• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques

    2015-03-04 06:16:10VictorKravchenkoOlegKravchenkoYaroslavKonovalov
    關(guān)鍵詞:物理信號

    Victor F Kravchenko, Oleg V Kravchenko,3, Yaroslav Y Konovalov

    (1. Kotelnikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;2. Bauman Moscow State Technical University, Moscow 105005, Russia;3. Scientific and Technological Center of Unique Instrumentation, Moscow 117342, Russia)

    ?

    Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques

    Victor F Kravchenko1,2, Oleg V Kravchenko1,2,3, Yaroslav Y Konovalov2

    (1.KotelnikovInstituteofRadio-engineeringandElectronics,RussianAcademyofSciences,Moscow125009,Russia;2.BaumanMoscowStateTechnicalUniversity,Moscow105005,Russia;3.ScientificandTechnologicalCenterofUniqueInstrumentation,Moscow117342,Russia)

    In present article a number of results are described in a systematic way concerning both signal and image processing problems with respect to atomic functions theory and Prouhet-Thue-Morse sequence.

    atomic functions; Prouhet-Thue-Morse sequence; digital signal processing; image processing

    0 Introduction

    The famous Prouhet-Tarry-Escott (PTE) problem[1]seeks collections of mutually disjoint sets of nonnegative integers having equal sums of the same powers. The PTE problem is as follows:

    LetS={0,1,…N-1}. GivenM, is it possible to partitionSinto two disjoint subsetsS0andS1such that

    for all 0≤m≤M?

    Prouhet-Thue-Morse (PTM) sequence was first studied by Eugene Prouhet in 1851 who applied it to number theory. However, Prouhet did not mentioned the sequence explicitly. This was left to Axel Thue in 1906, who used it to find the study of combinatories on words. The sequence was only brought to worldwide attention with the work of Marston Morse in 1921 when he applied it to differential geometry. The sequence has been discovered independently many times not always by professional research mathematicians. For example, Max Euwe, a chess grandmaster who held the world championship title from 1935 to 1937 and mathematics teacher, discovered it in 1929 in an application to chess as an example of an infinite chess game. The PTM sequence is usually defined as a sequence of “1” and “0” in number theory, as “A” and “B” in physics of quasycrystalls, and “1” and “0” in signal processing as well.

    Let us define a PTM sequence in such a way:t(1)=1 by definition. Then if the segment of the length 2nis constructed, we will continue it with the same one with signs of all terms changed to anothert(2n+k)=-t(k) for all 1≤k≤2n. The first 8 terms of the sequence are

    The PTM sequence[2]is a well-known self-similar sequence applied in coding, cryptography, etc. It has a strong connection with a PTE problem, and a simple proof of PTE has been introduced recently with the usage of the PTM sequence[3].

    Not so far a simple way of arithmetic and logic unit construction without multiplies on adders only was introduced by Wolfgang Hilberg in a patent[4]. The main advantage of the developed method is that it implies an integer arithmetic only to encode logical one or zero. The fractal property as a self-similarity of continuous analog of PTM sequence (known ashut(x) orup(x) function) was also used to develop a simple technique for compensation of Doppler effects which was introduced by Todor Cooklev in Ref.[5]. This property as a property of symmetry allowed reducing operations in digital device at least in two times.

    PTM ordering (so called P8 sequence) was also used as the first five Walsh functions (Paley ordering) in switched observations at the 12 Meter Telescope[6]. Such a property was also employed in the vertical receiver device which was mentioned to solve the problem of offshore hydrocarbon exploration[10].

    Then, the PTM sequence was used to develop an efficient optimization algorithm of a complex system management by Viktor Korotkikh[7]. While choosing the next strategy for each agent, one should follow an optimal fuzzy if-then rule on the basis of the PTM sequence:

    1) If the last strategy is successful, then continue with the same strategy.

    2) If the last strategy is unsuccessful, then ask PTM generator.

    Thestructureofthereviewisinthefollowing.Inthenextsection,wewillconsideranabstractmathematicalproblemofconstructionoflineartimeinvariant(LTI)systemwithbothPTMinputandoutput.Then,wewillconsideralinkbetweeninfinitelydifferentialcontinuousatomicfunctionsandthePTMsequence,anddescribesomegeneralizationsofthealgorithmbyWolfgangHilbergtoresolveacorrespondingfunctional-differentialequation.Intheendwewilldiscusssomephysicalmodelswhichallowustofindanaivetheorywithphysicalmeaningoftheatomicfunctionsaswell.

    1 LTI PTM system

    Withrespecttothedigitalsystems,let’sconsideradiscreteLTIsystemwithhnimpulsecharacteristicandletxnbeinputdiscretesequence.Forexample,therearefirst4elementsofthePTMsequence

    Inthegeneralcase,thelengthofxnsequenceislx,lengthofsequenceynisly,andthelengthofhnisln.SinceLTI’sinputisxn,theLTI’soutputwillbedefinedbytheconvolution

    yn=xn*hn.

    Themathematicalquestionis:willweobtainthePTMoutputynunderunknownhnwithzeromean?

    Let’sdescribehowtoobtainthePTMoutput.It’sobviousthatthelengthynisdefinedbylxandlh,

    (1)

    Considertheparticleexampleofthisproblem.Let’skeepthelengthofinputxnaslx=4.Inthiscase

    Thenwewillhave

    IfwehavetoobtainthePTMoutputynwithlengthly=2lx=8withtheelements

    Thenthelengthofhnwillbelh=ly-lx+1=5.

    (2)

    Eq.(2)willhavethefollowingmatrixform:

    (3)

    Onecouldshoweasilytherankrank(Alb)=rank(A)=5,thenthereisanontrivialsolutionofEq.(3)suchas

    (4)

    (5)

    (6)

    WecanalsofindthePTMpattern(4)inEq.(6).Forexample,

    Table 1 Connection between the lengths of xn, yn and hn

    Let’s consider a deep connection between the PTM and atomic functions as products of similar iterative procedures of corresponding PTM sequences. It allows us to conduct an investigation of the properties of atomic functions (AFs) based on the properties of PTM and conversely. Native application of this connection is a construction of fast iterative algorithms for computation of AFs. Another interesting effect of it is appearance of functions similar to atomic ones in the problem with PTM coefficients.

