• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fuzzy immune algorithm and its application in solvent tower soft sensor modeling

    2015-03-03 08:01:24MENGKeDONGZhaoyangGAOXiaodanWANGHaimingLIXiao
    關(guān)鍵詞:計(jì)算精度測試函數(shù)徑向

    MENG Ke, DONG Zhao-yang, GAO Xiao-dan, WANG Hai-ming, LI Xiao

    (1. Centre for Intelligent Electricity Networks, The University of Newcastle, Callaghan 2308, Australia;2. School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia;3. School of Computer Science and Control Engineering, North University of China, Taiyuan 030051, China)

    ?

    A fuzzy immune algorithm and its application in solvent tower soft sensor modeling

    MENG Ke1,2, DONG Zhao-yang2, GAO Xiao-dan1, WANG Hai-ming1, LI Xiao3

    (1.CentreforIntelligentElectricityNetworks,TheUniversityofNewcastle,Callaghan2308,Australia;2.SchoolofElectricalandInformationEngineering,TheUniversityofSydney,Sydney2006,Australia;3.SchoolofComputerScienceandControlEngineering,NorthUniversityofChina,Taiyuan030051,China)

    An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method is presented by using the fuzzy system to realize the adaptive selection of two key parameters (possibility of crossover and mutation). By comparing and analyzing the results of several benchmark functions, the performance of fuzzy immune algorithm (FIA) is approved. Not only the difficulty of parameters selection is relieved, but also the precision and stability are improved. At last, the FIA is applied to optimization of the structure and parameters in radial basis function neural network (RBFNN) based on an orthogonal sequential method. And the availability of algorithm is proved by applying RBFNN in modeling in soft sensor of solvent tower.

    immune algorithm; fuzzy system; radial basis function neural network (RBFNN); soft sensor

    0 Introduction

    With the development of immunology and its research methods, the mechanism of biologic immune system has attracted increasing attention from researchers in recent years. Due to the powerful ability of information processing and special characteristics such as diversity, adaptive trait, biologic immune system has become a hot spot of artificial intelligence.

    Being the defense system of mammal, immune system plays a significant role in keeping the normal life activities of animals. If it is weakened or destroyed, lives will be endangered. The process that immune system annihilates viruses can be briefly described as follows:

    Once bacteria invade and enter the bloodstream or lymphatic system, they will encounter B cell and the antibodies withheld within B cell’s membrane will detect antigens in the bacteria. Thenceforth, T cells communicate with B cells based on the received information about the antigen from macrophages earlier and by so doing, B cells are inspired to propagate. The propagated B cells are converted into memory cells and antibodies are produced. With the aid of macrophages and other proteins within biologic bodies, antibodies bind to antigens and kill the antigens after they enter into blood system through the heart.

    Being an innovative optimization algorithm based on immune mechanism, the immune algorithm (IA)[1]is employed to address the multi-modal function optimization problem. It imitating the principle of our defense system annihilating foreign disease-causing bacteria or viruses through self-learning and self-adjusting. The capability of somatic theory and network hypothesis of immune system of multi-modal optimization problems has been examined in Ref.[2]. An IA is introduced in Ref.[3] to search for diverse solutions to design problems for electromagnetic devices, where optimal solutions are aggregated in memory cells.

    Differences in the production system for memory and antibodies distinguish IA from genetic algorithm (GA) although they are quite similar. Besides, IA manipulates a population of candidates simultaneously in the search space whereas GA manipulates just one. Compared with GA and other evolution programming, IA promotes the general search ability through the mechanism based on memory pool. At the same time, it realizes the function of self-adjusting by calculating affinity and concentration. To some extent, it avoids premature convergence.

    1 Soft sensor and RBF neural network

    In order to get eligible production, quality control wields an important role in industrial manufacture. Because of the complexity of industrial process especially in the petrochemical industry, it is very difficult to realize the real-time strict control of the quality of some products. Under many circumstances, the qualities of many products are tested off-line by labor because of the high price, difficulty of maintenance, time latency of on-line measure meters.

    The conception of soft sensors, which combines control knowledge and technologic theories together, was firstly brought forward in Ref.[4]. Some variables which can be easily measured are selected to compute real-time reliable estimates data of other ones which can not or is difficult to be measured by designing proper algorithms. Nonlinear modeling techniques are usually utilized to develop soft sensors to handle the peculiar nonlinearities of processes[4]. Not only can soft sensors be operated alone as a valuable, economic replacement of costly hardware sensors, but also work in parallel with real sensors to allow model-based techniques to be adopted in order to develop fault detection functions devoted to the analysis of the sensor’s health status.

    Radial basis function neural networks (RBFNN) is an excellent neural network in performance. In 1990, Girosi and Poggio had proved RBFNN can approach any nonlinear functions by discretionary precision[5]. RBF networks are gaining increasing popularity in many scientific and engineering fields as a result of their strengths compared with other types of artificial neural networks (ANN), e.g. improved approximation capabilities, simpler network structures and faster learning algorithms.

