摘 要: 本試驗(yàn)旨在探究飼糧中添加賴氨酸對(duì)肉牛糞便發(fā)酵參數(shù)、微生物多樣性和菌群結(jié)構(gòu)的影響。選取4頭健康、體重相近的錦江牛,隨機(jī)分為2組,每組2頭,采用有重復(fù)的2×2拉丁方設(shè)計(jì),對(duì)照組飼喂基礎(chǔ)飼糧,處理組飼喂基礎(chǔ)飼糧+0.20%賴氨酸。試驗(yàn)期30 d,分2期進(jìn)行,每期前10 d為適應(yīng)期,后5 d為采樣期。采集糞便樣品進(jìn)行發(fā)酵參數(shù)和微生物多樣性及菌群結(jié)構(gòu)的檢測(cè)分析。結(jié)果顯示:1)飼糧添加賴氨酸顯著提高了糞便中異丁酸、異戊酸和支鏈揮發(fā)性脂肪酸的含量(Plt;0.05);2)飼糧添加賴氨酸對(duì)糞便微生物的豐富度和均勻度均沒(méi)有顯著影響(Pgt;0.05);3)物種注釋發(fā)現(xiàn),飼糧添加賴氨酸顯著提高了糞便中毛螺菌科NK4A136群(Lachnospiraceae NK4A136 group)的相對(duì)豐度,降低了克里斯滕森菌科R-7群(Christensenellaceae R-7 group)的相對(duì)豐度(Plt;0.05);4)主坐標(biāo)分析(PCoA)和相似性分析(ANOSIM)均顯示,添加賴氨酸對(duì)糞便微生物群落結(jié)構(gòu)無(wú)顯著影響。綜上,飼糧中添加0.20%賴氨酸可以提高錦江牛糞便中異丁酸、異戊酸和支鏈揮發(fā)性脂肪酸的含量,同時(shí)改變毛螺菌科NK4A136群和克里斯滕森菌科R-7群的相對(duì)豐度,但對(duì)微生物多樣性和群落結(jié)構(gòu)無(wú)顯著影響。
關(guān)鍵詞: 賴氨酸;糞便;發(fā)酵參數(shù);微生物多樣性;菌群結(jié)構(gòu)
中圖分類號(hào):S823.5
文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):0366-6964(2024)05-2042-08
收稿日期:2023-07-13
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32260861;32160807);江西省自然科學(xué)基金資助項(xiàng)目(20232BAB215051);江西省主要學(xué)科學(xué)術(shù)和技術(shù)帶頭人培養(yǎng)計(jì)劃“領(lǐng)軍人才”項(xiàng)目(20213BCJL22043);江西農(nóng)業(yè)大學(xué)年輕科研創(chuàng)新團(tuán)隊(duì)項(xiàng)目(JXAUCXTD008)
作者簡(jiǎn)介:龍?zhí)茣煟?998-),男,江西分宜人,研究生,主要從事反芻動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail: 18779001108lth@gmail.com
*通信作者:邱清華,主要從事動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail: rcauqqh@cau.edu.cn
Effects of Dietary Lysine Supplementation on Fecal Fermentation Parameters and Microbial
Flora Structure of Beef Cattle
LONG Tanghui1, ZHAN Yanbo1, LIAO Guanxiang1, CHEN Xinfeng2, ZHANG Jian1, LI Yanjiao1, OUYANG Kehui1, QIU" Qinghua1*
(1.Jiangxi Province Engineering Research Center of Feed Development, Jiangxi Province
Key Laboratory of Animal Nutrition,College of Animal Science and Technology,
Jiangxi Agricultural University, Nanchang 330045," China;
2.Ganzhou Lülinwan Agriculture and Animal Husbandry Co. Ltd, Ganzhou
341103," China)
Abstract:" This study was conducted to investigate the effects of dietary lysine supplementation on fecal fermentation parameters, microbial diversity and microflora structure of beef cattle. Four healthy Jinjiang cattle with similar body weight were randomly divided into two groups with two cattle in each group. A repeated 2×2 Latin square design was adopted with the control group fed the basal diet and the treatment group fed the basal diet +0.20% of lysine. The experiment lasted for 30 days and was divided into 2 phases, in which the first 10 days of each phase designated as the adaptation period and the last 5 days being the sample collection period. Fecal samples were collected and then analyzed for fermentation parameters, microbial diversity and microflora structure. The results showed as follows: 1) Dietary supplementation of lysine significantly increased the concentrations of isobutyrate, isovalerate and branched-chain volatile fatty acids in feces (Plt;0.05); 2) Lysine supplementation had no significant effect on fecal microbial richness and evenness (Pgt;0.05); 3) Taxonomic annotation found that the supplementation of lysine significantly increased the relative abundance of Lachnospiraceae NK4A136 group in feces, whilst the relative abundance of Christensenellaceae R-7 group was decreased as compared to the control group (Plt;0.05); 4) Both principal coordinate analysis (PCoA) and analysis of similarity (ANOSIM) showed that lysine supplementation had no significant effect on fecal microbial community structure. In conclusion, dietary supplementation of 0.20% lysine could improve the concentrations of isobutyrate, isovalerate and branched-chain volatile fatty acids in feces, as well as alterations in the relative abundances of Lachnospiraceae NK4A136 group and Christensenellaceae R-7 group, but has no significant effect on fecal microbial diversity and microflora structure.
