• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques

    2015-03-04 06:16:10VictorKravchenkoOlegKravchenkoYaroslavKonovalov
    關鍵詞:物理信號

    Victor F Kravchenko, Oleg V Kravchenko,3, Yaroslav Y Konovalov

    (1. Kotelnikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;2. Bauman Moscow State Technical University, Moscow 105005, Russia;3. Scientific and Technological Center of Unique Instrumentation, Moscow 117342, Russia)

    ?

    Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques

    Victor F Kravchenko1,2, Oleg V Kravchenko1,2,3, Yaroslav Y Konovalov2

    (1.KotelnikovInstituteofRadio-engineeringandElectronics,RussianAcademyofSciences,Moscow125009,Russia;2.BaumanMoscowStateTechnicalUniversity,Moscow105005,Russia;3.ScientificandTechnologicalCenterofUniqueInstrumentation,Moscow117342,Russia)

    In present article a number of results are described in a systematic way concerning both signal and image processing problems with respect to atomic functions theory and Prouhet-Thue-Morse sequence.

    atomic functions; Prouhet-Thue-Morse sequence; digital signal processing; image processing

    0 Introduction

    The famous Prouhet-Tarry-Escott (PTE) problem[1]seeks collections of mutually disjoint sets of nonnegative integers having equal sums of the same powers. The PTE problem is as follows:

    LetS={0,1,…N-1}. GivenM, is it possible to partitionSinto two disjoint subsetsS0andS1such that

    for all 0≤m≤M?

    Prouhet-Thue-Morse (PTM) sequence was first studied by Eugene Prouhet in 1851 who applied it to number theory. However, Prouhet did not mentioned the sequence explicitly. This was left to Axel Thue in 1906, who used it to find the study of combinatories on words. The sequence was only brought to worldwide attention with the work of Marston Morse in 1921 when he applied it to differential geometry. The sequence has been discovered independently many times not always by professional research mathematicians. For example, Max Euwe, a chess grandmaster who held the world championship title from 1935 to 1937 and mathematics teacher, discovered it in 1929 in an application to chess as an example of an infinite chess game. The PTM sequence is usually defined as a sequence of “1” and “0” in number theory, as “A” and “B” in physics of quasycrystalls, and “1” and “0” in signal processing as well.

    Let us define a PTM sequence in such a way:t(1)=1 by definition. Then if the segment of the length 2nis constructed, we will continue it with the same one with signs of all terms changed to anothert(2n+k)=-t(k) for all 1≤k≤2n. The first 8 terms of the sequence are

    The PTM sequence[2]is a well-known self-similar sequence applied in coding, cryptography, etc. It has a strong connection with a PTE problem, and a simple proof of PTE has been introduced recently with the usage of the PTM sequence[3].

    Not so far a simple way of arithmetic and logic unit construction without multiplies on adders only was introduced by Wolfgang Hilberg in a patent[4]. The main advantage of the developed method is that it implies an integer arithmetic only to encode logical one or zero. The fractal property as a self-similarity of continuous analog of PTM sequence (known ashut(x) orup(x) function) was also used to develop a simple technique for compensation of Doppler effects which was introduced by Todor Cooklev in Ref.[5]. This property as a property of symmetry allowed reducing operations in digital device at least in two times.

    PTM ordering (so called P8 sequence) was also used as the first five Walsh functions (Paley ordering) in switched observations at the 12 Meter Telescope[6]. Such a property was also employed in the vertical receiver device which was mentioned to solve the problem of offshore hydrocarbon exploration[10].

    Then, the PTM sequence was used to develop an efficient optimization algorithm of a complex system management by Viktor Korotkikh[7]. While choosing the next strategy for each agent, one should follow an optimal fuzzy if-then rule on the basis of the PTM sequence:

    1) If the last strategy is successful, then continue with the same strategy.

    2) If the last strategy is unsuccessful, then ask PTM generator.

    Thestructureofthereviewisinthefollowing.Inthenextsection,wewillconsideranabstractmathematicalproblemofconstructionoflineartimeinvariant(LTI)systemwithbothPTMinputandoutput.Then,wewillconsideralinkbetweeninfinitelydifferentialcontinuousatomicfunctionsandthePTMsequence,anddescribesomegeneralizationsofthealgorithmbyWolfgangHilbergtoresolveacorrespondingfunctional-differentialequation.Intheendwewilldiscusssomephysicalmodelswhichallowustofindanaivetheorywithphysicalmeaningoftheatomicfunctionsaswell.

    1 LTI PTM system

    Withrespecttothedigitalsystems,let’sconsideradiscreteLTIsystemwithhnimpulsecharacteristicandletxnbeinputdiscretesequence.Forexample,therearefirst4elementsofthePTMsequence

    Inthegeneralcase,thelengthofxnsequenceislx,lengthofsequenceynisly,andthelengthofhnisln.SinceLTI’sinputisxn,theLTI’soutputwillbedefinedbytheconvolution

    yn=xn*hn.

    Themathematicalquestionis:willweobtainthePTMoutputynunderunknownhnwithzeromean?

    Let’sdescribehowtoobtainthePTMoutput.It’sobviousthatthelengthynisdefinedbylxandlh,

    (1)

    Considertheparticleexampleofthisproblem.Let’skeepthelengthofinputxnaslx=4.Inthiscase

    Thenwewillhave

    IfwehavetoobtainthePTMoutputynwithlengthly=2lx=8withtheelements

    Thenthelengthofhnwillbelh=ly-lx+1=5.

    (2)

    Eq.(2)willhavethefollowingmatrixform:

    (3)

    Onecouldshoweasilytherankrank(Alb)=rank(A)=5,thenthereisanontrivialsolutionofEq.(3)suchas

    (4)

    (5)

    (6)

    WecanalsofindthePTMpattern(4)inEq.(6).Forexample,

    Table 1 Connection between the lengths of xn, yn and hn

    Let’s consider a deep connection between the PTM and atomic functions as products of similar iterative procedures of corresponding PTM sequences. It allows us to conduct an investigation of the properties of atomic functions (AFs) based on the properties of PTM and conversely. Native application of this connection is a construction of fast iterative algorithms for computation of AFs. Another interesting effect of it is appearance of functions similar to atomic ones in the problem with PTM coefficients.