    2 Atomic functions and iterative algorithms

    AFs[11-14]were introduced in 1971 by V L and V A Rvachevs. The first and most known AFup(x) was constructed as a solution of the next problem. The derivative of compactly supported hump-like function consists of the hump and the pit. Is there a function whose hump and pit are similar to the hump of the function? If we set the support of the unknown function to [-1,1], the problem can be represented as a functional-differential equation (FDE)

    (7)

    Applying Fourier transform to the FDE, one can find that the solution exists, and ifa=2, the spectrum of the solution can be obtained as an infinite product of compressed sinc(ω) functionsω(Fig.1(b))

    (8)

    Fig.1 AF up(x), cup(x) and their derivatives

    The solution of Eq.(1) can be presented as a sum of corresponding Fourier series (Fig.1(a)):

    (9)

    In the general definition AFs are compactly supported solutions of FDEs presented in the form

    (10)

    whereL(f) is a linear differential operator, and usuallyL(f)=f(n). The most important AFs areha(x),fupn(x),Ξn(x), andcup(x) function (Fig.1(c)).

    Looking atn-time derivative of AFup(x) one can find that it consists of humps and pits ordered like “1” and “-1” in PTM. To prove this property, note thatup(0)(x)=up(x). It is a hump which can be represented as “1” in PTM. Then according to Eq.(10)

    (2up(2x+1)-2up(2x-1))(n)=

    2up(n)(2x+1)-2up(n)(2x-1).

    It means thatup(n+1)(x) consists of compressedup(n)(x) continued with -up(n)(x). This procedure is similar to the iterative procedure of the PTM construction described above. The signs of the terms ofn-time derivative are ordered as PTM, andn-time derivative ofup(x) can be presented as

    wheretkare terms of PTM. Another way to solve the FDE (7) was presented in Ref.[4] by Wolfgang Hilberg. It looks like a trick. Let’s construct a segment of the PTM sequence with the length 2n. Aftern-time summation and normalization, we will obtain 2npoints ofup(x) function. This method is demonstrated in Table 2(a).

    Table 2 Computation ofup(x) according to Ref.[4](a) and by iterative method (b)

    1101-1-111-1-11-111-11-1-11-111-1-111-11-1-1110-10-1010-101010-101100-1-100-1-100110012221000-1-2-2-2-10001357888875310000

    (a)

    (b)

    TheyareAFstooandsatisfytheequations:

    (11)

    An effective iterative algorithm for computing all of these functions is presented in Refs.[15]-[17]. Two AFsf(x) andg(x) with the same scale parameteraand the equations are constructed as

    (12)

    (13)

    (14)

    (15)

    Multiplication of Eqs.(14) and (15) gives equation for product in the following form:

    (16)

    A reverse Fourier transform according to

    gives the equation for the convolutionh(x)=f(x)*g(x),

    (17)

    Eq.(17) is a special case of Eq.(10), therefore,h(x) is an atomic function indeed. Afterwards, an iterative algorithm is constructed for computing the convolutionh(x). It consists of the next two steps repeated while required accuracy is not achieved: construction of the sequence with structure based on the form of right-hand part of Eq.(17) and its summationnf+ngtimes. Here are some examples.

    Example 1 The first example is an itself convolution ofha(x) function:ha(x)*ha(x). Applying Eq.(17), we obtain

    (18)

    The convolution function ofha(x)*ha(x) witha=4 is shown in Fig.2.

    Fig.2 Convolution AF h4(x)*h4(x)

    Example 2 The second example is a convolutionupm(x)*ha(x). Consider the convolution ofupm(x) withha(x), where the atomic functionupm(x) satisfies the equation

    (19)

    Let the scale parameters of the equations are equal (a=2m). Applying Eq.(17) to the previous equation, we obtain

    y(2mx+2m-2k)-y(2mx-2k+2)+

    y(2mx-2k)).

    After opening brackets, we get a short and clear equation for the convolutionupm(x)*h2m(x) as

    y(x)=2m(y(2mx+2m)-y(2mx)+

    y(2mx-2m)).

    Eq.(11) is a special case of constructed equation withm=1.

    After some considerations, a two-parameter family of atomic functions which is presented as cha,ncan be introduced. In Example 1, the equation for the convolutionha*hais constructed. Based on its triple convolution,ha*ha*ha=(ha*ha)*hacan be considered, then the quadruple convolutionha*ha*…*ha*ha=(ha*ha*ha)*ha, etc.

    We define a new two-parameter family of functions cha,nas the convolution[17]

    Doing the iterative procedure as Eq.(17) byn-1 times, we obtain FDE for the constructed functions,

    (20)

    wherea>1 andn=1,2,3,…. Enumerated in the introduction of AFs are the special cases ofcha,nwith the fixed values of the parameters,

    Familycha,n(x) allows investigating the properties of AFs in an unified way(see Table 3). Consider some properties of the new family of AFs.

    Table 3 Supports of terms of right-hand part of equation of cha,n(x)

    Shifts ofcha,ngive a constant decomposition as follows:

    An exact decomposition of any polynomial degree less or equal ton-1, is given by

    The property allows the construction of effective interpolation of smooth functions. Examples of 1D and 2D interpolations and their applications to solving the boundary-value problems are presented in Ref.[17].

    4) Based on Eq.(20), recurrent formulas for even momentscha,n(x) are constructed. View of the formulas depends onn. Forn=2 andn=3, we have, respectively

    Note that according to the above definition, the function discussed in Example 1 ischa,n.

    3 Iterative computation of AFs

    Considerup(x) as a fixed point of contraction operator

    (21)

    According to the contraction mapping principle,up(x) is limit of the sequence {fn(x)} withfn+1(x)=A(fn). There are generally three ways of practical construction of the sequence {fn(x)}: analytical construction, numerical integration and summation of self-similar sequences.