Key words: lysine; feces; fermentation parameter; microbial diversity; microflora structure
*Corresponding author: QIU Qinghua,E-mail: rcauqqh@cau.edu.cn
隨著動(dòng)物營(yíng)養(yǎng)研究方法和檢測(cè)技術(shù)的深入發(fā)展,有關(guān)反芻動(dòng)物后腸道的研究報(bào)道逐漸增加[1-3]。后腸道的微生物,如細(xì)菌、真菌會(huì)將未消化的營(yíng)養(yǎng)物質(zhì)進(jìn)行發(fā)酵產(chǎn)生揮發(fā)性脂肪酸(VFA)和氨態(tài)氮(NH3-N)[4]。研究日糧營(yíng)養(yǎng)物質(zhì)在后腸道的消化情況通常需要獲取后腸道內(nèi)容物,一般可采用瘺管或者屠宰,但這兩種方法對(duì)動(dòng)物傷害較大[5]。國(guó)外有研究發(fā)現(xiàn),奶牛糞便中的異丁酸含量可以作為后腸道發(fā)酵特性的標(biāo)記物[6]。糞便樣品容易獲取、可重復(fù)強(qiáng),并且對(duì)動(dòng)物無(wú)傷害。因此,可以采用糞便樣品間接指示后腸道的發(fā)酵特性。
賴氨酸是反芻動(dòng)物主要的限制性氨基酸之一,與蛋氨酸一起被認(rèn)為是以玉米為基礎(chǔ)的奶牛日糧的第一限制性氨基酸[7]。在玉米-豆粕型和玉米-棉籽粕型飼糧的研究中均發(fā)現(xiàn),添加過(guò)瘤胃賴氨酸可以提高反芻動(dòng)物的生長(zhǎng)性能、屠宰性能、肉品質(zhì),同時(shí)改善氮平衡和機(jī)體健康[8-10]。基于日糧、微生物和宿主生產(chǎn)性能三者之間的密切相關(guān)性[11-12],可否通過(guò)改善發(fā)酵環(huán)境、促進(jìn)微生物生長(zhǎng)繁殖最終達(dá)到合成更多宿主所需營(yíng)養(yǎng)物質(zhì)的目的呢?在體外發(fā)酵試驗(yàn)條件下,有研究人員發(fā)現(xiàn),添加谷氨酸或精氨酸能提高瘤胃發(fā)酵液的pH和微生物蛋白含量[13],添加賴氨酸同樣能提高瘤胃發(fā)酵液的pH,并且增加總VFA含量[14]。體內(nèi)試驗(yàn)發(fā)現(xiàn),添加0.20%賴氨酸可以提高瘤胃微生物的豐富度并改變部分菌屬的相對(duì)豐度[15]。然而,上述報(bào)導(dǎo)均研究的是添加氨基酸對(duì)瘤胃發(fā)酵和微生物群落組成的影響,而添加賴氨酸對(duì)后腸道的發(fā)酵參數(shù)和微生物菌群結(jié)構(gòu)影響如何,目前尚無(wú)報(bào)道。為此,本試驗(yàn)在上述體外和體內(nèi)研究的基礎(chǔ)上,進(jìn)一步探究飼糧中添加賴氨酸對(duì)糞便發(fā)酵參數(shù)和微生物菌群結(jié)構(gòu)的影響,以期為賴氨酸在反芻動(dòng)物生產(chǎn)中的應(yīng)用評(píng)估提供數(shù)據(jù)參考。
1 材料與方法
1.1 試驗(yàn)動(dòng)物和試驗(yàn)設(shè)計(jì)