    RBF networks are composed of three layers, including the input, hidden and output layers, which form an unique neural network architecture. The input layer communicates the entire network to its outside environment. In the hidden layer, all the nodes are connected with centers, and they are vectors with a dimension identical to the number of inputs to the network. A RBF is employed to pass the node activity; the feedback from a hidden node is generated. Lastly, the output serves as a summation unit, which is linear. The structure of a typical RBFNN is presented in Fig.1.

    Fig.1 Typical MISO RBFNN

    But how to decide the number of neurons within the hidden layer has always been the problem counteracting the application of RBFNN. There is a possibility that a small network never converges, however, a large network converges fast but lacks the generalization ability. Besides a suitable network size, there are many other questions that need to be answered to use a network for a particular problem. Learning step, proper training procedure, number of layers, network initialization, value of gain and the number of neurons in each layer are some difficulties which block the wide application of neural network. In this paper an orthogonal sequential method[6]is represented producing RBFNN models based on an improved IA, which is used to auto-configure the structure of the network and obtain the model parameters.

    2 Fuzzy immune algorithm

    2.1 Basic principles of immune algorithm

    For the optimization problem, the antigens and antibodies in the immune system are represented as the objective functions and feasible solutions, respectively.

    The coding method for traditional IA is similar to that for the GA, which is coded in binary. In this paper a new real-coding based evolution IA because of the advantages of real coding algorithm in training neural network[7]is represented, which effectively improves the performance of traditional IA, solving the problems such as premature convergence, low speed of calculation and low precision.

    2.2 Calculation strategy of FIA

    The steps of FIA are illustrated as shown in Fig.2.

    Fig.2 Flow chart of FIA

    Step 1 (Recognize antigen)

    Antigen: objective function (generally minimum value).

    Antibody: feasible solutions.

    Step 2 (Produce initial antibody population and memory pool)

    In this step, the antibodies are generated randomly and then compartmentalized to the given intervals. The memory pool is a zero matrix of given size.

    Step 3 (Calculate the affinity values of all antibodies)

    IA uses affinity value as a discriminator of the quality of solutions represented by the antibodies in a population. Because the final target of the algorithm is searching the minimum value, function values of all the antibodies are calculated and sorted in ascending sequence.

    To calculate the affinity valueaffinity(i) of antibodyi, it is given by

    (1)

    whereris a random number in the interval [0.01,0.3].

    Step 4 (Update memory pool)

    Eminent antibodies from the present population are selected by their affinity values and concentrations in order to update memory pool which can be used to generate the offspring antibodies population.

    Step 5 (Select antibodies)

    1) To calculate the concentrationcon(i) of antibodyi, it is given by

    (2)

    where

    (3)

    2) To calculate the selection probabilityPs(i) of antibodyi, it is given by

    (4)

    3) A roulette selection is implemented based on the computed selection probability for the antibodies. This allocates each antibody a probability of being selected proportional to its relative affinity and concentration. A new antibody generation can therefore be formed by spinning the designed roulette.

    Step 6 (Determine crossover and mutation rates through fuzzy method)

    In IA, many parameters play an important role in determining convergence and convergent rate, such as crossover and mutation rates. Crossover is one key IA operator that promotes the new region exploration ability in the search space. Generally, crossover rate should be chosen comparatively big[8], between 0.7 and 1.0. Mutation is another IA operator which guarantees the diversity of the population. In Ref. [8], the mutation rate should be chosen between thousandths and hundredths.

    According to Ref.[9], statistical method, support vector machine or neural network can be utilized to adjust crossover and mutation rates. However, we have found that fuzzy system approach makes better contributions to the IA in both time consumption and precision when compared with above methodologies.

    Themembershipfunctionsforinputfd(t),andoutputΔPcareshowninFigs.3-6.Inthesamewaythemembershipfunctionsforinputfd(t), Pm,ΔPmandfuzzydecisiontableforΔPmcanbedrawn.

    Fig.3 Membership function of fd(t)

    Fig.4 Membership function of Pc

    Fig.5 Membership function of ΔPc

    Fig.6 Membership function of ΔPm

    According to a great deal of experimental data and expert knowledge, the fuzzy decision for ΔPcis made and presented in Table 1. By virtue of the same theory, the fuzzy decision table for ΔPmcan be generated. In the table, NH, NL, NM, NS, ZE, PS, PM, PL and PH are abbreviated for Negative Huge, Negative Large, Negative Medium, Negative Small, Zero, Positive Small, Positive Medium, Positive Large and Positive Huge, respectively.

    Table 1 Fuzzy decision table for ΔPc

    Step 7 (Crossover implementation)

    The crossover operator represents the mixing of antibiotic material from two selected parent antibodies to produce one or two child offspring antibody population. The amount of antibodies take part in crossover implementation is determined by crossover ratePc, which is adjusted by fuzzy method.