    2 Atomic functions and iterative algorithms

    AFs[11-14]were introduced in 1971 by V L and V A Rvachevs. The first and most known AFup(x) was constructed as a solution of the next problem. The derivative of compactly supported hump-like function consists of the hump and the pit. Is there a function whose hump and pit are similar to the hump of the function? If we set the support of the unknown function to [-1,1], the problem can be represented as a functional-differential equation (FDE)

    (7)

    Applying Fourier transform to the FDE, one can find that the solution exists, and ifa=2, the spectrum of the solution can be obtained as an infinite product of compressed sinc(ω) functionsω(Fig.1(b))

    (8)

    Fig.1 AF up(x), cup(x) and their derivatives

    The solution of Eq.(1) can be presented as a sum of corresponding Fourier series (Fig.1(a)):

    (9)

    In the general definition AFs are compactly supported solutions of FDEs presented in the form

    (10)

    whereL(f) is a linear differential operator, and usuallyL(f)=f(n). The most important AFs areha(x),fupn(x),Ξn(x), andcup(x) function (Fig.1(c)).

    Looking atn-time derivative of AFup(x) one can find that it consists of humps and pits ordered like “1” and “-1” in PTM. To prove this property, note thatup(0)(x)=up(x). It is a hump which can be represented as “1” in PTM. Then according to Eq.(10)

    (2up(2x+1)-2up(2x-1))(n)=

    2up(n)(2x+1)-2up(n)(2x-1).

    It means thatup(n+1)(x) consists of compressedup(n)(x) continued with -up(n)(x). This procedure is similar to the iterative procedure of the PTM construction described above. The signs of the terms ofn-time derivative are ordered as PTM, andn-time derivative ofup(x) can be presented as

    wheretkare terms of PTM. Another way to solve the FDE (7) was presented in Ref.[4] by Wolfgang Hilberg. It looks like a trick. Let’s construct a segment of the PTM sequence with the length 2n. Aftern-time summation and normalization, we will obtain 2npoints ofup(x) function. This method is demonstrated in Table 2(a).

    Table 2 Computation ofup(x) according to Ref.[4](a) and by iterative method (b)

    1101-1-111-1-11-111-11-1-11-111-1-111-11-1-1110-10-1010-101010-101100-1-100-1-100110012221000-1-2-2-2-10001357888875310000

    (a)

    (b)

    TheyareAFstooandsatisfytheequations:

    (11)

    An effective iterative algorithm for computing all of these functions is presented in Refs.[15]-[17]. Two AFsf(x) andg(x) with the same scale parameteraand the equations are constructed as

    (12)

    (13)

    (14)

    (15)

    Multiplication of Eqs.(14) and (15) gives equation for product in the following form:

    (16)

    A reverse Fourier transform according to

    gives the equation for the convolutionh(x)=f(x)*g(x),

    (17)

    Eq.(17) is a special case of Eq.(10), therefore,h(x) is an atomic function indeed. Afterwards, an iterative algorithm is constructed for computing the convolutionh(x). It consists of the next two steps repeated while required accuracy is not achieved: construction of the sequence with structure based on the form of right-hand part of Eq.(17) and its summationnf+ngtimes. Here are some examples.

    Example 1 The first example is an itself convolution ofha(x) function:ha(x)*ha(x). Applying Eq.(17), we obtain

    (18)

    The convolution function ofha(x)*ha(x) witha=4 is shown in Fig.2.

    Fig.2 Convolution AF h4(x)*h4(x)

    Example 2 The second example is a convolutionupm(x)*ha(x). Consider the convolution ofupm(x) withha(x), where the atomic functionupm(x) satisfies the equation

    (19)

    Let the scale parameters of the equations are equal (a=2m). Applying Eq.(17) to the previous equation, we obtain

    y(2mx+2m-2k)-y(2mx-2k+2)+

    y(2mx-2k)).

    After opening brackets, we get a short and clear equation for the convolutionupm(x)*h2m(x) as

    y(x)=2m(y(2mx+2m)-y(2mx)+

    y(2mx-2m)).

    Eq.(11) is a special case of constructed equation withm=1.

    After some considerations, a two-parameter family of atomic functions which is presented as cha,ncan be introduced. In Example 1, the equation for the convolutionha*hais constructed. Based on its triple convolution,ha*ha*ha=(ha*ha)*hacan be considered, then the quadruple convolutionha*ha*…*ha*ha=(ha*ha*ha)*ha, etc.

    We define a new two-parameter family of functions cha,nas the convolution[17]

    Doing the iterative procedure as Eq.(17) byn-1 times, we obtain FDE for the constructed functions,

    (20)

    wherea>1 andn=1,2,3,…. Enumerated in the introduction of AFs are the special cases ofcha,nwith the fixed values of the parameters,

    Familycha,n(x) allows investigating the properties of AFs in an unified way(see Table 3). Consider some properties of the new family of AFs.

    Table 3 Supports of terms of right-hand part of equation of cha,n(x)

    Shifts ofcha,ngive a constant decomposition as follows:

    An exact decomposition of any polynomial degree less or equal ton-1, is given by

    The property allows the construction of effective interpolation of smooth functions. Examples of 1D and 2D interpolations and their applications to solving the boundary-value problems are presented in Ref.[17].

    4) Based on Eq.(20), recurrent formulas for even momentscha,n(x) are constructed. View of the formulas depends onn. Forn=2 andn=3, we have, respectively

    Note that according to the above definition, the function discussed in Example 1 ischa,n.

    3 Iterative computation of AFs

    Considerup(x) as a fixed point of contraction operator

    (21)

    According to the contraction mapping principle,up(x) is limit of the sequence {fn(x)} withfn+1(x)=A(fn). There are generally three ways of practical construction of the sequence {fn(x)}: analytical construction, numerical integration and summation of self-similar sequences.