試驗(yàn)選取4頭健康、體重相近((336±17)kg)、安裝瘤胃瘺管的錦江牛,隨機(jī)分為兩組(對(duì)照組和處理組),每組2頭,采用有重復(fù)的2×2拉丁方設(shè)計(jì)。對(duì)照組(C)飼喂基礎(chǔ)飼糧,處理組(T)在基礎(chǔ)飼糧中額外添加0.20%的賴氨酸(畜禽用賴氨酸鹽酸鹽,飼料級(jí)98.5%),添加劑量參照韋肖等[14]的研究。基礎(chǔ)飼糧組成如下:玉米10.2%,豆粕3.6%,棉籽粕3.4%,麥麩1.4%,稻草80.0%,食鹽0.5%,石粉0.3%,磷酸氫鈣0.1%,預(yù)混料0.5%;所含營(yíng)養(yǎng)成分如下:干物質(zhì)88.2%,粗蛋白7.3%,綜合凈能5.9 MJ·kg-1,中性洗滌纖維60.0%,酸性洗滌纖維35.7%。試驗(yàn)全期共30 d,分2期進(jìn)行,每期15 d,每期前10 d為預(yù)試期(適應(yīng)期),后5 d為正試期(采樣期)。試驗(yàn)牛單欄飼養(yǎng),自由采食,每天提供充足、新鮮、清潔的飲水。試驗(yàn)期間所有試驗(yàn)牛健康狀況良好。
1.2 樣品采集和前處理
于采樣期每天6點(diǎn)、12點(diǎn)和18點(diǎn)采用直腸取糞法收集糞便30 g左右(棄去前段50 g左右),每個(gè)時(shí)間點(diǎn)采集的糞便樣品均保存于-80℃冰箱。采樣期結(jié)束后,將每頭牛所有采樣時(shí)間點(diǎn)的糞樣在室溫下解凍后均勻混合成一個(gè)樣品,作為該個(gè)體的代表性樣品。用于糞便發(fā)酵參數(shù)檢測(cè)的樣品通過(guò)蒸餾水溶解浸提制得溶液,具體操作是將5 g糞便與等量的蒸餾水充分溶解得到浸提液,立即采用便攜式pH計(jì)測(cè)定pH;將浸提液在2 000×g轉(zhuǎn)速下離心15 min得到上清液[16],該上清液即為檢測(cè)VFA和NH3-N的原液。用于DNA提取的糞便裝于凍存管中,保存于-80℃冰箱。
1.3 測(cè)定指標(biāo)及方法
糞便的發(fā)酵參數(shù)包括pH、NH3-N和VFA,其中pH為混樣后制得浸提液的pH,NH3-N采用苯酚-次氯酸鈉比色法[17],VFA采用基于峰面積的氣相色譜法[18]。
糞便DNA的提取采用細(xì)菌DNA提取試劑盒,方法參照說(shuō)明書(shū)嚴(yán)格執(zhí)行。經(jīng)過(guò)質(zhì)量檢測(cè)、純化后的PCR產(chǎn)物送至生物科技公司進(jìn)行V3-V4區(qū)的雙尾測(cè)序,原始下機(jī)數(shù)據(jù)在QIIME 2平臺(tái)完成。數(shù)據(jù)采用PEAR軟件(v0.9.6)進(jìn)行過(guò)濾、拼接,去除質(zhì)量評(píng)分低于20,含有模糊堿基或與引物序列和條形碼不完全匹配的序列;拼接時(shí)最小重疊區(qū)設(shè)置為10 bp,允許的最大錯(cuò)配率為0.10[19]。拼接后使用VSEARCH(v2.7.1)軟件去除長(zhǎng)度短于250 bp或者長(zhǎng)于500 bp的序列,根據(jù)Gold Database數(shù)據(jù)庫(kù)用UCHIME方法比對(duì)去除嵌合體序列。采用USEARCH(v10.0.240)軟件對(duì)優(yōu)質(zhì)序列進(jìn)行降噪后得到ASV信息。每個(gè)ASV對(duì)應(yīng)的物種分類信息通過(guò)與細(xì)菌SILVA 132數(shù)據(jù)庫(kù)比對(duì)確定,置信度閾值設(shè)定為0.70;同時(shí)在門和屬水平注釋其物種信息,由此得到每個(gè)樣品各微生物的相對(duì)豐度。微生物α多樣性通過(guò)QIIME 2平臺(tái)基于ASV信息估算得到,衡量指標(biāo)包括Chao 1、observed species、PD whole tree、Shannon index和Simpson index,其中前兩個(gè)表示的是物種的豐富度,后三個(gè)展現(xiàn)的是物種的均勻度。基于Bray-Curtis距離的主坐標(biāo)分析(PCoA)使用R(v3.6.0)軟件分析繪圖。