    An improved arithmetic crossover operator is described as

    (5)

    whereb1=0.5+b,b2=0.5-b, andbis a random number in interval [0,1].

    If the offspring antibody exceeds the given intervals, another operator will be selected.

    (6)

    Step 8 (Mutation implementation)

    An uneven mutation method[10-11]is described as follows:

    For one given parent antibody, if its elementxmis randomly selected to mutation, the corresponding element in its offspring is likely to change in two possibilities

    (7)

    (8)

    whereTis maximum generation;tis current generation;ris a fixed uneven parameter, usuallyr=2;bis a random number in the interval [0,1].

    In this paper, an improved mutation method is introduced, and its idea mainly comes from differential algorithm[12].

    (9)

    whereantibodybestis the optimal antibody of the current generation which is stored in memory pool.

    Step 9 (Generate new antibody population and update memory pool)

    Antibodies with high affinity value will evolve into next generation and be added into memory pool. Given number of new antibodies will be added into antibody population replacing antibodies with low affinity value.

    Step 10 (Termination criterion).

    For this step, the search is terminated if the following conditions are satisfied:

    1) The values for minvaluedo not change for several generations.

    2) When the set number of evolutionTis achieved.

    2.3 Test examples

    Several standard test functions are used to examine the ability of FIA and its advantages superior to other algorithms in the same test environment and condition. Except for parameters adaptive selection, the FIA is similar to other algorithms in flow and thought. The standard test functions and test results are shown in Table 2 and Table 3, respectively.

    Table 2 Three standard test functions

    Table 3 Results of test functions

    The above data indicate that FIA can effectively solve the premature problem and is suitable for complex optimization problems. The algorithm is not trapped by the local optimal solution and can promptly and accurately obtain a full set of global optimal solutions, which are incomparable in other similar algorithms.

    3 Configuration of RBFNN using FIA

    Like GA and other evolution algorithms[7,13], IA has three main applications in neural network:

    1) The parameters learning of neural network;

    2) The topology structure selection of neural network;

    3) The parameters and structure optimization of neural network.

    And the standard procedure for RBF networks learning problem can be decomposed into two steps: The first one is obtaining the number and centers of the nodes in hidden layer and the second one is calculation of the connection weights using simple linear regression.

    3.1 General ideas and theories[6]

    For typical RBFNN, ifwidenotes output weights, φi(X,Ci)denotestheoutputofithneuron, X=[x1,x2,…,xm]isinputvector, Cidenotesthehiddennodecenterlocationsofithneuronandydenoteslinearsummationofoutputofhiddenlayerneurons.IftheRBFisGaussfunction,

    (10)

    (11)

    Foronesetoftrainingdata,theequationcanbetransformedinto

    (12)

    Andthen

    (13)

    (14)

    (15)

    Sothegivenequationscanbetransformedinto

    (16)

    (17)

    (18)

    3.2 Two-step learning strategy of RBFNN

    3.2.1 Design of network structure

    Real-coded algorithm is suitable for neural network training because the antibodies are the real values in neural network. The real-coded method forithantibody is that the formern+1 columns are relevantncenters and one warp and the last column is affinity value of the antibody.

    The steps of RBFNN training are depicted as:

    Step 1: Initialization.i=1, E0=Y.

    Step 3: If output satisfies stopping criterion, network training will stop. Otherwise,i=i+1, and another neuron will be added.

    3.2.2 Design of network output layer

    Because of the output layer is linear and it serves as a summation unit, the least square method can be chosen to calculate

    (19)

    3.3 Result of soft sensor

    One pure-terephthalic acid (PTA) solvent tower is chosen as research object in this paper and the ultimately target is to establish the soft sensor model for acid content of the bottom flow of the solvent tower. Solvent dehydration is an important unit in PTA manufacture process. Because of the long delay and slow dynamic response of the rectify process, it is very difficult to realize the real-time control of the production quality. The running situation of the control system largely depends on the operators’ technical levels and habits. Although the set can run smoothly in a short time, it cannot reach the optimal state. Great care was taken in both selecting the appropriate set of training examples, which covered all the operating conditions of the plant. According to technologic flow, three parameters (conductance, temperature and pressure) are selected as inputs to the RBF neural network, whereas the output is the relevant acid content. For 175 metrical data, former 100 are chosen to train neural network and the other 75 are used to determine the availability and generalization ability of the neural network.

    To avoid over-learning phenomena, an early stopping approach is used. The parameters in FIA are set as

    Popsize=50, Memorypool=20,

    And the results of training and estimation are shown in Figs.7 and 8. Parameters comparison between different neural netowkrs are presented in Table 4.

