲| 亚洲最大成人av| 一进一出抽搐动态| 老女人水多毛片| 亚洲一级一片aⅴ在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 色哟哟哟哟哟哟| 日本 av在线| a级毛片免费高清观看在线播放| 日本欧美国产在线视频| 日韩欧美在线乱码| 国产精品久久久久久久电影| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站| 嫩草影院入口| 尤物成人国产欧美一区二区三区| 亚洲色图av天堂| 少妇丰满av| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 国产精品嫩草影院av在线观看| 男女啪啪激烈高潮av片| 最新在线观看一区二区三区| 中文资源天堂在线| 国产精品国产三级国产av玫瑰| 国内精品宾馆在线| 波多野结衣巨乳人妻| 悠悠久久av| av在线播放精品| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| 日日撸夜夜添| 国产成人91sexporn| 一级黄片播放器| 国产极品精品免费视频能看的| 给我免费播放毛片高清在线观看| 免费看光身美女| av在线播放精品| 小说图片视频综合网站| 成人午夜高清在线视频| 国产探花在线观看一区二区| av在线观看视频网站免费| 国产成人91sexporn| 天美传媒精品一区二区| 亚洲精品456在线播放app| 少妇高潮的动态图| 久久久久久久久久黄片| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 亚洲无线在线观看| 亚洲无线观看免费| 国产av在哪里看| 波多野结衣高清作品| 午夜激情福利司机影院| 免费观看精品视频网站| 亚洲欧美精品自产自拍| 欧美bdsm另类| 搡老妇女老女人老熟妇| 色尼玛亚洲综合影院| 亚洲激情五月婷婷啪啪| 99久久中文字幕三级久久日本| 国产精品永久免费网站| 一进一出好大好爽视频| 国产探花在线观看一区二区| 日韩中字成人| av在线播放精品| 麻豆av噜噜一区二区三区| 插逼视频在线观看| 丰满乱子伦码专区| 午夜福利成人在线免费观看| 亚洲不卡免费看| 国产精品99久久久久久久久| 男女啪啪激烈高潮av片| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜 | 免费高清视频大片| 男人狂女人下面高潮的视频| 12—13女人毛片做爰片一| 乱人视频在线观看| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 99国产精品一区二区蜜桃av| av专区在线播放| 看非洲黑人一级黄片| 特大巨黑吊av在线直播| 婷婷色综合大香蕉| 午夜亚洲福利在线播放| 国产综合懂色| 午夜a级毛片| 亚洲高清免费不卡视频| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| 久久韩国三级中文字幕| 国产色婷婷99| 中国美女看黄片| 两性午夜刺激爽爽歪歪视频在线观看| av卡一久久| 国产高清视频在线播放一区| 国产成人影院久久av| 国产熟女欧美一区二区| 日韩欧美三级三区|