摘 要: 旨在對保種場涪陵水牛及西南地區(qū)其他沼澤型水牛品種進行群體遺傳結構和連續(xù)純合片段(ROH)分析,為涪陵水牛保種與遺傳改良提供理論依據(jù)。本研究對保種場26頭涪陵水牛以及1頭雜交水牛(FM_HY)進行全基因組重測序,從NCBI下載了68頭西南地區(qū)沼澤型水牛和7頭河流型水牛的基因組重測序數(shù)據(jù),基于所有的基因組數(shù)據(jù)獲得的高質量單核苷酸多態(tài)性(SNPs)位點進行遺傳結構、ROH以及近交系數(shù)的分析。全基因組重測序結果顯示,涪陵水牛平均測序深度為10×,質量控制后共鑒定出14 326 437個SNPs。群體遺傳結構分析顯示,保種場內涪陵水牛與毗鄰區(qū)域的宜賓水牛、貴州水牛、貴州白水牛、鹽津水牛間具有明顯的遺傳結構差異,德宏水牛和滇東南水牛與上述5個品種區(qū)別均明顯;當分群數(shù)量為K=6時,涪陵水??蓜澐譃?個類群,與毗鄰區(qū)域水牛品種相比具有一類獨特的群體結構。涪陵水牛、宜賓水牛、貴州水牛這3個品種間共檢測到2 722個ROHs,其中涪陵水牛檢測到1 593個ROHs,且1~2 Mb的短ROH片段占比達78.15%;僅在涪陵水牛群體中檢測到8個大于16 Mb的長ROH片段,最長為24.56 Mb。基于ROH計算的保種場涪陵水牛平均近交系數(shù)為0.056 8,其中7頭個體近交系數(shù)較高(0.062 5~0.125 0);貴州水牛和宜賓水牛的平均近交系數(shù)分別為0.034 6和0.041 0。綜上,涪陵水牛保種群可分為2個類群,與毗鄰區(qū)域水牛品種相比具有一類獨特的群體結構;保種場內7頭涪陵水牛個體存在近交風險,迫切需要加強涪陵水牛的資源保護與利用工作。
關鍵詞: 涪陵水牛;群體遺傳結構;SNP;ROH;近交系數(shù)
中圖分類號: S823.83
文獻標志碼:A""" 文章編號:0366-6964(2024)05-1989-10
收稿日期:2023-11-20
基金項目:重慶市技術創(chuàng)新與應用發(fā)展專項重點項目(cstc2021jscx-gksbX0012);重慶市農(nóng)業(yè)種質資源精準鑒定項目(23316)
作者簡介:屠 蕓(1997-),女,江蘇連云港人,碩士生,主要從事動物遺傳育種研究,E-mail: yuntu01@163.com
*通信作者:張龔煒,主要從事動物遺傳育種研究,E-mail: zgw-vip@163.com ;左福元,主要從事牛的遺傳改良及反芻動物營養(yǎng)研究,E-mail: zfuyuan@163.com
Genetic Structure and Runs of Homozygosity Analysis of Fuling Buffalo and Southwest Buffalo
Breeds
TU" Yun1,2, ZENG" Yanan1,2, ZHANG" Zhenghao1,2, HONG" Rui1,2, WANG" Zhen3, WU" Ping4,
ZHOU" Zeyang1,2, YE" Yiru1,2, DU" Yanan1,2, ZUO" Fuyuan1,2*, ZHANG" Gongwei1,2*
(1.College of Animal Science and Technology, Southwest University, Rongchang 402460," China;
2.Beef Cattle Engineering and Technology Research Center of Chongqing, Rongchang 402460," China;
3.Chongqing Animal Husbandry Technology Popularization Station, Chongqing 401121," China;
4.Chongqing Nanchuan Animal Husbandry, Veterinary and Fishery Center, Nanchuan 408400," China)