    Fig.7 RBFNN training result

    Fig.8 Comparison between NN estimation and corresponding actual data

    Table 4 Parameters comparison between different neural networks

    NetworksNumberofnodesinhiddenlayerMSEMaxrelativeerrorStandardrelativeerrorFIARBF80.11680.01870.0028OLSRBF90.13360.02240.0031ConventionalRBF120.14190.023540.0033

    4 Conclusion

    The simulation results indicate that the proposed methodology is effective and accurate. The parameters of neural network are optimized by using FIA, not only the number of nodes in hidden layer can be reduced, but also the generalization ability can be improved. As the study of combining FIA and RBFNN in soft sensor modeling is emerging recently, there are many aspects we can borrow from the immune system and fuzzy system, and further research is needed.

    [1] Liao G C, Tsao T P. Application embedded chaos search immune genetic algorithm for short-term unit commitment. Electric Power Systems Research, 2004, 71(2): 135-144.

    [2] Fukuda T, Mori K, Tsukiyama M. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm. Artificial Immune Systems and Their Applications, 1999: 210-220.

    [3] Chun J S, Lim, J P, Jung H K, et al. Multisolution optimization of permanent magnet linear synchronous motor for high thrust and acceleration operation. In: Proceedings of International Conference on Electric Machines and Drives (IEMD 99), 1999: 57-59.

    [4] Fortuna L, Rizzo A, Sinatra M, et al. Soft analyzers for a sulfur recovery unit. Control Engineering Practice, 2003, 11(12): 1491-1500.

    [5] Girosi F, Piggio T. Networks and the best approximation property. Biological Cybernetics, 1990, 63(3): 169-179.

    [6] BAO Zhi-jun, WANG Xian-lai. RBF neural networks based on orthogonal sequential genetic algorithm. In: Proceeding of the 22nd Chinese Control Conference, Yichang, China, 2003: 1.

    [7] Michalewicz Z. Genetic algorithms + data structures=evolution program. New York: Springer Verlag, 1994.

    [8] Braberman V A. Verification of real-time design: combining scheduling theory with automatic formal verficaton. Software Engineering Notes, 1999, 24(6): 494-511.

    [9] Shi Y, Eberhart R, Chen Y. Implementation of evolutionary fuzzy system. IEEE Transactions on Fuzzy System, 1999, 7(2): 109-119.

    [10] Thompson J M, Miller S P. Specification-based prototyping for embedded. Software Engineering Notes, 1999, 24(6): 163-180.

    [11] Fierz H. The CIP method: component- and model-based construction of embedded system. Software Engineering Notes, 1999, 24(6): 375-393.

    [12] Lopez-Cruz I L, van Willigenburg L G, van Straten G. Efficient differential evolution algorithms for multimodal optimal control problems. Applied Soft Computing, 2003, 3: 97-122.

    [13] Goldberg D E. Genetic Algorithms in search, optimization and machine learning. MA: Addison-Wesley, 1989.

    模糊免疫算法及其在溶劑脫水塔軟測量建模中的應(yīng)用

    孟 科1, 2, 董朝陽2, 高曉丹1, 王海明1, 李 曉3

    (1. Centre for Intelligent Electricity Networks, The University of Newcastle, Callaghan 2308, Australia;2. School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia;3. 中北大學(xué) 計(jì)算機(jī)與控制工程學(xué)院, 山西 太原 030051)

    本文針對(duì)基本免疫算法收斂速度慢、 計(jì)算精度低等缺點(diǎn), 提出了模糊免疫算法。 該算法引入模糊技術(shù), 對(duì)關(guān)鍵參數(shù)(交叉概率和變異概率)實(shí)現(xiàn)了模糊自適應(yīng)調(diào)整。 通過標(biāo)準(zhǔn)測試函數(shù)實(shí)驗(yàn)結(jié)果的對(duì)比, 其可行性和有效性得到證明, 不僅減輕了原始算法中參數(shù)確定存在的困難, 而且提高了算法的計(jì)算速度和精度。 其次, 本文將模糊免疫算法用于徑向基神經(jīng)網(wǎng)絡(luò)的訓(xùn)練, 并將該神經(jīng)網(wǎng)絡(luò)應(yīng)用于溶劑脫水塔軟測量模型。 仿真實(shí)驗(yàn)證明, 模糊免疫算法優(yōu)化的徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)具有良好的泛化性能。

    免疫算法; 模糊系統(tǒng); 徑向基神經(jīng)網(wǎng)絡(luò); 軟測量

    MENG Ke, DONG Zhao-yang, GAO Xiao-dan, et al. A fuzzy immune algorithm and its application in solvent tower soft sensor modeling. Journal of Measurement Science and Instrumentation, 2015, 6(2): 197-204.