1.4 統(tǒng)計(jì)分析
所有數(shù)據(jù)采用SPSS軟件里面的一般線性模型進(jìn)行分析,賴氨酸處理為固定效應(yīng),時(shí)期和個(gè)體為隨機(jī)效應(yīng),各檢測(cè)指標(biāo)為因變量。將Plt;0.05定義為差異顯著,Pgt;0.05表示差異不顯著。
2 結(jié) 果
2.1 糞便發(fā)酵參數(shù)
飼糧中添加賴氨酸對(duì)肉牛糞便發(fā)酵參數(shù)的影響列于表1。添加賴氨酸顯著提高了糞便中異丁酸、異戊酸和支鏈揮發(fā)性脂肪酸的含量(Plt;0.05),對(duì)糞便pH、NH3-N、其他單一VFA、總VFA含量和所有單一VFA占比均沒(méi)有顯著影響(Pgt;0.05)。
2.2 糞便微生物α多樣性
表2表示的是飼糧添加賴氨酸對(duì)肉牛糞便微生物α多樣性的影響。添加賴氨酸對(duì)糞便微生物多樣性中的Chao1、Observed species、PD whole tree、Shannon index和Simpson index均沒(méi)有顯著影響(Pgt;0.05)。
2.3 糞便微生物β多樣性綜合分析
主坐標(biāo)分析(PCoA,圖1)發(fā)現(xiàn)兩組間有明顯的重合,相似性分析(ANOSIM)顯示兩組間的P值為0.972,說(shuō)明飼糧添加賴氨酸對(duì)肉牛糞便微生物群落結(jié)構(gòu)無(wú)顯著影響。
2.4 糞便微生物群落組成
飼糧添加賴氨酸對(duì)糞便微生物門和屬水平物種相對(duì)豐度的影響分別列于表3和表4。在糞便微生物門水平上,厚壁菌門(Firmicutes)、擬桿菌門(Bacteroidota)和疣微菌門(Verrucomicrobiota)的相對(duì)豐度位列前三,分別占據(jù)53.26%、36.92%和8.04%。添加賴氨酸對(duì)糞便微生物門水平上相對(duì)豐度大于0.1%的物種均沒(méi)有顯著影響(Pgt;0.05)。
在糞便微生物屬水平上,理研菌科RC9腸道群(Rikenellaceae RC9 gut group)和UCG-005的相對(duì)豐度最高,分別占據(jù)11.63%和10.55%。添加賴氨酸顯著提高了糞便中毛螺菌科NK4A136群(Lachnospiraceae NK4A136 group)的相對(duì)豐度,降低了克里斯滕森菌科R-7群(Christensenellaceae R-7 group)的相對(duì)豐度(Plt;0.05)。
3 討 論
后腸道與瘤胃在將碳水化合物發(fā)酵生成VFA時(shí)有許多相似之處[4],糞便中的發(fā)酵參數(shù)可為后腸道的發(fā)酵情況提供參考,研究糞便中的發(fā)酵參數(shù)可以間接反映反芻動(dòng)物對(duì)日糧中營(yíng)養(yǎng)物質(zhì)的利用效率。本試驗(yàn)發(fā)現(xiàn),飼糧中添加賴氨酸顯著提高了糞便中支鏈VFA的含量,這是由于支鏈VFA主要來(lái)源于蛋白質(zhì)的發(fā)酵[20],而賴氨酸本身可以作為一種氮源(含氮量約19%)被后腸道微生物降解后生成支鏈VFA。已有研究發(fā)現(xiàn),添加相同比例的賴氨酸并未對(duì)瘤胃中的支鏈VFA含量造成影響[15],說(shuō)明后腸道和瘤胃對(duì)營(yíng)養(yǎng)物質(zhì)的發(fā)酵存在一定差異,這種差異可能是瘤胃微生物和后腸道微生物群落結(jié)構(gòu)差異引起的,也有可能是賴氨酸的補(bǔ)充改變了后腸道的發(fā)酵底物導(dǎo)致的。此外,添加賴氨酸沒(méi)有對(duì)糞便中其他VFA含量或比例造成顯著影響,說(shuō)明飼糧中賴氨酸的添加并未改變發(fā)酵模式和發(fā)酵效率。