Abstract:" This study aimed to analyze the population genetic structure and runs of homozygosity (ROH) of Fuling buffalo and other swamp buffalo breeds in southwest China, and provide the theoretical basis for conservation and genetic improvement of Fuling buffalo. In this study, 26 Fuling buffaloes and one hybrid buffalo (FM_HY) were sequenced using whole-genome resequencing technology. The genome resequencing data of 68 swamp buffalo individuals in southwest China and 7 river buffalo individuals were downloaded from the NCBI database. All the genome data were used to obtain high-quality single nucleotide polymorphisms (SNPs) and to analyze the population genetic structure, ROH and inbreeding coefficient. The whole-genome resequencing results showed that the average sequencing depth of Fuling buffalo was 10×, and a total of 14 326 437 SNPs were identified after quality control. The population genetic structure analysis showed that there were significant differences between the Fuling buffalo and the neighboring areas swamp buffalo breeds including Yibin buffalo, Guizhou buffalo, Guizhou White buffalo and Yanjin buffalo. Dehong buffalo and Diandongnan buffalo were significantly different from the above 5 breeds. When the number of clusters was K=6, Fuling buffalo was divided into two groups, which had a unique population structure compared to the neighboring areas buffalo breeds. A total of 2 722 ROHs were detected in Fuling buffalo, Yibin buffalo and Guizhou buffalo. The 1 593 ROHs were identified in Fuling buffalo, and the 78.15% proportion of ROH was the short ROH with 1-2 Mb. Eight long ROH fragmentsgt;16 Mb were only detected in Fuling buffalo population, the longest being 24.56 Mb. Based on ROH, the average inbreeding coefficient of Fuling buffalo was 0.056 8, of which 7 individuals had higher inbreeding coefficient in 0.062 5-0.125 0. The average inbreeding coefficients of Guizhou buffalo and Yibin buffalo were 0.034 6 and 0.041 0, respectively. In conclusion, the population of Fuling buffalo in the conservation farm can be divided into two groups, which have a unique population structure compared to the other neighboring areas buffalo breeds, and 7 Fuling buffalo individuals in the conservation farm have inbreeding risk, so it is urgent to strengthen the protection and utilization of Fuling buffalo resources.