    The first way means analytical computation of integral as Eq.(21) to obtain convergent sequence of interpolations of AFup(x). With the starting pointf0(x)≡0.5, it provides a sequence of splines of increasing degree. These splines are called perfect splines. To obtain good accuracy, one has to consider splines of high degree. Then perfect splines are not convenient for practical calculation. In the second way, analytical transforms are replaced with numerical computation of integrals as Eq.(21). This method is clear and can be performed for any FDE with any right-hand part. The main disadvantage of this method is accumulation of the computation error at the right end of the integration segment. This error can lead to distortion of function, spoiled its symmetry and even break convergence of the algorithm. The third way is summation of special self-similar sequences. This method is similar to the previous one, but all computation is performed on integer numbers without accumulation of computation error. This method provides successive approximations with step functions considered as sequences. In terms of the sequences the operatorA(f) forup(x) function can be represented as composition of two steps: continuation of constructed segment of the sequence with the same one with reversed signs of terms and summation of the sequence corresponding to the integration in operatorA(f). The example of computation with starting point is shown in Table 1(b). It is clear that Hilberg’s method described above is similar to the iterative method with another order of computation. Giving the same result, the iterative method requires less arithmetical operations than Hilberg’s. For any other FDE, a similar iterative method can be constructed. It will be presented as iterated composition of two steps: continuation of the sequence according to the right-hand part of equation and iterated summation corresponding to the integration in operatorA(f). Then each AF corresponds to the self-similar sequence constructed according to the right-hand part of equation.

    Here, AFcup(x) (See Fig.1(c)) as an example of the construction of the iterative algorithms is discussed. It is known[13]that the convolutions of AFs are AFs too. Thencup(x)=up(x)*up(x) is an AF with the support [-2,2] and the equation

    y″(x)=2y(2x+2)-4y(2x)+2y(2x-2).

    The supports of the terms of right-hand part of FDE are respectively [-2,0], [-1,1] and [0,2]. The terms are intersected and each term is shifted from one another on the half of its length. Then corresponding continuation operation can be described as in the following. If some segment of the sequence is constructed, a new segment of double length consists of three segments similar to be shifted from each other to the half of their lengths multiplied by the coefficients 1, -2 and 1 according to the right-hand part of the equation. Then this new sequence must be summated two times since the FDE is of second order. In Table 4,cup(x) function, its derivatives and examples of iterative computation are shown.

    Table 4cup(x) function and its iterative computation

    The main advantage of these iterative algorithms is that they allow very fast and accurate computation of AFs and their convolutions. A general description of the iterative approach to the computation of AFs is given in Refs.[15]-[17].

    According to Eq.(21), consider the following more general self-similar operator,

    (22)

    OperatorA(y) consists of two steps: summation of the terms of the right-hand part of Eq.(20) and integration ofntimes.

    Depending on the method of integration, there are three different ways of practical construction of the sequence.

    1) Analytical calculation of integrals. With starting point

    It provides a sequence of splines of increasing degree.

    2) Numerical computation of integrands. This method is clear and can be simply performed for FDE with any right-hand part. The main disadvantage of this method is accumulation of the computation error at the right end of integration segment. This error can lead to distortion of the function, spoiled symmetry and even break convergence of the algorithm.

    3) Summation of special self-similar sequences. This method is similar to the previous one, but all computation is performed on integer numbers without accumulation of the computation error. This method provides successive approximations with step functions considered as a sequence.

    Let us discuss the third way of iterative computation.fkis presented as a sequence with lengthlk. OperatorA(y) is a composition of two operations: addition terms of the right-hand part of the equation and n-times integration. The first operation is presented as construction of the new sequence with lengthlk+1from the shifted segments of the previous one. The second operation is a summation of the sequence performedntimes.

    Table 5 Computation of ch3,3(x) function

    Fig.3 Function ch3,3(x)

    Then we apply the operator to it. The first step of the operation is addition to the segment of the previous sequence of the two same segments multiplied respectively by -2 and 1. The terms are shifted from each other with 3 points. The empty space is filled by zeros. We obtain a new sequence with quadruple length. Then we integrate this sequence two times. We repeat the steps to achieve the required accuracy. The example of the computation is shown in Table 6. The graph of the function is presented in Fig.2.

    Table 6 Computation of ch4,2(x) function

    Notethatatomicfunctionsareevenandsymmetricandtheirincreasinganddecreasingintervalsareinthesamescale.ThesepropertiesmakeitpossibletouseFourierseriesfortheircomputation.InthecaseofmorecomplicatedstructureofFDEitmaybemoredifficultorimpossibletousetheFouriermethod.However,theiterativealgorithmallowsfindingthecompactlysupportedsolutionsofsuchFDEs.Inthereport,examplesofapplicationofalgorithmaredemonstratedtothefollowingcases:

    i)Thefunctionisnotsymmetric(increasinganddecreasingintervalsalternateinanyarbitraryorder).

    Example3FDEisthefollowing,

    ii) Increasing and decreasing intervals are in different scales (akin Eq.(10) are different).

    Example 4 Two FDEs are as follows:

    Examples of the work of the algorithm are presented in Figs.4(a)-(c). Implementation of some AFs can be found in Ref.[20] and implementation of the iterative algorithm ofup(x) approximation via the PTM sequence[6]can be found in Ref.[19] as well.

    Fig.4 Solutions of FDEs

    4 PTM sequence and physical models

    It seems to be unclear to ask about some ideas behind the physical interpretation of the functional differential equations like Eq.(10) and their finite solutions likeup(x).

    The native consequence of the previous considerations is that Eq.(10) may appear in some situations when the PTM sequence arises in some media. So, let us consider a so-called PTM chain.

    Let us have the sequence of masses {mj},j=1,…,Nis such that the indices 0 and 1 are distributed according to the PTM sequence joined by the springs with stiffnessk(Fig.5). The name of such kind of structure is “quasy-alloy” by analogy with quasicrystal models (like Fibonacci quasicrystal models). A detailed reference about this question can be found in Ref.[16].

    So, when we consider a tight-binding model of atoms like in Fig.5 with site energies arranged in the PTM sequence, we have a transfer matrix

    (23)

    The typical situation is presented in Figs.6(a) and (b). It is a fractal-like wavefunction which is computed by Eq.(23) with the initial condition:ψ1=1,ψ2=3,V0=1,E=1,723 817 824 andN=213(Fig.6(a)) andN=214(Fig.6(b)).