    The first way means analytical computation of integral as Eq.(21) to obtain convergent sequence of interpolations of AFup(x). With the starting pointf0(x)≡0.5, it provides a sequence of splines of increasing degree. These splines are called perfect splines. To obtain good accuracy, one has to consider splines of high degree. Then perfect splines are not convenient for practical calculation. In the second way, analytical transforms are replaced with numerical computation of integrals as Eq.(21). This method is clear and can be performed for any FDE with any right-hand part. The main disadvantage of this method is accumulation of the computation error at the right end of the integration segment. This error can lead to distortion of function, spoiled its symmetry and even break convergence of the algorithm. The third way is summation of special self-similar sequences. This method is similar to the previous one, but all computation is performed on integer numbers without accumulation of computation error. This method provides successive approximations with step functions considered as sequences. In terms of the sequences the operatorA(f) forup(x) function can be represented as composition of two steps: continuation of constructed segment of the sequence with the same one with reversed signs of terms and summation of the sequence corresponding to the integration in operatorA(f). The example of computation with starting point is shown in Table 1(b). It is clear that Hilberg’s method described above is similar to the iterative method with another order of computation. Giving the same result, the iterative method requires less arithmetical operations than Hilberg’s. For any other FDE, a similar iterative method can be constructed. It will be presented as iterated composition of two steps: continuation of the sequence according to the right-hand part of equation and iterated summation corresponding to the integration in operatorA(f). Then each AF corresponds to the self-similar sequence constructed according to the right-hand part of equation.

    Here, AFcup(x) (See Fig.1(c)) as an example of the construction of the iterative algorithms is discussed. It is known[13]that the convolutions of AFs are AFs too. Thencup(x)=up(x)*up(x) is an AF with the support [-2,2] and the equation

    y″(x)=2y(2x+2)-4y(2x)+2y(2x-2).

    The supports of the terms of right-hand part of FDE are respectively [-2,0], [-1,1] and [0,2]. The terms are intersected and each term is shifted from one another on the half of its length. Then corresponding continuation operation can be described as in the following. If some segment of the sequence is constructed, a new segment of double length consists of three segments similar to be shifted from each other to the half of their lengths multiplied by the coefficients 1, -2 and 1 according to the right-hand part of the equation. Then this new sequence must be summated two times since the FDE is of second order. In Table 4,cup(x) function, its derivatives and examples of iterative computation are shown.

    Table 4cup(x) function and its iterative computation

    The main advantage of these iterative algorithms is that they allow very fast and accurate computation of AFs and their convolutions. A general description of the iterative approach to the computation of AFs is given in Refs.[15]-[17].

    According to Eq.(21), consider the following more general self-similar operator,

    (22)

    OperatorA(y) consists of two steps: summation of the terms of the right-hand part of Eq.(20) and integration ofntimes.

    Depending on the method of integration, there are three different ways of practical construction of the sequence.

    1) Analytical calculation of integrals. With starting point

    It provides a sequence of splines of increasing degree.

    2) Numerical computation of integrands. This method is clear and can be simply performed for FDE with any right-hand part. The main disadvantage of this method is accumulation of the computation error at the right end of integration segment. This error can lead to distortion of the function, spoiled symmetry and even break convergence of the algorithm.

    3) Summation of special self-similar sequences. This method is similar to the previous one, but all computation is performed on integer numbers without accumulation of the computation error. This method provides successive approximations with step functions considered as a sequence.

    Let us discuss the third way of iterative computation.fkis presented as a sequence with lengthlk. OperatorA(y) is a composition of two operations: addition terms of the right-hand part of the equation and n-times integration. The first operation is presented as construction of the new sequence with lengthlk+1from the shifted segments of the previous one. The second operation is a summation of the sequence performedntimes.

    Table 5 Computation of ch3,3(x) function

    Fig.3 Function ch3,3(x)

    Then we apply the operator to it. The first step of the operation is addition to the segment of the previous sequence of the two same segments multiplied respectively by -2 and 1. The terms are shifted from each other with 3 points. The empty space is filled by zeros. We obtain a new sequence with quadruple length. Then we integrate this sequence two times. We repeat the steps to achieve the required accuracy. The example of the computation is shown in Table 6. The graph of the function is presented in Fig.2.

    Table 6 Computation of ch4,2(x) function

    Notethatatomicfunctionsareevenandsymmetricandtheirincreasinganddecreasingintervalsareinthesamescale.ThesepropertiesmakeitpossibletouseFourierseriesfortheircomputation.InthecaseofmorecomplicatedstructureofFDEitmaybemoredifficultorimpossibletousetheFouriermethod.However,theiterativealgorithmallowsfindingthecompactlysupportedsolutionsofsuchFDEs.Inthereport,examplesofapplicationofalgorithmaredemonstratedtothefollowingcases:

    i)Thefunctionisnotsymmetric(increasinganddecreasingintervalsalternateinanyarbitraryorder).

    Example3FDEisthefollowing,

    ii) Increasing and decreasing intervals are in different scales (akin Eq.(10) are different).

    Example 4 Two FDEs are as follows:

    Examples of the work of the algorithm are presented in Figs.4(a)-(c). Implementation of some AFs can be found in Ref.[20] and implementation of the iterative algorithm ofup(x) approximation via the PTM sequence[6]can be found in Ref.[19] as well.

    Fig.4 Solutions of FDEs

    4 PTM sequence and physical models

    It seems to be unclear to ask about some ideas behind the physical interpretation of the functional differential equations like Eq.(10) and their finite solutions likeup(x).

    The native consequence of the previous considerations is that Eq.(10) may appear in some situations when the PTM sequence arises in some media. So, let us consider a so-called PTM chain.

    Let us have the sequence of masses {mj},j=1,…,Nis such that the indices 0 and 1 are distributed according to the PTM sequence joined by the springs with stiffnessk(Fig.5). The name of such kind of structure is “quasy-alloy” by analogy with quasicrystal models (like Fibonacci quasicrystal models). A detailed reference about this question can be found in Ref.[16].