    10.3969/j.issn.1674-8042.2015.02.016

    MENG Ke (ke.meng@newcastle.edu.cn)

    1674-8042(2015)02-0197-08 doi: 10.3969/j.issn.1674-8042.2015.02.016

    Received date: 2015-02-25

    CLD number: TP273+.4 Document code: A

    猜你喜歡
    計(jì)算精度測試函數(shù)徑向
    淺探徑向連接體的圓周運(yùn)動(dòng)
    RN上一類Kirchhoff型方程徑向?qū)ΨQ正解的存在性
    基于PID+前饋的3MN徑向鍛造機(jī)控制系統(tǒng)的研究
    一類無窮下級(jí)整函數(shù)的Julia集的徑向分布
    基于SHIPFLOW軟件的某集裝箱船的阻力計(jì)算分析
    廣東造船(2018年1期)2018-03-19 15:50:50
    具有收縮因子的自適應(yīng)鴿群算法用于函數(shù)優(yōu)化問題
    帶勢函數(shù)的雙調(diào)和不等式組的整體解的不存在性
    約束二進(jìn)制二次規(guī)劃測試函數(shù)的一個(gè)構(gòu)造方法
    單元類型和尺寸對(duì)拱壩壩體應(yīng)力和計(jì)算精度的影響
    鋼箱計(jì)算失效應(yīng)變的沖擊試驗(yàn)
    午夜视频精品福利| 久久久精品免费免费高清| 老司机在亚洲福利影院| 正在播放国产对白刺激| 制服诱惑二区| 亚洲av第一区精品v没综合| 91av网站免费观看| 亚洲国产精品一区二区三区在线| 亚洲av日韩在线播放| 中亚洲国语对白在线视频| 在线观看免费午夜福利视频| 欧美黄色淫秽网站| 国产成人av激情在线播放| av国产精品久久久久影院| 99精品在免费线老司机午夜| 国产精品国产高清国产av | 国产精品欧美亚洲77777| 成人18禁高潮啪啪吃奶动态图| 一级毛片女人18水好多| 亚洲色图av天堂| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 日韩欧美一区二区三区在线观看 | 侵犯人妻中文字幕一二三四区| 国产深夜福利视频在线观看| 国产伦理片在线播放av一区| 久久人妻福利社区极品人妻图片| 交换朋友夫妻互换小说| 久久亚洲真实| 国产黄色免费在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产av影院在线观看| 大码成人一级视频| 国产区一区二久久| 欧美中文综合在线视频| 脱女人内裤的视频| 一区二区三区乱码不卡18| 国产精品久久久久久精品电影小说| 久热爱精品视频在线9| 国产欧美日韩一区二区三区在线| 天天影视国产精品| 亚洲,欧美精品.| 99精国产麻豆久久婷婷| 一夜夜www| 久久性视频一级片| 午夜老司机福利片| 免费久久久久久久精品成人欧美视频| 丰满迷人的少妇在线观看| 五月天丁香电影| 精品亚洲乱码少妇综合久久| 国产成人系列免费观看| 国产三级黄色录像| 51午夜福利影视在线观看| av片东京热男人的天堂| 岛国在线观看网站| 18禁国产床啪视频网站| 欧美日韩一级在线毛片| 大片免费播放器 马上看| 欧美日韩亚洲高清精品| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 国产成+人综合+亚洲专区| 国产野战对白在线观看| 中文字幕人妻丝袜制服| 午夜激情久久久久久久| 亚洲午夜精品一区,二区,三区| 男女无遮挡免费网站观看| 久久久久久久精品吃奶| 成人18禁高潮啪啪吃奶动态图| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 国产欧美日韩一区二区精品| 欧美日韩国产mv在线观看视频| 97在线人人人人妻| 男女下面插进去视频免费观看| 一级片'在线观看视频| 国产老妇伦熟女老妇高清| 国产不卡一卡二| 欧美精品人与动牲交sv欧美| 久久ye,这里只有精品| 国产日韩欧美视频二区| 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 亚洲av片天天在线观看| 成年动漫av网址| 日韩人妻精品一区2区三区| www.熟女人妻精品国产| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 亚洲专区字幕在线| 一区二区日韩欧美中文字幕| 久久精品成人免费网站| 亚洲欧美日韩高清在线视频 | 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产综合久久久| 91成人精品电影| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 一区二区三区激情视频| 黑丝袜美女国产一区| 在线av久久热| 色婷婷久久久亚洲欧美| 国产精品免费一区二区三区在线 | 日本vs欧美在线观看视频| 99精品在免费线老司机午夜| 免费黄频网站在线观看国产| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 欧美在线一区亚洲| 