    Fig.5 Prouhet-Thue-Morse chain

    Fig.6 Typical fractal wavefunctions

    There is a special case in Eq.(23) model when the unusual continuous wavefunction appears. The main condition is if this case isψ1=ψ2. For example if we set the initial condition as

    (24)

    Fig.7 Continuous wavefunctions “hump”

    We will obtain the continuous wavefunction as shown in Fig.7(c). Consider the absolute of the normalized vector ψ=ψ-mean(ψ)withthenormalizedψandassumethatthepitsandhumpsarehigh.Infacttheirheightsareslightlydifferent.Sothemeanofthevectorψisclosetozerobutnotzero.Itwillincreaseandsuchkindofstructurewillbeunstableonintegration.InFig.8(a)thecomparisonbetweenthefinitesolutionofEq.(1) up(x) (reddash)andtheabsolutenormalizedhumpofthenormalizedvectorψ≡ψ-mean(ψ) (bluesolid)ispresented.Weperform6summationsofthewavefunctionasinHilberg’salgorithm.WenormalizeeachofthecontinuousfunctiontothemaximumofthemagnitudeshowingthenumberofiterationinFig.8(b).Thenwecompareup(x) (Fig.4(c),reddash)andtheresultinghumpofthe6summationsofthenormalizedvectorψ≡ψ-mean(ψ) (bluedotted,goldlineinFig.8(b)).

    Fig.8 Summations of the wavefunction (3)

    Let’sconsiderfour-timesmoreatomsinthePTMchainN=29.Considerthefirst7iterationsofsummationofthewavefunctionasEq.(23)withtheinitialconditionEq.(24),here,wecanseetheunstabletrendontherightpart.

    ThegeneralquestionishowwecanobtainEq.(21)fromthewavefunctionEq.(23)withtheinitialconditionEq.(24).So,thereisoneabstractmathematicwaywhichwasintroducedbyJFabius[16].

    Supposethatwehavethestablecontinuouswavefunction(i.e.theintegralofthiswavefunctionequalstozero)aftertheiteratedsummations.Forexample,ifwedothesummationNtimes,wecanobtain(undersomeconditions)thesituationwhentheform(orpattern)ofthecontinuousfunctionwiththeN-thiterationwillbedifferentfromtheonewiththeN-1th(orN+1th)iterationonlythescalefactorlikeinFig.7(a) (goldsolidwiththe6thiterationandmagentasolidwiththe5thiteration).

    Ifwehavesuchthesituation,wecanapplytheJfabiusformalism.Let’sdefineF(x)as

    (25)

    Then,defineanotherfunctionf(x)whichisincoincidencewithF(x)on[0,1]andsatisfiestherelations

    (26)

    Eq.(26)canbetransformedeasilyas

    (27)

    wherenkisaPTMsequence.Notethatwhilef(x)iscontinuousandvanishesonlyatthenonnegativeevenintegers,itshouldsatisfythefollowingfunctionalintegralequation,

    (28)

    ByinductionifEq.(27)holdsforall[0,2n]andn≥1,weobtainforx∈(2n,2n+1]

    (29)

    anditimpliesfromEq.(26)that

    (30)

    Eq.(29)meansthatitsatisfiesstabilityrequirement,whichissufficient.ItfollowsfromEq.(28)thatf(x)isdifferentiableandcontinuousandsatisfiesthefunctionaldifferentialequation

    (31)

    forallx∈[0,+∞)andhencef(x)isinfinitelydifferentiablewithn-thderivative,

    (32)

    forallx∈[0,+∞), n=1,2,….Thereisawell-knownfactfromtheatomicfunctionstheorythatEq.(31)hastheinfinitedifferentialsolutionwhichisaseriesbyup(x)withthePTMcoefficients

    (33)

    InthepresentinvestigationwehaveconsideredonesimplemodelPTMchainandanativesuggestionhowEq.(1)arisesinsuchkindofmodels.Weusethesummationtechniquewhichplaysakeyroleinoursimpleanalysistosatisfythestabilitycondition.Afterwards,weusetheJ.FabiusformalismtoderivethefunctionalEq.(31)relatedtoEq.(10).

    5 Conclusion

    In this review we describe briefly recent progress in application of the PTM discrete sequence in different fields such as radar waveform constructions, interferometer measurements, hydrocarbon exploration, and Doppler compensation, etc. We have also defined and considered a family of infinitely differential functions so-called atomic functions which are strongly connected with the PTM sequence in many different senses. On the basis of such a connection a fast iterative algorithm is introduced to solve the accordingly functional-differential equations both single and multi- scaled. We have also presented an investigation of a simple model of the Prouhet-Thue-Morse chain and a native suggestion how could arise in such kind of models which can be a start of a naive physical theory of such kind of functional-differential equations of delay type with scaling.

    [1] Nguen H D. A new proof of the Prouhet-Tarry-Escott problem. 2014-11-22[2015-02-17]. http:∥arxiv.org/abs/1411.6168.

    [2] Allouche J-P, Shallit J. Automatic sequences: theory, applications, generalizations. London: Cambridge University Press, 2003.

    [3] Nguyen H D, Coxson G E. Doppler tolerance, complementary code sets, and the generalized thue-morse sequence, 2014-10-11[2015-02-17]. http:∥arxiv.org/abs/1406.2076.

    [4] Hilberg W. Korrelationsermittlung durch stapeln von impulsen: German Patent 198 18 694 A 1, 1999.

    [5] Cooklev T. Device and method for compensating or creating doppler effect using digital signal processing: US Patent 6633617 B1, 2003.

    [6] Mangum J G. User’s manual for the NRAO 12 meter millimeter-wave telescope. Kitt Peak, Arizona, 2000.

    [7] Korotkikh V, Korotkikh G, Bond D. On optimality condition of complex systems: computational evidence, 2005[2015-02-17]. http:∥arxiv.org/abs/cs/0504092.

    [8] Rouan D. Ultra deep nulling interferometry using fractal interferometers. Comptes Rendus Physique, 2007, 8(3/4): 415-425.

    [9] Chi Y, Pezeshki A, Calderbank R, et al.. Range sidelobe suppression in a desired Doppler interval. In: Proceedings of IEEE International Waveform Diversity and Design Conference, Kissimmee, FL, USA, 2009: 8-13.