微生物α多樣性指數(shù)可用來(lái)描述單一樣品或混合樣品的群落豐富度和均勻度,其中Chao 1和Observed species表示的是群落的豐富度,而PD whole tree和Shannon index表示的是群落的均勻度[21-22]。在本試驗(yàn)中,賴氨酸的添加沒(méi)有顯著改變糞便微生物群落的豐富度,對(duì)均勻度也沒(méi)有顯著影響,說(shuō)明飼糧中添加賴氨酸不會(huì)顯著改變糞便中微生物的多樣性,這與主坐標(biāo)分析和相似性分析的結(jié)果一致。在瘤胃微生物的物種組成中,擬桿菌門的相對(duì)豐度最高,厚壁菌門次之,而在糞便微生物的組成成分中,厚壁菌門和擬桿菌門的相對(duì)豐度依次降低[16,23-24],本試驗(yàn)發(fā)現(xiàn)了類似的結(jié)果,這是由于瘤胃和后腸道的發(fā)酵底物存在差異。疣微菌門廣泛分布于土壤和水生環(huán)境中[25-26],在動(dòng)物糞便中也有分布[27-28]。本試驗(yàn)發(fā)現(xiàn),糞便中的疣微菌門相對(duì)豐度高達(dá)8%,遠(yuǎn)高于肉牛瘤胃中的4%和奶牛糞便中的1%[15,27],這可能是由于日糧組成(精粗比、飼糧原料等)差異造成的??死锼闺芌-7群可利用糖類生成丁酸,增強(qiáng)機(jī)體抗炎癥能力[29]。本試驗(yàn)發(fā)現(xiàn),添加賴氨酸降低了糞便中克里斯滕森菌科R-7群的相對(duì)豐度,這與處理組中丁酸比例在數(shù)值上較低相對(duì)應(yīng)。然而,相同試驗(yàn)條件下的克里斯滕森菌科R-7群在瘤胃中的相對(duì)豐度[15]與糞便中的趨勢(shì)相反,暗示該屬的相對(duì)豐度與所處的生態(tài)位可能有一定的關(guān)系,但具體關(guān)聯(lián)性仍需進(jìn)一步探究。毛螺菌科(Lachnospiraceae)可產(chǎn)生纖維素酶,加速纖維物質(zhì)在腸道中的降解[30],是一種潛在的有益腸道菌。添加賴氨酸后,糞便中毛螺菌科NK4A136群的相對(duì)豐度提高,暗示賴氨酸可以提高后腸道纖維物質(zhì)的降解,這一點(diǎn)也可以從總VFA含量在數(shù)值上較高間接看出。
4 結(jié) 論
飼糧添加0.20%賴氨酸可以提高錦江牛糞便中異丁酸、異戊酸和支鏈揮發(fā)性脂肪酸的含量,同時(shí)提高糞便中毛螺菌科NK4A136群的相對(duì)豐度,降低克里斯滕森菌科R-7群的相對(duì)豐度。這些結(jié)果提示,飼糧添加0.20%賴氨酸會(huì)影響錦江牛糞便的發(fā)酵特性和部分菌屬的相對(duì)豐度。
參考文獻(xiàn)(References):
[1] LIANG Z Y,ZHANG J B,DU M,et al.Age-dependent changes of hindgut microbiota succession and metabolic function of Mongolian cattle in the semi-arid rangelands[J].Front Microbiol,2022,13:957341.