久久久精品94久久精品| 亚洲专区国产一区二区| 国产精品久久久av美女十八| 国产免费av片在线观看野外av| 91av网站免费观看| 日本vs欧美在线观看视频| 久久人妻av系列| 中文字幕精品免费在线观看视频| 纯流量卡能插随身wifi吗| 国产主播在线观看一区二区| 亚洲精品粉嫩美女一区| 电影成人av| 操美女的视频在线观看| 国产av国产精品国产| 国产精品一区二区精品视频观看| 涩涩av久久男人的天堂| 高清视频免费观看一区二区| 69av精品久久久久久 | 三上悠亚av全集在线观看| 国产一卡二卡三卡精品| 亚洲av第一区精品v没综合| 视频区图区小说| 最新美女视频免费是黄的| 免费日韩欧美在线观看| 亚洲av成人不卡在线观看播放网| 欧美黄色片欧美黄色片| 一级片免费观看大全| 十分钟在线观看高清视频www| 日本av手机在线免费观看| 一二三四在线观看免费中文在| 搡老岳熟女国产| 99国产精品免费福利视频| 久久久久久久久久久久大奶| www.精华液| 高清欧美精品videossex| 色视频在线一区二区三区| netflix在线观看网站| 久久久久网色| 韩国精品一区二区三区| 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 国产欧美日韩综合在线一区二区| 桃花免费在线播放| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 热99国产精品久久久久久7| 侵犯人妻中文字幕一二三四区| videos熟女内射| 在线天堂中文资源库| 国产成人影院久久av| 大片电影免费在线观看免费| 在线观看舔阴道视频| 天天躁夜夜躁狠狠躁躁| 久久久久精品人妻al黑| 国产色视频综合| 国产片内射在线| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲第一欧美日韩一区二区三区 | 亚洲精品美女久久av网站| aaaaa片日本免费| 岛国在线观看网站| 成人免费观看视频高清| 国产高清videossex| 18禁观看日本| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 波多野结衣av一区二区av| 国产精品 国内视频| 日日夜夜操网爽| 天天影视国产精品| 午夜老司机福利片| 日韩一区二区三区影片| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| tube8黄色片| 日韩大码丰满熟妇| 超碰成人久久| 99在线人妻在线中文字幕 | 夜夜骑夜夜射夜夜干| 国产一卡二卡三卡精品| av又黄又爽大尺度在线免费看| 亚洲三区欧美一区| 国产免费福利视频在线观看| 国产在线精品亚洲第一网站| 国产日韩欧美在线精品| 日本一区二区免费在线视频| 麻豆乱淫一区二区| 日本a在线网址| 50天的宝宝边吃奶边哭怎么回事| 午夜福利欧美成人| 日本vs欧美在线观看视频| 一级黄色大片毛片| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 中文欧美无线码| 中文字幕精品免费在线观看视频| 女人久久www免费人成看片| 国产亚洲欧美精品永久| 久久久久久久国产电影| 又大又爽又粗| 国产亚洲精品一区二区www | 91国产中文字幕| 一本大道久久a久久精品| 国产伦理片在线播放av一区| 国产男女内射视频| 91字幕亚洲| 国产精品 国内视频| 一区二区三区国产精品乱码| 久久久精品免费免费高清| 一区二区av电影网| 国产精品1区2区在线观看. | 中国美女看黄片| 亚洲av成人一区二区三| 国产精品二区激情视频| av又黄又爽大尺度在线免费看| 国产亚洲一区二区精品| 亚洲国产欧美一区二区综合| 国产成人免费无遮挡视频| 美女午夜性视频免费| 99香蕉大伊视频| 国产精品国产高清国产av | 午夜精品久久久久久毛片777| 女人爽到高潮嗷嗷叫在线视频| 国产av一区二区精品久久| 日本wwww免费看| 变态另类成人亚洲欧美熟女 | 超碰成人久久| 国产精品.久久久| www.熟女人妻精品国产| 一个人免费看片子| 一区二区av电影网| 免费在线观看影片大全网站| 又大又爽又粗| 欧美日韩精品网址| 狠狠狠狠99中文字幕| 国产av国产精品国产| 考比视频在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲专区中文字幕在线| 两性夫妻黄色片| 在线十欧美十亚洲十日本专区| 岛国毛片在线播放| 91大片在线观看| 久久久国产欧美日韩av| 女警被强在线播放| 久久婷婷成人综合色麻豆| 久久99一区二区三区| 精品少妇内射三级| 日本黄色日本黄色录像| 在线播放国产精品三级| 午夜福利乱码中文字幕| 欧美一级毛片孕妇| 日本五十路高清| 成年人黄色毛片网站| 欧美国产精品va在线观看不卡| 国产亚洲欧美在线一区二区| 精品国产乱子伦一区二区三区| av欧美777| 桃花免费在线播放| av天堂在线播放| 成人黄色视频免费在线看| 欧美日韩精品网址| 国产成人精品久久二区二区91| 一区二区三区国产精品乱码| 国产午夜精品久久久久久| 最新美女视频免费是黄的| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 欧美+亚洲+日韩+国产| 