    [10] Holten T, Flekk y E G, Singer B, et al. Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First break, 2009, 27(5): 89-93. http:∥www.petromarker.com/wp-content/uploads/2013/06/first-break-may-2009.pdf.

    [11] Kravchenko V F, Rvachev V L. Boolean algebra, atomic fucntions, and wavelets in physcial applications. Fizmatlit, Moscow, 2006.

    [12] Kravchenko V F. Application of atomic functions theory, WA-systems and R-functions in information technologies. In: Proceedings of International Scientific Seminar "Actual Problems of Mathematical Physics", Moscow State University, Moscow, 2014: 28-33.

    [13] Kravchenko V F, Perez-Meana H M, Ponomaryov V I. Adaptive digital processing of multidimensional signals with applications, Fizmatlit, Moscow, 2008.

    [14] Zelkin E G, Kravchenko V F, Gusevskii V I. Constructive methods of approximation in theory of antennas. Moscow: Sains-Press, 2005.

    [15] Konovalov Y Y. Iterative algorithms for numerical solution of differential equations with linearly transformed argument. International Journal of Electromagnetic Waves and Electronic Systems, 2011, 16(9): 49-57.

    [16] Hilberg W, Kravchenko V F, Kravchenko O V, et al. Atomic functions and generalized Thue-Morse sequence in digital signal and image processing. In: Proceedings of 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 2013: 66-71.

    [17] Konovalov Y Y, Kravchenko V F. Weight functions based on the convolutions of atomic functions. In: Proceedings of the International Conference on Days on Diffraction, 2013: 78-82.

    [18] Kravchenko O, A continuous analog of the 1D Thue-Morse sequence, [2015-02-17]. http:∥demonstrations.wolfram.com/A Continuous Analog Of The 1 D Thue Morse Sequence/

    [19] Kravchenko O. Polynomial atomic functions for Fourier analysis, 2014[2015-02-17]. http:∥demonstrations.wolfram.com/Polynomial Atomic Functions For Fourier Analysis/

    [20] Kravchenko V F, Lutsenko V I, Lutsenko I V. Backscaterring by sea of centimeter and millimeter waves at small grazing angle. Journal of Measurement Science and Instrumentation, 2014, 5(2): 36-43.

    [21] Kravchenko V F, Lutsenko V I, Lutsenko I V, et al. Description and analysis of non-stationary signals by nested semi-Markov processes. Journal of Measurement Science and Instrumentation, 2014, 5(3): 25-32.

    [22] Volosyuk V K, Kravchenko V F, Kutuza B G, et al. Statistical theory of ultrawideband radiometric devices and systems. Physical Bases of Instrumentation., 2014, 3(3): 5-66.

    [23] Kravchenko V F, Churikov D V. Kravchenko atomic transforms in digital signal processing. Journal of Measurement Science and Instrumentation, 2012, 3(3): 228-234.

    [24] Kravchenko V F, Churikov D V. Kravchenko probability weight functions in problems of radar signals correlation processing. Journal of Measurement Science and Instrumentation, 2013, 4(3): 231-237.

    [25] Volosyuk V K, Kravchenko V F, Pavlikov V V, et al. Statistical synthesis of radiometric imaging formation in scanning radiometers with signal weight processing by Kravchenko windows. Doklady Physics, 2014, 59(5): 219-222.

    [26] Volosyuk V K, Gulyaev Y V, Kravchenko V F, et al. Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems (Review). Journal of Communications Technology and Electronics, 2014, 59(2): 97-118.

    [27] Kravchenko V F, Kravchenko O V, Pustovoit V I, et al. Application of the families atomic functions, WA-systems and R-functions in modern problems of radiophysics. Part I. Journal of Communications Technology and Electronics, 2014, 59(10): 949-978.

    [28] Kravchenko V F, Kravchenko O V, Lutsenko V I, et al. Restoration of environment information parameters with using of atomic and WA-systems of functions. Review. Part I. Application of the theory of semi-markov fields and finite functions for the description of non-stationary processes. Physical Bases of Instrumentation, 2014, 3(2): 3-18.

    Prouhet-Thue-Morse序列和原子函數(shù)在物理和技術中的應用

    Victor F Kravchenko1,2, Oleg V Kravchenko1,2,3, Yaroslav Y Konovalov2

    (1. Kotelnikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;2. Bauman Moscow State Technical University, Moscow 105005, Russia;3. Scientific and Technological Center of Unique Instrumentation, Moscow 117342, Russia)

    本文系統(tǒng)地闡述了信號與圖像處理中與原子函數(shù)理論和Prouhet-Thue-Morse序列相關的大量研究成果。

    原子函數(shù); Prouhet-Thue-Morse序列; 數(shù)字信號處理; 圖像處理

    Victor F Kravchenko, Oleg V Kravchenko, Yaroslav Y Konovalov. Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques. Journal of Measurement Science and Instrumentation, 2015, 6(2): 128-141.

    10.3969/j.issn.1674-8042.2015.02.005

    Foundation items: Russian Foundation for Basic Research (No.130212065)

    Victor F Kravchenko (kvf-ok@mail.ru)