Key words: Fuling buffalo; population genetic structure; SNP; ROH; inbreeding coefficient
*Corresponding authors:ZHANG Gongwei, E-mail: zgw-vip@163.com; ZUO Fuyuan, E-mail: zfuyuan@163.com
涪陵水牛(Fuling buffalo,F(xiàn)L)是我國優(yōu)良的沼澤型地方水牛品種(2n=48),具有體軀結實、結構緊湊、抗病力強、適應性好、耐粗飼、耐高溫高濕、役力強、易于飼養(yǎng)和管理等特點,已被列入《國家畜禽遺傳資源品種名錄(2020年版)》[1]。根據(jù)《重慶市畜禽遺傳資源志》[2]記載,2012年涪陵區(qū)、南川區(qū)、綦江區(qū)3個主產(chǎn)區(qū)縣共存欄涪陵水牛6.8萬頭,而2022年第三次全國畜禽遺傳資源普查發(fā)現(xiàn)全重慶市僅有5 990頭。重慶市在南川區(qū)建有涪陵水牛保種場,但場內牛群的遺傳結構及遺傳多樣性缺乏科學數(shù)據(jù)支撐,不利于涪陵水牛保種工作的開展。
1964年,涪陵水牛開展了本品種的選種選配,其體型和役用性能均有所提高[3];1974年從廣西引進摩拉公水牛開展雜交改良[4],產(chǎn)奶性能得到提升。為了解涪陵水牛的種質特性,早期學者對涪陵水牛的染色體結構、蛋白質多態(tài)性、mtDNA D-loop序列等方面進行研究[5-10]。結果表明,涪陵水牛的染色體數(shù)目、臂數(shù)、類型及性染色體大小等均與其他文獻介紹的沼澤型水牛相同[5],并且與位于長江流域的德昌水牛、江漢水牛、濱湖水牛和海子水牛間的遺傳差異較小,親緣關系較近[6-7];淀粉酶多態(tài)性分析發(fā)現(xiàn),涪陵水牛與德宏水牛間的遺傳距離較大[8]。mtDNA D-loop區(qū)序列分析認為中國地方水??赡艽嬖趦纱竽赶灯鹪矗?]。謝文美等[10]利用mtDNA D-loop序列分析發(fā)現(xiàn)涪陵水牛較其他沼澤型和江河型水牛的遺傳多樣性更為豐富,且具有2個母系起源。二代高通量測序技術可在全基因組范圍檢測單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)位點,并被廣泛用于畜禽動物種群遺傳多樣性、群體結構和親緣關系分析[11-13]。連續(xù)純合片段(ROH)被定義為基因組中長而連續(xù)的純合子延伸,其純合子片段長度足夠長,它是由同一祖先遺傳下來的兩種完全相同的單倍型所構成,能夠用來評估家畜近交系數(shù)、推斷種群歷史、輔助解析某些復雜性狀的形成機制[14-17]。連續(xù)性純合片段(runs of homozygosity, ROH)是基因組中的一段長純合片段,不同長度的ROH和個體與共同祖先的親緣背景相關聯(lián),能夠用來評估家畜近交系數(shù)、推斷種群歷史、輔助解析某些復雜性狀的形成機制[14-17]。
為此,本研究利用全基因組重測序技術基于SNP數(shù)據(jù)對保種場涪陵水牛及西南地區(qū)其他水牛品種進行遺傳結構和ROH分析,將為涪陵水牛保種與遺傳改良提供理論依據(jù)。
1 材料與方法
1.1 試驗設計與試驗動物