[2] FUERNISS L K,KREIKEMEIER K K,REED L D,et al.Cecal microbiota of feedlot cattle fed a four-species Bacillus supplement[J].J Anim Sci,2022,100(10):skac258.
[3] SANZ-FERNANDEZ M V,DANIEL J B,SEYMOUR D J,et al.Targeting the hindgut to improve health and performance in cattle[J].Animals,2020,10(10):1817.
[4] GRESSLEY T F,HALL M B,ARMENTANO L E.Ruminant nutrition symposium:productivity,digestion,and health responses to hindgut acidosis in ruminants[J].J Anim Sci,2011,89(4):1120-1130.
[5] LOPES D R G,LA REAU A J,DE SOUZA DUARTE M,et al.The bacterial and fungal microbiota of Nelore steers is dynamic across the gastrointestinal tract and its fecal-associated microbiota is correlated to feed efficiency[J].Front Microbiol,2019,10:1263.
[6] DOELMAN J,MCKNIGHT L L,CARSON M,et al.Postruminal infusion of calcium gluconate increases milk fat production and alters fecal volatile fatty acid profile in lactating dairy cows[J].J Dairy Sci,2019,102(2):1274-1280.
[7] SCHWAB C G,BRODERICK G A.A 100-year review:protein and amino acid nutrition in dairy cows[J].J Dairy Sci,2017,100(12):10094-10112.
[8] 曹 廣,呂 剛,劉 偉,等.玉米-棉籽粕型飼糧添加過(guò)瘤胃賴氨酸和過(guò)瘤胃蛋氨酸對(duì)育肥湖羊生長(zhǎng)性能、屠宰性能、器官指數(shù)和肉品質(zhì)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2023,35(6):3812-3821.
CAO G,LYU G,LIU W,et al.Effects of dietary rumen-protected lysine and rumen-protected methionine in corn-cotton seed meal type diet on growth performance,slaughter performance,organ indices and meat quality of fattening Hu sheep[J].Chinese Journal of Animal Nutrition,2023,35(6):3812-3821.(in Chinese)
[9] VAN DEN BOSSCHE T,GOOSSENS K,AMPE B,et al.Effect of supplementing rumen-protected methionine,lysine,and histidine to low-protein diets on the performance and nitrogen balance of dairy cows[J].J Dairy Sci,2023,106(3):1790-1802.
[10] 閆金玲,李蓓蓓,李 妍,等.低蛋白質(zhì)飼糧補(bǔ)充過(guò)瘤胃賴氨酸和過(guò)瘤胃蛋氨酸對(duì)荷斯坦公牛生長(zhǎng)性能、屠宰性能、肉品質(zhì)及氮代謝的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2022,34(2):1014-1026.
YAN J L,LI B B,LI Y,et al.Effects of low protein diet supplemented with rumen-protected lysine and rumen-protected methionine on growth performance,slaughter performance,meat quality and nitrogen metabolism of Holstein bulls[J].Chinese Journal of Animal Nutrition,2022,34(2):1014-1026.(in Chinese)
[11] GRUNINGER R J,RIBEIRO G O,CAMERON A,et al.Invited review:application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants[J].Animal,2019,13(9):1843-1854.
[12] HENDERSON G,COX F,GANESH S,et al.Rumen microbial community composition varies with diet and host,but a core microbiome is found across a wide geographical range[J].Sci Rep,2015,5:14567.
[13] 張 麗,李 川,陳薪芋,等.精氨酸和谷氨酸對(duì)高精料混合料體外瘤胃發(fā)酵參數(shù)的影響[J].飼料工業(yè),2022,43(11):31-37.