    1674-8042(2015)02-0128-14 doi: 10.3969/j.issn.1674-8042.2015.02.005

    Received date: 2015-03-17

    CLD number: TN911.7 Document code: A

    猜你喜歡
    物理信號
    只因是物理
    井岡教育(2022年2期)2022-10-14 03:11:44
    信號
    鴨綠江(2021年35期)2021-04-19 12:24:18
    如何打造高效物理復習課——以“壓強”復習課為例
    完形填空二則
    處處留心皆物理
    孩子停止長個的信號
    我心中的物理
    三腳插頭上的物理知識
    基于LabVIEW的力加載信號采集與PID控制
    一種基于極大似然估計的信號盲抽取算法
    99国产精品一区二区三区| 成人影院久久| а√天堂www在线а√下载| 欧美亚洲日本最大视频资源| 亚洲av片天天在线观看| 午夜老司机福利片| 中文字幕人妻丝袜制服| 99re在线观看精品视频| 9191精品国产免费久久| 正在播放国产对白刺激| 亚洲一区高清亚洲精品| 久久久精品欧美日韩精品| 精品国产一区二区三区四区第35| 黄色成人免费大全| 国产精品一区二区免费欧美| 久久香蕉激情| av在线天堂中文字幕 | 男女午夜视频在线观看| 男女下面插进去视频免费观看| 欧美亚洲日本最大视频资源| xxxhd国产人妻xxx| 最新美女视频免费是黄的| 国产精华一区二区三区| 99热只有精品国产| 12—13女人毛片做爰片一| 热re99久久国产66热| 成人影院久久| 日韩欧美在线二视频| 国产极品粉嫩免费观看在线| 黄色视频,在线免费观看| 午夜a级毛片| 国产精品综合久久久久久久免费 | 制服诱惑二区| 精品福利永久在线观看| 在线观看一区二区三区| 一级黄色大片毛片| 美国免费a级毛片| 看片在线看免费视频| 国产精品久久电影中文字幕| 久9热在线精品视频| 日日干狠狠操夜夜爽| 亚洲熟妇中文字幕五十中出 | 免费看十八禁软件| 性色av乱码一区二区三区2| 亚洲自拍偷在线| 两性午夜刺激爽爽歪歪视频在线观看 | 一边摸一边抽搐一进一出视频| 精品第一国产精品| 日本wwww免费看| 亚洲aⅴ乱码一区二区在线播放 | 婷婷六月久久综合丁香| 18禁观看日本| 老司机亚洲免费影院| 91老司机精品| 两人在一起打扑克的视频| 久久亚洲真实| 一二三四社区在线视频社区8| 国产xxxxx性猛交| 午夜免费成人在线视频| 国产精品99久久99久久久不卡| 亚洲午夜理论影院| 国产精品永久免费网站| 成人影院久久| 亚洲人成伊人成综合网2020| 一级作爱视频免费观看| 日韩av在线大香蕉| 亚洲熟妇熟女久久| 无遮挡黄片免费观看| 在线视频色国产色| netflix在线观看网站| 人人妻人人添人人爽欧美一区卜| 多毛熟女@视频| 极品人妻少妇av视频| 国产精品成人在线| 电影成人av| 搡老岳熟女国产| 18禁观看日本| 老司机深夜福利视频在线观看| 黄片播放在线免费| 国产区一区二久久| 国产成人一区二区三区免费视频网站| 亚洲av第一区精品v没综合| 国产一区二区三区综合在线观看| 久热这里只有精品99| 欧美在线黄色| 悠悠久久av| 999精品在线视频| 黑人巨大精品欧美一区二区mp4| 亚洲 欧美 日韩 在线 免费| 黑人巨大精品欧美一区二区mp4| 欧美成人午夜精品| 又黄又爽又免费观看的视频| 91在线观看av| 搡老熟女国产l中国老女人| 超碰成人久久| 又黄又粗又硬又大视频| 国产熟女xx| 看黄色毛片网站| 在线国产一区二区在线| 久久青草综合色| 亚洲精品国产色婷婷电影| 夫妻午夜视频| 色综合站精品国产| 日本精品一区二区三区蜜桃| av有码第一页| 欧美乱妇无乱码| 在线观看免费视频网站a站| 日韩成人在线观看一区二区三区| 亚洲 国产 在线| 免费观看精品视频网站| 人人妻人人添人人爽欧美一区卜| 校园春色视频在线观看| 在线av久久热| 99在线视频只有这里精品首页| 国产成人影院久久av| 久久精品91无色码中文字幕| 日本免费a在线| 99re在线观看精品视频| 欧美日本亚洲视频在线播放| 日本免费一区二区三区高清不卡 | 国产av一区在线观看免费| 中文字幕最新亚洲高清| 亚洲欧美激情综合另类| 免费女性裸体啪啪无遮挡网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久中文字幕人妻熟女| 深夜精品福利| 啦啦啦免费观看视频1| 嫩草影视91久久| 午夜两性在线视频| 欧美日韩精品网址| 99国产精品一区二区三区| 免费日韩欧美在线观看| 又黄又粗又硬又大视频| 亚洲国产精品合色在线| 女性被躁到高潮视频| 777久久人妻少妇嫩草av网站| 老司机在亚洲福利影院| 日韩国内少妇激情av| 亚洲国产精品合色在线| 性欧美人与动物交配| 亚洲精品国产色婷婷电影| svipshipincom国产片| 99久久综合精品五月天人人| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合久久99| 级片在线观看| 黄色毛片三级朝国网站| 午夜视频精品福利| 亚洲精品美女久久av网站| 91av网站免费观看| 国产精品久久久久久人妻精品电影| 国产成人影院久久av| x7x7x7水蜜桃| 婷婷丁香在线五月| 日韩欧美在线二视频| 91麻豆av在线| av国产精品久久久久影院| 国产成人精品久久二区二区免费| 91精品国产国语对白视频| 超碰成人久久| 精品国产超薄肉色丝袜足j| 久久婷婷成人综合色麻豆| 天堂俺去俺来也www色官网| 亚洲国产精品sss在线观看 | av超薄肉色丝袜交足视频| 亚洲aⅴ乱码一区二区在线播放 | 久久这里只有精品19| 欧美精品一区二区免费开放| 精品无人区乱码1区二区| 中文字幕人妻熟女乱码| 欧美人与性动交α欧美精品济南到| 香蕉国产在线看| 最新在线观看一区二区三区| 国产精品一区二区免费欧美| 国产成人精品久久二区二区免费| 欧美激情久久久久久爽电影 | 黄网站色视频无遮挡免费观看| 亚洲国产精品sss在线观看 | av福利片在线| 久久久国产一区二区| 一级毛片女人18水好多| 国产成+人综合+亚洲专区| 在线观看www视频免费| 国产不卡一卡二| 宅男免费午夜| 成在线人永久免费视频| 最近最新中文字幕大全免费视频| 如日韩欧美国产精品一区二区三区| 可以免费在线观看a视频的电影网站| 人人妻人人添人人爽欧美一区卜| 无限看片的www在线观看| 久久国产精品影院| 精品国产超薄肉色丝袜足j| 91字幕亚洲| 亚洲精品久久成人aⅴ小说| 精品久久久久久久毛片微露脸| 国产精品成人在线| 色尼玛亚洲综合影院| 免费在线观看日本一区| 亚洲专区国产一区二区| 免费少妇av软件| 