本研究核心目的是了解保種場內涪陵水牛與毗鄰區(qū)域水牛品種間遺傳結構的差異以及保種場內涪陵水牛的近交水平。為此:1)采集保種場內21頭成年水牛(FL1~FL21),用于遺傳結構和基于ROH近交系數(shù)分析;2)采集本場5頭自群繁育的犢牛(FL22~26),主要目的是進行系譜糾偏;3)采集1頭雜交母水牛(FM_HY)(摩拉水牛()×涪陵水牛(♀)的后代),主要是為排除NCBI下載數(shù)據(jù)具有河流型與沼澤型水牛的雜交樣本。采集上述27頭水牛耳組織保存于裝有1 mL 75%酒精的1.5 mL離心管中,于-20 ℃保存。從NCBI下載11個水牛品種75頭個體基因組重測序數(shù)據(jù),用于分析涪陵水牛與西南地區(qū)其他水牛品種間的差異。其中8個品種68頭沼澤型水牛樣本信息為:滇東南水牛(DDN)10頭、德宏水牛(DH)8頭、鹽津水牛(YJ)10頭、宜賓水牛(YB)10頭、貴州水牛(GZ)9頭、貴州白水牛(GZB)12頭、富鐘水牛(FZ)6頭、涪陵水牛3頭(FL_35,F(xiàn)L_42,F(xiàn)L_131);3個品種7頭河流型水牛樣本為:摩拉水牛(ML)2頭、尼里-拉菲水牛(NNLF)1頭、檳榔江水牛(BLJ)4頭。
1.2 試驗方法
1.2.1 測序數(shù)據(jù)質控及比對參考基因組
本試驗采集的27頭水牛耳組織樣本送往北京諾禾致源科技股份有限公司基于Illumina HiSeq PE150平臺進行二代全基因組重測序。對本試驗新測序原始數(shù)據(jù)Raw data和NCBI下載數(shù)據(jù)進行質控:1)去除帶接頭的reads pair;2)去除N的含量超過read長度比例的10%;3)去除低質量(Q≤5)堿基數(shù)超過read長度比例的 50%,得到高質量的Clean data。利用BWA(V0.7.17)軟件(參數(shù):mem -t 4 -k 32 -M)將Clean data比對到河流型水牛參考基因組(UOA_WB_1,GCF_003121395.1)上。
1.2.2 SNP檢測及質控
利用SAMTOOLS(V1.9)軟件檢測群體SNP,按以下過濾條件進行質量控制:dp3(保留深度不低于3×的數(shù)據(jù))、Miss0.2(保留缺失率不高于0.2的數(shù)據(jù))、maf0.05(保留最小等位基因頻率不小于0.05的數(shù)據(jù)),保留的位點用于后續(xù)分析。
1.2.3 涪陵水牛與西南地區(qū)水牛品種的遺傳背景分析
通過 GCTA(V1.26)[18]軟件進行主成分分析(PCA)并利用R(V4.2.2)軟件繪圖。祖先成分分析時,首先創(chuàng)建Plink(V1.9)的輸入文件-Ped文件,然后利用ADMIXTURE[19]軟件構建群體遺傳結構,K取值為2~10。進化樹分析采用Neighbor-joining法構建,利用 MEGA(V7.0)軟件進行繪圖。
1.2.4 保種場內涪陵水牛與毗鄰區(qū)域水牛品種連續(xù)純合片段(ROH)分析
基于滑動窗口的方法檢測全基因組中的ROH。通過應用以下參數(shù)和閾值來定義ROH:--homozyg-density 500,--homozyg-window-het 1,--homozyg-window-snp 50,--homozyg-kb 1000,--homozyg-snp 30,統(tǒng)計全基因組ROH數(shù)目、長度、分布,計算ROH總長度與常染色體總長度的比值得到近交系數(shù)FROH,公式如下:
FROH=∑LROHLauto
其中,∑LROH為ROH片段的長度之和,Lauto為常染色體的總長度。
2 結 果
2.1 涪陵水?;蚪M重測序及SNPs鑒定
本研究新測序共產(chǎn)生766.402 G Raw data,過濾后的Clean data共764.202 G,GC含量在43.3%~44.05%之間。與參考基因組的平均比對率為99.15%,平均覆蓋深度為10×,1×覆蓋度在98.43%以上,測序質量高(Q30≥92.33%)?;诟哔|量河流型水牛(2n=50)參考基因組對涪陵水牛進行全基因組水平的SNP鑒定。通過質量控制后共鑒定到14 326 437個SNPs,未定位到染色體上的SNPs數(shù)為20 069個。所鑒定的SNPs在染色體上分布廣泛(圖1),1號染色體最長,SNPs位點最多,為1 176 548個,密度為5.82個·kb-1;24號染色體的SNP數(shù)量最少,為235 099個,密度為5.54個·kb-1;16號染色體所含有的SNP密度最高,為6.21個·kb-1。
2.2 涪陵水牛與西南地區(qū)水牛品種遺傳背景分析
2.2.1 主成分分析