    So, when we consider a tight-binding model of atoms like in Fig.5 with site energies arranged in the PTM sequence, we have a transfer matrix

    (23)

    The typical situation is presented in Figs.6(a) and (b). It is a fractal-like wavefunction which is computed by Eq.(23) with the initial condition:ψ1=1,ψ2=3,V0=1,E=1,723 817 824 andN=213(Fig.6(a)) andN=214(Fig.6(b)).

    Fig.5 Prouhet-Thue-Morse chain

    Fig.6 Typical fractal wavefunctions

    There is a special case in Eq.(23) model when the unusual continuous wavefunction appears. The main condition is if this case isψ1=ψ2. For example if we set the initial condition as

    (24)

    Fig.7 Continuous wavefunctions “hump”

    We will obtain the continuous wavefunction as shown in Fig.7(c). Consider the absolute of the normalized vector ψ=ψ-mean(ψ)withthenormalizedψandassumethatthepitsandhumpsarehigh.Infacttheirheightsareslightlydifferent.Sothemeanofthevectorψisclosetozerobutnotzero.Itwillincreaseandsuchkindofstructurewillbeunstableonintegration.InFig.8(a)thecomparisonbetweenthefinitesolutionofEq.(1) up(x) (reddash)andtheabsolutenormalizedhumpofthenormalizedvectorψ≡ψ-mean(ψ) (bluesolid)ispresented.Weperform6summationsofthewavefunctionasinHilberg’salgorithm.WenormalizeeachofthecontinuousfunctiontothemaximumofthemagnitudeshowingthenumberofiterationinFig.8(b).Thenwecompareup(x) (Fig.4(c),reddash)andtheresultinghumpofthe6summationsofthenormalizedvectorψ≡ψ-mean(ψ) (bluedotted,goldlineinFig.8(b)).

    Fig.8 Summations of the wavefunction (3)

    Let’sconsiderfour-timesmoreatomsinthePTMchainN=29.Considerthefirst7iterationsofsummationofthewavefunctionasEq.(23)withtheinitialconditionEq.(24),here,wecanseetheunstabletrendontherightpart.

    ThegeneralquestionishowwecanobtainEq.(21)fromthewavefunctionEq.(23)withtheinitialconditionEq.(24).So,thereisoneabstractmathematicwaywhichwasintroducedbyJFabius[16].

    Supposethatwehavethestablecontinuouswavefunction(i.e.theintegralofthiswavefunctionequalstozero)aftertheiteratedsummations.Forexample,ifwedothesummationNtimes,wecanobtain(undersomeconditions)thesituationwhentheform(orpattern)ofthecontinuousfunctionwiththeN-thiterationwillbedifferentfromtheonewiththeN-1th(orN+1th)iterationonlythescalefactorlikeinFig.7(a) (goldsolidwiththe6thiterationandmagentasolidwiththe5thiteration).

    Ifwehavesuchthesituation,wecanapplytheJfabiusformalism.Let’sdefineF(x)as

    (25)

    Then,defineanotherfunctionf(x)whichisincoincidencewithF(x)on[0,1]andsatisfiestherelations

    (26)

    Eq.(26)canbetransformedeasilyas

    (27)

    wherenkisaPTMsequence.Notethatwhilef(x)iscontinuousandvanishesonlyatthenonnegativeevenintegers,itshouldsatisfythefollowingfunctionalintegralequation,

    (28)

    ByinductionifEq.(27)holdsforall[0,2n]andn≥1,weobtainforx∈(2n,2n+1]

    (29)

    anditimpliesfromEq.(26)that

    (30)

    Eq.(29)meansthatitsatisfiesstabilityrequirement,whichissufficient.ItfollowsfromEq.(28)thatf(x)isdifferentiableandcontinuousandsatisfiesthefunctionaldifferentialequation

    (31)

    forallx∈[0,+∞)andhencef(x)isinfinitelydifferentiablewithn-thderivative,

    (32)

    forallx∈[0,+∞), n=1,2,….Thereisawell-knownfactfromtheatomicfunctionstheorythatEq.(31)hastheinfinitedifferentialsolutionwhichisaseriesbyup(x)withthePTMcoefficients

    (33)

    InthepresentinvestigationwehaveconsideredonesimplemodelPTMchainandanativesuggestionhowEq.(1)arisesinsuchkindofmodels.Weusethesummationtechniquewhichplaysakeyroleinoursimpleanalysistosatisfythestabilitycondition.Afterwards,weusetheJ.FabiusformalismtoderivethefunctionalEq.(31)relatedtoEq.(10).

    5 Conclusion

    In this review we describe briefly recent progress in application of the PTM discrete sequence in different fields such as radar waveform constructions, interferometer measurements, hydrocarbon exploration, and Doppler compensation, etc. We have also defined and considered a family of infinitely differential functions so-called atomic functions which are strongly connected with the PTM sequence in many different senses. On the basis of such a connection a fast iterative algorithm is introduced to solve the accordingly functional-differential equations both single and multi- scaled. We have also presented an investigation of a simple model of the Prouhet-Thue-Morse chain and a native suggestion how could arise in such kind of models which can be a start of a naive physical theory of such kind of functional-differential equations of delay type with scaling.

    [1] Nguen H D. A new proof of the Prouhet-Tarry-Escott problem. 2014-11-22[2015-02-17]. http:∥arxiv.org/abs/1411.6168.

    [2] Allouche J-P, Shallit J. Automatic sequences: theory, applications, generalizations. London: Cambridge University Press, 2003.

    [3] Nguyen H D, Coxson G E. Doppler tolerance, complementary code sets, and the generalized thue-morse sequence, 2014-10-11[2015-02-17]. http:∥arxiv.org/abs/1406.2076.

    [4] Hilberg W. Korrelationsermittlung durch stapeln von impulsen: German Patent 198 18 694 A 1, 1999.

    [5] Cooklev T. Device and method for compensating or creating doppler effect using digital signal processing: US Patent 6633617 B1, 2003.

    [6] Mangum J G. User’s manual for the NRAO 12 meter millimeter-wave telescope. Kitt Peak, Arizona, 2000.

    [7] Korotkikh V, Korotkikh G, Bond D. On optimality condition of complex systems: computational evidence, 2005[2015-02-17]. http:∥arxiv.org/abs/cs/0504092.