欧美日韩成人在线一区二区| 精品少妇一区二区三区视频日本电影| 天天操日日干夜夜撸| 精品高清国产在线一区| 国产在线视频一区二区| 黄色怎么调成土黄色| 80岁老熟妇乱子伦牲交| √禁漫天堂资源中文www| 91成人精品电影| 国产欧美日韩综合在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影观看| 又紧又爽又黄一区二区| 亚洲av欧美aⅴ国产| 午夜91福利影院| 亚洲精品粉嫩美女一区| 精品第一国产精品| 久久av网站| 欧美另类亚洲清纯唯美| 每晚都被弄得嗷嗷叫到高潮| 中文字幕另类日韩欧美亚洲嫩草| 成人影院久久| 国产一区二区三区视频了| 一二三四社区在线视频社区8| 99riav亚洲国产免费| 国产激情久久老熟女| 激情视频va一区二区三区| 久久久水蜜桃国产精品网| 亚洲人成电影免费在线| 丰满迷人的少妇在线观看| 国产精品国产高清国产av | 午夜免费成人在线视频| 国产一区二区三区综合在线观看| tocl精华| 成人精品一区二区免费| 国产日韩欧美在线精品| 天天添夜夜摸| 精品久久久久久电影网| 国产99久久九九免费精品| 亚洲欧美日韩另类电影网站| 中文字幕人妻丝袜一区二区| 午夜精品久久久久久毛片777| 香蕉久久夜色| 精品视频人人做人人爽| 一区二区三区精品91| 中文字幕高清在线视频| 搡老岳熟女国产| 99精国产麻豆久久婷婷| e午夜精品久久久久久久| 一本久久精品| 免费黄频网站在线观看国产| 黄频高清免费视频| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| avwww免费| av网站免费在线观看视频| av天堂久久9| 纯流量卡能插随身wifi吗| 亚洲九九香蕉| 亚洲免费av在线视频| 变态另类成人亚洲欧美熟女 | 俄罗斯特黄特色一大片| 国产精品 欧美亚洲| 中文字幕制服av| 高清黄色对白视频在线免费看| 人人澡人人妻人| videos熟女内射| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 国产不卡av网站在线观看| 精品久久久久久电影网| 亚洲专区国产一区二区| 成人亚洲精品一区在线观看| 多毛熟女@视频| 亚洲av成人不卡在线观看播放网| 一级,二级,三级黄色视频| 亚洲中文日韩欧美视频| 精品一品国产午夜福利视频| 99热国产这里只有精品6| 我要看黄色一级片免费的| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频| 日韩制服丝袜自拍偷拍| 午夜老司机福利片| 极品少妇高潮喷水抽搐| 一本色道久久久久久精品综合| 国产日韩欧美亚洲二区| 波多野结衣一区麻豆| 一级a爱视频在线免费观看| 国产成人精品在线电影| 免费av中文字幕在线| 老司机深夜福利视频在线观看| 欧美av亚洲av综合av国产av| a在线观看视频网站| 久久人人爽av亚洲精品天堂| 狠狠精品人妻久久久久久综合| 欧美激情高清一区二区三区| 人人妻人人添人人爽欧美一区卜| 日本五十路高清| av超薄肉色丝袜交足视频| 久久影院123| 动漫黄色视频在线观看| 黄色视频不卡| 欧美日韩一级在线毛片| 欧美性长视频在线观看| 亚洲精品美女久久久久99蜜臀| 中国美女看黄片| 日韩免费高清中文字幕av| 天堂动漫精品| 国产亚洲午夜精品一区二区久久| 99久久人妻综合| 中文欧美无线码| 曰老女人黄片| 色94色欧美一区二区| 欧美精品av麻豆av| 精品亚洲成国产av| 成人黄色视频免费在线看| 午夜激情av网站| 日韩视频一区二区在线观看| 国产在线精品亚洲第一网站| 啦啦啦免费观看视频1| 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影| 欧美激情高清一区二区三区| 丁香六月欧美| 91麻豆精品激情在线观看国产 | 日韩欧美免费精品| 下体分泌物呈黄色| 在线观看免费日韩欧美大片| 久久久久久久国产电影| 欧美黄色淫秽网站| 午夜福利乱码中文字幕| 国产精品一区二区免费欧美| 在线天堂中文资源库| 亚洲中文日韩欧美视频| 久久中文字幕人妻熟女| 亚洲色图av天堂| 一边摸一边抽搐一进一小说 | 精品少妇黑人巨大在线播放| 黄色毛片三级朝国网站| 中文字幕人妻丝袜制服| 黄色成人免费大全| tocl精华| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 精品一区二区三卡| 国产精品一区二区在线不卡| 日韩三级视频一区二区三区| 91九色精品人成在线观看| 中文字幕另类日韩欧美亚洲嫩草| 777久久人妻少妇嫩草av网站| 嫁个100分男人电影在线观看| 亚洲精品中文字幕在线视频| aaaaa片日本免费| 久久精品国产a三级三级三级| 国产熟女午夜一区二区三区| 欧美黄色片欧美黄色片| 亚洲五月色婷婷综合| av有码第一页| 午夜久久久在线观看| 精品亚洲成a人片在线观看| 后天国语完整版免费观看| 国产精品电影一区二区三区 | 亚洲少妇的诱惑av| 一级片免费观看大全| 精品亚洲成a人片在线观看| 天天操日日干夜夜撸| av国产精品久久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| a在线观看视频网站| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影 | 99re6热这里在线精品视频| 国产成人啪精品午夜网站| 国产不卡一卡二| 国产97色在线日韩免费| 999久久久国产精品视频| 欧美日韩成人在线一区二区| 国产精品免费视频内射| 电影成人av| 黄色成人免费大全| 母亲3免费完整高清在线观看| 久久久久网色| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 国产免费现黄频在线看| xxxhd国产人妻xxx| 99精品欧美一区二区三区四区| 欧美久久黑人一区二区| 久热这里只有精品99| cao死你这个sao货| 久久国产亚洲av麻豆专区| 午夜福利乱码中文字幕| 热99re8久久精品国产| 国产亚洲av高清不卡| 一级,二级,三级黄色视频| 岛国在线观看网站| 纵有疾风起免费观看全集完整版| 亚洲专区字幕在线| 国产有黄有色有爽视频| 咕卡用的链子| 90打野战视频偷拍视频| 国精品久久久久久国模美| 宅男免费午夜| 少妇的丰满在线观看| 久久久久久久国产电影| 欧美日韩一级在线毛片| 免费在线观看影片大全网站| 中国美女看黄片| av电影中文网址| 99re6热这里在线精品视频| 色综合欧美亚洲国产小说| 久久久久久久国产电影| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 男女之事视频高清在线观看| 国产成人精品久久二区二区免费| 亚洲av美国av| 亚洲欧洲日产国产| 亚洲少妇的诱惑av| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 免费观看av网站的网址| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀| 亚洲欧洲日产国产| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 妹子高潮喷水视频| 丝袜美腿诱惑在线| 精品高清国产在线一区| 国产精品.久久久| 久久青草综合色| 国产在线视频一区二区| 成人影院久久| 久久精品熟女亚洲av麻豆精品| 国产97色在线日韩免费| 999久久久国产精品视频| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 亚洲精品自拍成人| 曰老女人黄片| 国产福利在线免费观看视频| 美国免费a级毛片| 久久精品人人爽人人爽视色| 亚洲色图综合在线观看| 免费在线观看完整版高清| 高清在线国产一区| 午夜福利乱码中文字幕| 黄色片一级片一级黄色片| 久久婷婷成人综合色麻豆| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 欧美在线一区亚洲| 亚洲va日本ⅴa欧美va伊人久久| 极品教师在线免费播放| 中文字幕精品免费在线观看视频| 香蕉丝袜av| 久久久久网色| 国产黄色免费在线视频| 日韩中文字幕欧美一区二区| 亚洲熟女精品中文字幕| 成人av一区二区三区在线看| 日韩有码中文字幕| 久久人人97超碰香蕉20202| bbb黄色大片| 国产成人欧美| 桃红色精品国产亚洲av| 亚洲欧美精品综合一区二区三区| 在线看a的网站| 在线十欧美十亚洲十日本专区| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 亚洲av欧美aⅴ国产| 国产精品免费视频内射| 中亚洲国语对白在线视频| 黄色视频在线播放观看不卡| 久久精品国产亚洲av高清一级| 午夜91福利影院| 黄色视频不卡| 热re99久久国产66热| 国产有黄有色有爽视频| 免费在线观看视频国产中文字幕亚洲| 肉色欧美久久久久久久蜜桃| 在线 av 中文字幕| 久久亚洲真实| 日韩一区二区三区影片| 最黄视频免费看| 日韩制服丝袜自拍偷拍| 99久久精品国产亚洲精品| 在线观看一区二区三区激情| 人妻久久中文字幕网| 99re在线观看精品视频| 精品久久蜜臀av无| 免费黄频网站在线观看国产| 国产麻豆69| 久久人人97超碰香蕉20202| 欧美日韩视频精品一区| 不卡一级毛片| 后天国语完整版免费观看| 热re99久久精品国产66热6| 日韩大码丰满熟妇| 一边摸一边做爽爽视频免费| 一边摸一边抽搐一进一小说 | 最近最新中文字幕大全电影3 | 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 午夜福利免费观看在线| 99久久99久久久精品蜜桃| 黄频高清免费视频| 国产精品一区二区精品视频观看| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 在线观看免费日韩欧美大片| 精品国产超薄肉色丝袜足j| 久久午夜亚洲精品久久| 飞空精品影院首页| 日本wwww免费看| 久久久国产欧美日韩av| 女人精品久久久久毛片| 一个人免费看片子| 午夜久久久在线观看| 一进一出好大好爽视频| 中文字幕最新亚洲高清| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| 国产一区二区三区综合在线观看| 日日夜夜操网爽| 99国产综合亚洲精品| 岛国在线观看网站| 人成视频在线观看免费观看| 亚洲色图av天堂| 午夜福利在线观看吧|