美女高潮到喷水免费观看| 51午夜福利影视在线观看| 久久九九热精品免费| 婷婷丁香在线五月| 91在线观看av| 国产深夜福利视频在线观看| 国产精品日韩av在线免费观看 | 亚洲熟妇中文字幕五十中出 | 亚洲一区中文字幕在线| 久久亚洲真实| 这个男人来自地球电影免费观看| 国产精品电影一区二区三区| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产 | 精品一区二区三卡| 国产欧美日韩综合在线一区二区| 757午夜福利合集在线观看| 久久亚洲精品不卡| 两性夫妻黄色片| 欧美乱码精品一区二区三区| 亚洲久久久国产精品| 日韩有码中文字幕| 超碰成人久久| 99在线人妻在线中文字幕| 精品久久久久久电影网| 国产99白浆流出| 亚洲狠狠婷婷综合久久图片| 成人三级做爰电影| 99久久人妻综合| 亚洲五月天丁香| 免费在线观看日本一区| 黄色女人牲交| 性欧美人与动物交配| 国产亚洲精品久久久久久毛片| 90打野战视频偷拍视频| 久久久久久久久免费视频了| avwww免费| 欧美日韩福利视频一区二区| 黑人巨大精品欧美一区二区mp4| 国产一区二区三区在线臀色熟女 | 琪琪午夜伦伦电影理论片6080| 欧美成人免费av一区二区三区| 亚洲精品国产区一区二| av超薄肉色丝袜交足视频| 美女福利国产在线| 精品乱码久久久久久99久播| 成熟少妇高潮喷水视频| 神马国产精品三级电影在线观看 | 国产欧美日韩一区二区三区在线| 久久久久九九精品影院| 欧美激情久久久久久爽电影 | 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| 丝袜美腿诱惑在线| 高潮久久久久久久久久久不卡| av天堂在线播放| 高清毛片免费观看视频网站 | 美女高潮到喷水免费观看| 成人亚洲精品av一区二区 | 高清av免费在线| 久久香蕉精品热| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| 久久久久久亚洲精品国产蜜桃av| 欧美一区二区精品小视频在线| 交换朋友夫妻互换小说| 美国免费a级毛片| 亚洲男人天堂网一区| 久久草成人影院| 热re99久久精品国产66热6| 天堂中文最新版在线下载| 欧美最黄视频在线播放免费 | 少妇的丰满在线观看| 亚洲一区二区三区色噜噜 | 精品高清国产在线一区| 国产精品免费一区二区三区在线| 成人三级做爰电影| 91成人精品电影| 在线观看免费日韩欧美大片| 一边摸一边抽搐一进一出视频| 国产一区二区激情短视频| 法律面前人人平等表现在哪些方面| 午夜视频精品福利| a在线观看视频网站| 成人永久免费在线观看视频| 欧美激情极品国产一区二区三区| 精品第一国产精品| 久久亚洲精品不卡| 久久久国产一区二区| 天天躁夜夜躁狠狠躁躁| 国产精华一区二区三区| 精品福利观看| 亚洲精品中文字幕一二三四区| 脱女人内裤的视频| 亚洲精品一二三| 少妇的丰满在线观看| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 91在线观看av| 深夜精品福利| 男女高潮啪啪啪动态图| 欧美在线黄色| 亚洲成a人片在线一区二区| 少妇 在线观看| 香蕉丝袜av| 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 男女高潮啪啪啪动态图| av欧美777| 久久这里只有精品19| 午夜两性在线视频| 欧美成人性av电影在线观看| 午夜91福利影院| 亚洲久久久国产精品| 高清在线国产一区| 精品一区二区三卡| 国产成人欧美在线观看| 神马国产精品三级电影在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 天天添夜夜摸| 可以在线观看毛片的网站| 日本五十路高清| 最近最新中文字幕大全免费视频| 在线观看舔阴道视频| 18禁国产床啪视频网站| 99久久国产精品久久久| 亚洲午夜精品一区,二区,三区| 大陆偷拍与自拍| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 国产高清videossex| 亚洲 国产 在线| 国产精品偷伦视频观看了| 欧美不卡视频在线免费观看 | 成人精品一区二区免费| 国产一区二区在线av高清观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲成av片中文字幕在线观看| 国产精品永久免费网站| 日本 av在线| 老司机福利观看| 伊人久久大香线蕉亚洲五| 男人操女人黄网站| 悠悠久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩 欧美 亚洲 中文字幕| 免费不卡黄色视频| 国产99白浆流出| 91国产中文字幕| 亚洲欧美日韩另类电影网站| 超色免费av| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产av精品麻豆| 色播在线永久视频| 嫩草影院精品99| netflix在线观看网站| 五月开心婷婷网| 啦啦啦在线免费观看视频4| 人人妻人人爽人人添夜夜欢视频| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线不卡| 亚洲精品一二三| 久久午夜综合久久蜜桃| 欧美激情 高清一区二区三区| 最新在线观看一区二区三区| 又黄又粗又硬又大视频| 成人三级黄色视频| 午夜福利在线观看吧| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 欧美精品亚洲一区二区| av超薄肉色丝袜交足视频| 亚洲av五月六月丁香网| 最近最新免费中文字幕在线| 在线观看66精品国产| 18美女黄网站色大片免费观看| 亚洲色图av天堂| 男女下面插进去视频免费观看| 欧美性长视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | av福利片在线| av天堂在线播放| 十分钟在线观看高清视频www| 午夜免费成人在线视频| 十分钟在线观看高清视频www| 久久人人精品亚洲av| 桃色一区二区三区在线观看| 国产xxxxx性猛交| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 正在播放国产对白刺激| 99热只有精品国产| xxxhd国产人妻xxx| 国产精品爽爽va在线观看网站 | 两人在一起打扑克的视频| 波多野结衣高清无吗| 操美女的视频在线观看| 亚洲国产精品999在线| 老司机午夜福利在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜成年电影在线免费观看| 在线免费观看的www视频| 