    [8] Rouan D. Ultra deep nulling interferometry using fractal interferometers. Comptes Rendus Physique, 2007, 8(3/4): 415-425.

    [9] Chi Y, Pezeshki A, Calderbank R, et al.. Range sidelobe suppression in a desired Doppler interval. In: Proceedings of IEEE International Waveform Diversity and Design Conference, Kissimmee, FL, USA, 2009: 8-13.

    [10] Holten T, Flekk y E G, Singer B, et al. Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First break, 2009, 27(5): 89-93. http:∥www.petromarker.com/wp-content/uploads/2013/06/first-break-may-2009.pdf.

    [11] Kravchenko V F, Rvachev V L. Boolean algebra, atomic fucntions, and wavelets in physcial applications. Fizmatlit, Moscow, 2006.

    [12] Kravchenko V F. Application of atomic functions theory, WA-systems and R-functions in information technologies. In: Proceedings of International Scientific Seminar "Actual Problems of Mathematical Physics", Moscow State University, Moscow, 2014: 28-33.

    [13] Kravchenko V F, Perez-Meana H M, Ponomaryov V I. Adaptive digital processing of multidimensional signals with applications, Fizmatlit, Moscow, 2008.

    [14] Zelkin E G, Kravchenko V F, Gusevskii V I. Constructive methods of approximation in theory of antennas. Moscow: Sains-Press, 2005.

    [15] Konovalov Y Y. Iterative algorithms for numerical solution of differential equations with linearly transformed argument. International Journal of Electromagnetic Waves and Electronic Systems, 2011, 16(9): 49-57.

    [16] Hilberg W, Kravchenko V F, Kravchenko O V, et al. Atomic functions and generalized Thue-Morse sequence in digital signal and image processing. In: Proceedings of 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 2013: 66-71.

    [17] Konovalov Y Y, Kravchenko V F. Weight functions based on the convolutions of atomic functions. In: Proceedings of the International Conference on Days on Diffraction, 2013: 78-82.

    [18] Kravchenko O, A continuous analog of the 1D Thue-Morse sequence, [2015-02-17]. http:∥demonstrations.wolfram.com/A Continuous Analog Of The 1 D Thue Morse Sequence/

    [19] Kravchenko O. Polynomial atomic functions for Fourier analysis, 2014[2015-02-17]. http:∥demonstrations.wolfram.com/Polynomial Atomic Functions For Fourier Analysis/

    [20] Kravchenko V F, Lutsenko V I, Lutsenko I V. Backscaterring by sea of centimeter and millimeter waves at small grazing angle. Journal of Measurement Science and Instrumentation, 2014, 5(2): 36-43.

    [21] Kravchenko V F, Lutsenko V I, Lutsenko I V, et al. Description and analysis of non-stationary signals by nested semi-Markov processes. Journal of Measurement Science and Instrumentation, 2014, 5(3): 25-32.

    [22] Volosyuk V K, Kravchenko V F, Kutuza B G, et al. Statistical theory of ultrawideband radiometric devices and systems. Physical Bases of Instrumentation., 2014, 3(3): 5-66.

    [23] Kravchenko V F, Churikov D V. Kravchenko atomic transforms in digital signal processing. Journal of Measurement Science and Instrumentation, 2012, 3(3): 228-234.

    [24] Kravchenko V F, Churikov D V. Kravchenko probability weight functions in problems of radar signals correlation processing. Journal of Measurement Science and Instrumentation, 2013, 4(3): 231-237.

    [25] Volosyuk V K, Kravchenko V F, Pavlikov V V, et al. Statistical synthesis of radiometric imaging formation in scanning radiometers with signal weight processing by Kravchenko windows. Doklady Physics, 2014, 59(5): 219-222.

    [26] Volosyuk V K, Gulyaev Y V, Kravchenko V F, et al. Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems (Review). Journal of Communications Technology and Electronics, 2014, 59(2): 97-118.

    [27] Kravchenko V F, Kravchenko O V, Pustovoit V I, et al. Application of the families atomic functions, WA-systems and R-functions in modern problems of radiophysics. Part I. Journal of Communications Technology and Electronics, 2014, 59(10): 949-978.

    [28] Kravchenko V F, Kravchenko O V, Lutsenko V I, et al. Restoration of environment information parameters with using of atomic and WA-systems of functions. Review. Part I. Application of the theory of semi-markov fields and finite functions for the description of non-stationary processes. Physical Bases of Instrumentation, 2014, 3(2): 3-18.

    Prouhet-Thue-Morse序列和原子函數(shù)在物理和技術(shù)中的應(yīng)用

    Victor F Kravchenko1,2, Oleg V Kravchenko1,2,3, Yaroslav Y Konovalov2

    (1. Kotelnikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;2. Bauman Moscow State Technical University, Moscow 105005, Russia;3. Scientific and Technological Center of Unique Instrumentation, Moscow 117342, Russia)

    本文系統(tǒng)地闡述了信號與圖像處理中與原子函數(shù)理論和Prouhet-Thue-Morse序列相關(guān)的大量研究成果。

    原子函數(shù); Prouhet-Thue-Morse序列; 數(shù)字信號處理; 圖像處理

    Victor F Kravchenko, Oleg V Kravchenko, Yaroslav Y Konovalov. Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques. Journal of Measurement Science and Instrumentation, 2015, 6(2): 128-141.