ZHANG L,LI C,CHEN X Y,et al.Effects of arginine and glutamic on in vitro rumen fermentation parameter of high concentrate mixture[J].Feed Industry,2022,43(11):31-37.(in Chinese)
[14] 韋 肖,計(jì)接權(quán),陳新鋒,等.賴氨酸添加水平對(duì)高精料日糧體外瘤胃發(fā)酵特性的影響[J].飼料工業(yè),2023,44(7):68-73.
WEI X,JI J Q,CHEN X F,et al.Effect of lysine supplementation level on in vitro rumen fermentation characteristics in high-concentrate diet[J].Feed Industry,2023,44(7):68-73.(in Chinese)
[15] 龍?zhí)茣?,歐陽(yáng)可寒,方藝恬,等.日糧添加賴氨酸對(duì)瘤胃發(fā)酵特性和微生物菌群結(jié)構(gòu)的影響[J].飼料工業(yè),2023,44(17):70-74.
LONG T H,OUYANG K H,F(xiàn)ANG Y T,et al.Effect of dietary lysine supplementation on rumen fermentation characteristics and microbial flora structure[J].Feed Industry,2023,44(17):70-74.(in Chinese)
[16] MAO S Y,ZHANG R Y,WANG D S,et al.The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows[J].BMC Vet Res,2012,8:237.
[17] BRODERICK G A,KANG J H.Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J].J Dairy Sci,1980,63(1):64-75.
[18] 韋 肖,張建童,龍?zhí)茣?,?日糧能量水平對(duì)湖羊瘤胃發(fā)酵特性和微生物組成的影響[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(9):3042-3051.
WEI X,ZHANG J T,LONG T H,et al.Effects of dietary energy level on rumen fermentation characteristics and microbial composition of Hu sheep[J].Acta Veterinaria et Zootechnica Sinica,2022,53(9):3042-3051.(in Chinese)
[19] ZHANG J J,KOBERT K,F(xiàn)LOURI T,et al.PEAR:a fast and accurate Illumina Paired-End reAd mergeR[J].Bioinformatics,2014,30(5):614-620.
[20] DIJKSTRA J.Production and absorption of volatile fatty acids in the rumen[J].Livest Prod Sci,1994,39(1):61-69.
[21] TUCKER C M,CADOTTE M W,CARVALHO S B,et al.A guide to phylogenetic metrics for conservation,community ecology and macroecology[J].Biol Rev,2017,92(2):698-715.
[22] WHITTAKER R H.Evolution and measurement of species diversity[J].Taxon,1972,21(2-3):213-251.
[23] WANG H B,HE Y,LI H,et al.Rumen fermentation,intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels[J].Appl Microbiol Biotechnol,2019,103(12):4931-4942.
[24] CALLAWAY T R,DOWD S E,EDRINGTON T S,et al.Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing[J].J Anim Sci,2010,88(12):3977-3983.
[25] FREITAS S,HATOSY S,F(xiàn)UHRMAN J A,et al.Global distribution and diversity of marine Verrucomicrobia[J].ISME J,2012,6(8):1499-1505.
[26] BERGMANN G T,BATES S T,EILERS K G,et al.The under-recognized dominance of Verrucomicrobia in soil bacterial communities[J].Soil Biol Biochem,2011,43(7):1450-1455.
[27] PETRI R M,ADITYA S,HUMER E,et al.Effect of an intramammary lipopolysaccharide challenge on the hindgut microbial composition and fermentation of dairy cattle experiencing intermittent subacute ruminal acidosis[J].J Dairy Sci,2021,104(5):5417-5431.
[28] LIU S Y,ZHAO L L,ZHAI Z X,et al.Porcine epidemic diarrhea virus infection induced the unbalance of gut microbiota in piglets[J].Curr Microbiol,2015,71(6):643-649.
[29] XU H J,ZHANG Q Y,WANG L H,et al.Growth performance,digestibility,blood metabolites,ruminal fermentation,and bacterial communities in response to the inclusion of gallic acid in the starter feed of preweaning dairy calves[J].J Dairy Sci,2022,105(4):3078-3089.
[30] LI F Y,HITCH T C A,CHEN Y H,et al.Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle[J].Microbiome,2019,7(1):6.
(編輯 范子娟)