人人妻人人添人人爽欧美一区卜| 黄色视频不卡| 亚洲av成人一区二区三| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合一区二区三区| 高清毛片免费观看视频网站 | 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播放欧美日韩| 制服诱惑二区| 日韩欧美国产一区二区入口| 在线av久久热| 午夜a级毛片| 黑人猛操日本美女一级片| 在线永久观看黄色视频| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 国产成人免费无遮挡视频| videosex国产| 免费日韩欧美在线观看| www.www免费av| 999精品在线视频| 99香蕉大伊视频| 亚洲 国产 在线| 久久久久久亚洲精品国产蜜桃av| avwww免费| 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 色综合婷婷激情| 99国产综合亚洲精品| 高清欧美精品videossex| 满18在线观看网站| 一区二区三区激情视频| av福利片在线| 欧美av亚洲av综合av国产av| www.熟女人妻精品国产| 91精品三级在线观看| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 国产三级在线视频| 色婷婷av一区二区三区视频| 日韩成人在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 丰满的人妻完整版| 脱女人内裤的视频| 日本免费a在线| 欧美不卡视频在线免费观看 | 女人高潮潮喷娇喘18禁视频| 欧美成人免费av一区二区三区| 另类亚洲欧美激情| 午夜免费鲁丝| 免费高清在线观看日韩| 超碰成人久久| 18禁裸乳无遮挡免费网站照片 | 久久国产亚洲av麻豆专区| 欧美激情高清一区二区三区| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器 | 婷婷六月久久综合丁香| 人人澡人人妻人| 国产黄a三级三级三级人| 亚洲中文日韩欧美视频| 在线看a的网站| 国产精品一区二区精品视频观看| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 婷婷丁香在线五月| 亚洲成人国产一区在线观看| 色综合婷婷激情| 国产成人精品无人区| 又紧又爽又黄一区二区| 在线观看日韩欧美| 在线国产一区二区在线| 亚洲精品美女久久久久99蜜臀| 久久人人爽av亚洲精品天堂| 成人免费观看视频高清| 窝窝影院91人妻| 天堂动漫精品| 9191精品国产免费久久| 最近最新免费中文字幕在线| 日本免费一区二区三区高清不卡 | 国产伦一二天堂av在线观看| 又大又爽又粗| 国产高清视频在线播放一区| 首页视频小说图片口味搜索| 日韩欧美一区视频在线观看| 黑人欧美特级aaaaaa片| 极品教师在线免费播放| a级毛片黄视频| 亚洲色图 男人天堂 中文字幕| 神马国产精品三级电影在线观看 | 啦啦啦 在线观看视频| 欧美人与性动交α欧美软件| 国产色视频综合| 神马国产精品三级电影在线观看 | 国产精品日韩av在线免费观看 | 免费观看人在逋| 麻豆成人av在线观看| 在线观看日韩欧美| 久久狼人影院| 中文字幕av电影在线播放| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕在线视频| 十分钟在线观看高清视频www| 午夜免费观看网址| 在线观看舔阴道视频| 视频在线观看一区二区三区| 乱人伦中国视频| www.熟女人妻精品国产| 露出奶头的视频| 激情在线观看视频在线高清| 国产欧美日韩一区二区精品| 国产一区在线观看成人免费| 久久人人爽av亚洲精品天堂| 黄频高清免费视频| 老汉色∧v一级毛片| 可以免费在线观看a视频的电影网站| 欧美黄色片欧美黄色片| 国产免费男女视频| 久久精品亚洲av国产电影网| 成人三级黄色视频| 免费观看精品视频网站| 精品免费久久久久久久清纯| 亚洲熟女毛片儿| 精品熟女少妇八av免费久了| 欧美黑人精品巨大| 黄色毛片三级朝国网站| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 精品久久久精品久久久| 十八禁人妻一区二区| 男女午夜视频在线观看| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 亚洲中文字幕日韩| 欧美人与性动交α欧美精品济南到| 美女午夜性视频免费| 久久久久精品国产欧美久久久| 亚洲人成77777在线视频| 侵犯人妻中文字幕一二三四区| 18禁黄网站禁片午夜丰满| 午夜福利一区二区在线看| 免费一级毛片在线播放高清视频 | 天堂影院成人在线观看| 亚洲av电影在线进入| 国产精品免费视频内射| 操美女的视频在线观看| 欧美黑人欧美精品刺激| 中文字幕精品免费在线观看视频| 真人一进一出gif抽搐免费| 美女午夜性视频免费| 国产成人免费无遮挡视频| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡 | 亚洲欧美激情在线| 久久这里只有精品19| 91麻豆精品激情在线观看国产 | 日韩大码丰满熟妇| 免费看a级黄色片| 色精品久久人妻99蜜桃| 最好的美女福利视频网| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲综合一区二区三区_| 黄色成人免费大全| 日本一区二区免费在线视频| 在线观看免费视频网站a站| 精品卡一卡二卡四卡免费| 大香蕉久久成人网| 美女午夜性视频免费| 成人精品一区二区免费| 久久久久九九精品影院| 日本欧美视频一区| 麻豆一二三区av精品| 免费人成视频x8x8入口观看| 伊人久久大香线蕉亚洲五| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人| 91字幕亚洲| 国产日韩一区二区三区精品不卡| 国产三级黄色录像| 久久香蕉精品热| 精品午夜福利视频在线观看一区| 女性生殖器流出的白浆| 日韩国内少妇激情av| 黄色片一级片一级黄色片| 国产精品免费一区二区三区在线| 色婷婷久久久亚洲欧美| 视频在线观看一区二区三区| 亚洲国产精品sss在线观看 | 国产一卡二卡三卡精品| 国产精品乱码一区二三区的特点 | 国产激情欧美一区二区| 一边摸一边抽搐一进一小说| 黑人巨大精品欧美一区二区蜜桃| 黑人欧美特级aaaaaa片| 日韩av在线大香蕉| 国产三级在线视频| 日日夜夜操网爽| 日韩大码丰满熟妇| 国产一区在线观看成人免费| 午夜日韩欧美国产| 91国产中文字幕| 欧美黑人精品巨大| 高清欧美精品videossex| bbb黄色大片|