    10.3969/j.issn.1674-8042.2015.02.005

    Foundation items: Russian Foundation for Basic Research (No.130212065)

    Victor F Kravchenko (kvf-ok@mail.ru)

    1674-8042(2015)02-0128-14 doi: 10.3969/j.issn.1674-8042.2015.02.005

    Received date: 2015-03-17

    CLD number: TN911.7 Document code: A

    猜你喜歡
    物理信號
    只因是物理
    井岡教育(2022年2期)2022-10-14 03:11:44
    信號
    鴨綠江(2021年35期)2021-04-19 12:24:18
    如何打造高效物理復(fù)習課——以“壓強”復(fù)習課為例
    完形填空二則
    處處留心皆物理
    孩子停止長個的信號
    我心中的物理
    三腳插頭上的物理知識
    基于LabVIEW的力加載信號采集與PID控制
    一種基于極大似然估計的信號盲抽取算法
    能在线免费观看的黄片| 熟妇人妻久久中文字幕3abv| 三级经典国产精品| 日韩欧美精品v在线| 99久久精品热视频| 午夜亚洲福利在线播放| 久久九九热精品免费| 亚洲成a人片在线一区二区| 特大巨黑吊av在线直播| 联通29元200g的流量卡| 亚洲av二区三区四区| 亚洲国产高清在线一区二区三| 日本与韩国留学比较| 色哟哟·www| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 日韩精品中文字幕看吧| 美女免费视频网站| 欧美zozozo另类| 欧美3d第一页| 18+在线观看网站| 老熟妇乱子伦视频在线观看| 老熟妇仑乱视频hdxx| 国内揄拍国产精品人妻在线| 最近视频中文字幕2019在线8| 欧美激情在线99| 能在线免费观看的黄片| 精品久久久久久久久久免费视频| 人妻制服诱惑在线中文字幕| 你懂的网址亚洲精品在线观看 | 嫩草影院精品99| 成人无遮挡网站| 97超级碰碰碰精品色视频在线观看| 天堂影院成人在线观看| 国产毛片a区久久久久| 一个人看的www免费观看视频| 亚洲成人久久性| 亚洲精品日韩在线中文字幕 | 97碰自拍视频| 国产成年人精品一区二区| 97在线视频观看| 国产精品久久视频播放| 欧美高清性xxxxhd video| 午夜视频国产福利| 久久久久久九九精品二区国产| www日本黄色视频网| 成年女人永久免费观看视频| 99久国产av精品国产电影| 男人狂女人下面高潮的视频| 天堂av国产一区二区熟女人妻| 国产白丝娇喘喷水9色精品| 亚洲精品亚洲一区二区| 天堂√8在线中文| 一级毛片久久久久久久久女| 精品一区二区三区视频在线| 国产 一区 欧美 日韩| 91狼人影院| 精品熟女少妇av免费看| 草草在线视频免费看| 一级毛片电影观看 | 村上凉子中文字幕在线| 深夜精品福利| 两个人视频免费观看高清| 别揉我奶头~嗯~啊~动态视频| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av涩爱 | 日本免费一区二区三区高清不卡| 国产精品一及| 日韩av在线大香蕉| 国产单亲对白刺激| 可以在线观看毛片的网站| 三级经典国产精品| 亚洲欧美日韩无卡精品| 精品乱码久久久久久99久播| 日本爱情动作片www.在线观看 | 久久久久久九九精品二区国产| 免费av毛片视频| 久久人人爽人人爽人人片va| 国产亚洲精品久久久com| 直男gayav资源| 国产免费男女视频| 亚洲av中文av极速乱| 看非洲黑人一级黄片| 九九热线精品视视频播放| 日本一二三区视频观看| 一本精品99久久精品77| 老熟妇乱子伦视频在线观看| 最新中文字幕久久久久| 国产高清有码在线观看视频| 又爽又黄无遮挡网站| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 国产高清激情床上av| 亚洲七黄色美女视频| 精品人妻熟女av久视频| av在线老鸭窝| 国产精品久久久久久久电影| 精品一区二区免费观看| 久久天躁狠狠躁夜夜2o2o| 国产精品伦人一区二区| 伦精品一区二区三区| 日韩人妻高清精品专区| 欧美精品国产亚洲| 国产淫片久久久久久久久| 日韩欧美国产在线观看| 高清午夜精品一区二区三区 | 日日撸夜夜添| 国产精品久久久久久av不卡| 亚洲精品乱码久久久v下载方式| 久久久久久久久久成人| 日韩欧美精品v在线| 亚洲无线在线观看| 久久久午夜欧美精品| 少妇人妻一区二区三区视频| a级毛片a级免费在线| 在现免费观看毛片| 搡老熟女国产l中国老女人| 精品人妻视频免费看| av在线播放精品| 亚洲图色成人| 天天躁夜夜躁狠狠久久av| 激情 狠狠 欧美| 男人狂女人下面高潮的视频| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 乱系列少妇在线播放| 国产亚洲精品综合一区在线观看| 日本色播在线视频| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 男插女下体视频免费在线播放| 青春草视频在线免费观看| 久久欧美精品欧美久久欧美| 精品久久久久久久末码| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 午夜福利在线在线| 岛国在线免费视频观看| 99精品在免费线老司机午夜| 18禁黄网站禁片免费观看直播| 性插视频无遮挡在线免费观看| 久久人人爽人人片av| 内射极品少妇av片p| 3wmmmm亚洲av在线观看| 久久久国产成人免费| 亚洲成av人片在线播放无| 91av网一区二区| 一级毛片我不卡| 成人一区二区视频在线观看| 一区福利在线观看| 精品人妻熟女av久视频| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 日本黄色片子视频| 久久精品91蜜桃| a级毛片a级免费在线| 极品教师在线视频| 国产爱豆传媒在线观看| 毛片一级片免费看久久久久| 日日摸夜夜添夜夜添小说| av天堂在线播放| 搡老妇女老女人老熟妇| 日本一本二区三区精品| www日本黄色视频网| 国产精华一区二区三区| 内射极品少妇av片p| 日日撸夜夜添| 少妇人妻精品综合一区二区 | 夜夜看夜夜爽夜夜摸| 亚洲无线在线观看| 亚洲精品乱码久久久v下载方式| 1000部很黄的大片| 色播亚洲综合网| 淫妇啪啪啪对白视频| 人人妻,人人澡人人爽秒播| 亚洲av熟女| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩| 毛片女人毛片| 成年版毛片免费区| 嫩草影院精品99| 色尼玛亚洲综合影院| 国产高清视频在线播放一区| 天天躁日日操中文字幕| 亚洲成av人片在线播放无| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜 | 亚洲在线自拍视频| 看非洲黑人一级黄片| 好男人在线观看高清免费视频| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 欧美色欧美亚洲另类二区| 欧美最新免费一区二区三区| 日韩欧美免费精品| 99久久精品一区二区三区| 黄片wwwwww| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 深夜a级毛片| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| 精品久久久久久久久av| 日本在线视频免费播放| 国产高潮美女av| 亚洲18禁久久av| 久久久国产成人免费| 亚洲国产日韩欧美精品在线观看| 精品人妻视频免费看| 亚洲精品久久国产高清桃花| 少妇的逼水好多| 99热网站在线观看| 如何舔出高潮| 亚洲av中文av极速乱| 天天躁日日操中文字幕| 91在线观看av| 哪里可以看免费的av片| 级片在线观看| 少妇丰满av| 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看| 亚洲精品国产成人久久av| 直男gayav资源| 亚洲精品在线观看二区| 久久久国产成人免费| 免费无遮挡裸体视频| 亚洲国产欧美人成| 久久久久久久久久久丰满| 神马国产精品三级电影在线观看| 好男人在线观看高清免费视频| 国产精品国产高清国产av| 97在线视频观看| 级片在线观看| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 男人和女人高潮做爰伦理| 国产精品亚洲美女久久久| 长腿黑丝高跟| 观看免费一级毛片| 婷婷六月久久综合丁香| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 又黄又爽又免费观看的视频| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 国产精品,欧美在线| 成年女人毛片免费观看观看9| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 欧美激情国产日韩精品一区| or卡值多少钱| 波多野结衣巨乳人妻| 99久久中文字幕三级久久日本| 老司机午夜福利在线观看视频| 国产免费一级a男人的天堂| 欧美激情在线99| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 亚洲人成网站在线播| 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 亚洲七黄色美女视频| 人人妻人人看人人澡| 日本精品一区二区三区蜜桃| 国产综合懂色| 久久久久久久久大av| 99久国产av精品| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看 | 国语自产精品视频在线第100页| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| 国产精品一及| 亚洲精品乱码久久久v下载方式| 色在线成人网| 色视频www国产| 91久久精品电影网| 亚洲av免费高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 乱人视频在线观看| a级一级毛片免费在线观看| 99热网站在线观看| 尤物成人国产欧美一区二区三区| 亚洲欧美成人综合另类久久久 | 亚洲四区av| 久久鲁丝午夜福利片| 九九热线精品视视频播放| 亚洲av成人精品一区久久| 久久亚洲精品不卡| 国产91av在线免费观看| 日韩中字成人| 欧美中文日本在线观看视频| 色在线成人网| 国产在视频线在精品| 欧美日韩精品成人综合77777| a级毛色黄片| 一区二区三区高清视频在线| 18禁在线无遮挡免费观看视频 | 午夜福利视频1000在线观看| 夜夜看夜夜爽夜夜摸| 日日干狠狠操夜夜爽| 亚洲欧美成人精品一区二区| 露出奶头的视频| 又爽又黄a免费视频| 男女下面进入的视频免费午夜| 欧美3d第一页| 国产女主播在线喷水免费视频网站 | 男人狂女人下面高潮的视频| 欧美日韩在线观看h| 秋霞在线观看毛片| 亚洲av中文av极速乱| 在线免费十八禁| 精品一区二区三区视频在线观看免费| 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 久久久精品94久久精品| 人人妻人人看人人澡| 精品久久国产蜜桃| 成人精品一区二区免费| 九九热线精品视视频播放| 成人欧美大片| 97在线视频观看| 国产av麻豆久久久久久久| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3| 成人国产麻豆网| 少妇熟女欧美另类| 网址你懂的国产日韩在线| 长腿黑丝高跟| 日韩欧美国产在线观看| 神马国产精品三级电影在线观看| 毛片女人毛片| 白带黄色成豆腐渣| 久久久精品94久久精品| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲| 亚洲成人久久爱视频| 亚洲av二区三区四区| 一级毛片久久久久久久久女| 国产色婷婷99| 日韩制服骚丝袜av| 99久国产av精品| 日韩精品青青久久久久久| 国产精品久久视频播放| 看片在线看免费视频| 日产精品乱码卡一卡2卡三| av女优亚洲男人天堂| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添小说| 久久这里只有精品中国| 最近的中文字幕免费完整| 全区人妻精品视频| 国产精品久久久久久av不卡| 赤兔流量卡办理| 色吧在线观看| 国产69精品久久久久777片| 国产老妇女一区| 99国产精品一区二区蜜桃av| 午夜日韩欧美国产| 久久久成人免费电影| 国产日本99.免费观看| 女同久久另类99精品国产91| 亚洲最大成人av| 国产aⅴ精品一区二区三区波| 男人舔奶头视频| 日韩欧美精品免费久久| 18+在线观看网站| 久久久久久久久久黄片| 精品午夜福利视频在线观看一区| .国产精品久久| 99久久精品热视频| 夜夜夜夜夜久久久久| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 午夜爱爱视频在线播放| 亚洲色图av天堂| 国产精品日韩av在线免费观看| 免费黄网站久久成人精品| 此物有八面人人有两片| 99久国产av精品国产电影| 亚洲精品一卡2卡三卡4卡5卡| 狂野欧美激情性xxxx在线观看| 淫妇啪啪啪对白视频| 男女做爰动态图高潮gif福利片| 韩国av在线不卡| 国产女主播在线喷水免费视频网站 | 国产精品一区www在线观看| 久久久久国产网址| 一区二区三区高清视频在线| 精品久久久久久久末码| 熟妇人妻久久中文字幕3abv| 国产一区二区三区在线臀色熟女| 亚洲三级黄色毛片| 久久精品国产亚洲av香蕉五月| 久久精品国产亚洲网站| 亚洲中文字幕一区二区三区有码在线看| 日韩高清综合在线| 国产高清三级在线| eeuss影院久久| 国产视频内射| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 精品少妇黑人巨大在线播放 | 变态另类成人亚洲欧美熟女| 美女xxoo啪啪120秒动态图| 国产在线精品亚洲第一网站| 精品人妻视频免费看| 亚洲成人久久爱视频| 国产精品1区2区在线观看.| 日韩成人av中文字幕在线观看 | 日韩强制内射视频| 淫妇啪啪啪对白视频| 一区福利在线观看| 国产亚洲欧美98| 我的老师免费观看完整版| 性插视频无遮挡在线免费观看| 不卡视频在线观看欧美| 久久久久久大精品| 精品久久久噜噜| 亚洲欧美成人综合另类久久久 | 少妇的逼好多水| 国产在视频线在精品| av国产免费在线观看| 久久精品夜色国产| 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 欧美激情国产日韩精品一区| 男女边吃奶边做爰视频| 久久久久精品国产欧美久久久| 18禁黄网站禁片免费观看直播| 精品无人区乱码1区二区| 日本黄大片高清| 一个人观看的视频www高清免费观看| 尾随美女入室| 久久精品综合一区二区三区| 成人美女网站在线观看视频| 亚洲人成网站在线观看播放| 精品一区二区三区人妻视频| 天天躁日日操中文字幕| 久久久久久久久久成人| 久久久久久久午夜电影| 丝袜喷水一区| 国产蜜桃级精品一区二区三区| 色av中文字幕| 日本与韩国留学比较| 国产真实乱freesex| 日本成人三级电影网站| 精品免费久久久久久久清纯| 久久久欧美国产精品| 国产欧美日韩精品亚洲av| 99久久成人亚洲精品观看| 无遮挡黄片免费观看| 久久人人爽人人片av| 1000部很黄的大片| 一级毛片我不卡| 黄色一级大片看看| 偷拍熟女少妇极品色| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 中文字幕人妻熟人妻熟丝袜美| 美女免费视频网站| 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 国产美女午夜福利| 国产午夜福利久久久久久| 六月丁香七月| 欧美不卡视频在线免费观看| 国产精品女同一区二区软件| 真人做人爱边吃奶动态| 亚洲av美国av| 久久久a久久爽久久v久久| 少妇被粗大猛烈的视频| 干丝袜人妻中文字幕| 午夜福利在线在线| 熟女人妻精品中文字幕| 一进一出抽搐gif免费好疼| 国内精品宾馆在线| 精品熟女少妇av免费看| 久久久久九九精品影院| 婷婷亚洲欧美| а√天堂www在线а√下载| 精品少妇黑人巨大在线播放 | 亚洲色图av天堂| av视频在线观看入口| 日韩成人伦理影院| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| 亚洲内射少妇av| 国产在线精品亚洲第一网站| 久久久久久久久大av| 老女人水多毛片| 色综合亚洲欧美另类图片| 成年av动漫网址| eeuss影院久久| 国产精品久久电影中文字幕| 美女大奶头视频| 老司机福利观看| eeuss影院久久| 亚洲欧美精品综合久久99| 国内少妇人妻偷人精品xxx网站| 99热6这里只有精品| 大型黄色视频在线免费观看| 久久久久性生活片| 久久人人精品亚洲av| 少妇熟女欧美另类| av在线观看视频网站免费| 麻豆乱淫一区二区| 嫩草影视91久久| 能在线免费观看的黄片| 两个人的视频大全免费| 给我免费播放毛片高清在线观看| 国产高清不卡午夜福利| 亚洲精品影视一区二区三区av| 国产精品乱码一区二三区的特点| 日日干狠狠操夜夜爽| 又黄又爽又免费观看的视频| 一个人观看的视频www高清免费观看| 欧美不卡视频在线免费观看| 卡戴珊不雅视频在线播放| 在线观看66精品国产| av在线播放精品| 国产精品国产高清国产av| 99久久无色码亚洲精品果冻| 一级黄色大片毛片| 18禁裸乳无遮挡免费网站照片| 成年版毛片免费区| 一区二区三区免费毛片| 高清午夜精品一区二区三区 | 亚洲欧美日韩高清专用| 不卡一级毛片| 亚洲国产精品成人久久小说 | 亚洲乱码一区二区免费版| 午夜激情福利司机影院| av中文乱码字幕在线| 又爽又黄无遮挡网站| 一a级毛片在线观看| 国产精品久久电影中文字幕| 国产伦精品一区二区三区视频9| 尤物成人国产欧美一区二区三区| 美女黄网站色视频| 免费人成在线观看视频色| 露出奶头的视频| 成人永久免费在线观看视频| 日本免费a在线| 网址你懂的国产日韩在线| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 久99久视频精品免费| 日本五十路高清| 成人亚洲精品av一区二区| www.色视频.com| 欧美一级a爱片免费观看看| 亚洲熟妇中文字幕五十中出| 免费人成在线观看视频色| a级毛片免费高清观看在线播放| 中国美白少妇内射xxxbb| 观看美女的网站| 日韩精品中文字幕看吧| 嫩草影院入口| 国产精品久久久久久久电影| 在线免费十八禁| 国产三级在线视频| 精品久久久久久成人av| 99久久精品热视频| 99热这里只有是精品50| 成人特级av手机在线观看| 一个人看视频在线观看www免费| 一个人观看的视频www高清免费观看| 免费av不卡在线播放| 国产精华一区二区三区| 久久热精品热| 男人狂女人下面高潮的视频| 国产精品久久久久久精品电影| 国产在视频线在精品| 亚洲熟妇中文字幕五十中出| 18+在线观看网站| 天美传媒精品一区二区| 亚洲经典国产精华液单| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 精品99又大又爽又粗少妇毛片| 久久中文看片网| 成人精品一区二区免费| 69人妻影院| 黄色日韩在线| 美女内射精品一级片tv| 国产高潮美女av| 欧美中文日本在线观看视频| 男女做爰动态图高潮gif福利片| 精品一区二区三区av网在线观看| 亚洲国产欧美人成| 一个人看视频在线观看www免费| 日韩欧美精品免费久久| 欧美一区二区精品小视频在线| 麻豆av噜噜一区二区三区| 九九久久精品国产亚洲av麻豆| 久久久久久久亚洲中文字幕| 成年女人永久免费观看视频| 久久鲁丝午夜福利片| 国产精华一区二区三区|