為檢驗樣本的遺傳背景,首先將27頭水牛重測序個體以及NCBI下載的河流型水牛和沼澤型水牛樣本進行PCA分析。如圖2A所示,河流型水牛品種(BLJ、ML和NNLF)和沼澤型水牛(FL、DH、DDN、YB、GZ、GZB、YJ和FZ)間按照第一主成分(24.4%)區(qū)分明顯;并且摩拉水牛與涪陵水牛的雜合個體(FM_HY)和一個NCBI下載的宜賓水牛(YB21)位于兩類型水牛之間,在后續(xù)分析中將剔除這兩個雜合個體。
進一步將沼澤型水牛個體進行PCA分析發(fā)現(xiàn)(圖2B),德宏水牛(DH)、滇東南水牛(DDN)、涪陵水牛(FL)、富鐘水牛(FZ)間按照第一主成分(4.69%)和第二主成分(2.61%)可以較好的區(qū)分;而宜賓水牛、貴州水牛、貴州白水牛、鹽津水牛比較聚集。因此,涪陵水牛與毗鄰區(qū)域的宜賓水牛、貴州水牛、貴州白水牛、鹽津水牛間具有明顯的區(qū)分,并且涪陵水牛個體較分散可分成2群。
2.2.2 群體遺傳結構分析
系統(tǒng)發(fā)育樹(Neighbor-joining法)結果顯示(圖3A),滇東南水牛、德宏水牛、鹽津水牛、貴州白水牛、涪陵水牛有較好的區(qū)分度,涪陵水??擅黠@分為兩群;部分貴州水牛與貴州白水牛、宜賓水牛與NCBI下載的2頭涪陵水牛(FL_35和FL_131)間存在混群現(xiàn)象。同時根據(jù)NJ樹可以看出,F(xiàn)L22-26這幾頭犢牛與其母親各自聚在一起,可對系譜記錄進行糾偏。
群體祖先成分分析發(fā)現(xiàn),最佳分群數(shù)為K=6(圖3B),此時德宏水牛和鹽津水牛各具有獨立的一支結構,貴州白水牛大部分個體也具有獨特群體結構,滇東南水牛與富鐘水牛相似,貴州水牛、宜賓水牛和部分涪陵水牛具有一類相似結構,但可以明顯看出部分涪陵水牛個體具有獨特的一類遺傳結構。
2.3 保種場內涪陵水牛與毗鄰區(qū)域水牛品種群體ROH比較分析
2.3.1 ROH檢測
由于涪陵水牛與毗鄰區(qū)域地區(qū)地方水牛品種之間存在遺傳差異,對涪陵水牛、宜賓水牛和貴州水牛進行ROH檢測,比較涪陵水牛與其它兩個品種的ROH數(shù)量以及長度的差異(圖4A和4B)。在3個品種全基因組中共檢測到2 722個ROHs,其中,在21頭涪陵水牛中檢測到1 593個ROHs,宜賓水牛(n=9)有592個ROHs,貴州水牛(n=9)有537個ROHs。
圖4A展示了不同水牛群體的ROH在不同分類長度中的比例,貴州水牛的短ROH(1~2 Mb)片段較多,占貴州水牛所有ROH總數(shù)的86.78%,涪陵水牛短ROH片段占總個數(shù)的78.15%。涪陵水牛群體檢測到8個長ROH(gt;16 Mb)片段,最長片段為24.56 Mb。而其他兩組群體均沒有長ROH片段檢出。
在涪陵水牛中,檢測到每頭水牛平均75.85±12.53個ROHs,范圍在50~100個,其余兩個牛群中檢測到每頭水牛平均69.79±13.92個ROHs,范圍在37~86個。3個牛群每頭水牛所有ROH長度的平均值為(126.03±40.57) Mb,最小值和最大值分別為53.83和216.01 Mb。從圖4B中可以明顯看出,涪陵水牛個體的ROH總數(shù)和總長度較其他兩組群體高??偟膩砜?,ROH總長度有50~150 Mb的個體較多,而涪陵水牛個體ROH總長度主要分布在100~200 Mb之間。
2.3.2 基于ROH的群體近交程度分析
為了解群體的近交水平,對保種群涪陵水牛與毗鄰區(qū)域宜賓水牛和貴州水牛群進行了基于全基因組ROH的近交系數(shù)計算,從圖4C中可以明顯看出涪陵水牛的FROH總體水平高于其他兩組水牛群。保種場的涪陵水牛平均近交系數(shù)最高,為0.056 8,個體間差異較小,范圍在0.036 5~0.082 4。宜賓水牛平均近交系數(shù)為0.041 0,范圍在0.025 2~0.059 4,貴州水牛平均近交系數(shù)為0.034 6,范圍在0.020 5~0.048 9。
半同胞交配產(chǎn)生后代的近交系數(shù)為0.125,涪陵水牛所有個體近交系數(shù)均低于0.125(表1),近交系數(shù)在0.062 5~0.125之間的個體為FL3、FL4、FL7、FL8、FL13、FL16、FL17,這7頭涪陵水牛近交系數(shù)較高,存在近交風險。
3 討 論
基于全基因組SNPs信息開展群體遺傳多樣性、群體結構和親緣關系等分析,已被廣泛應用于豬[20-22]、雞[23-25]、鴨[26]、牛[27]、羊[28-30]等多個畜禽動物中。本研究同樣基于SNP數(shù)據(jù)對26頭涪陵水牛以及下載的68頭西南地區(qū)沼澤型水牛和7頭河流型水牛進行了群體遺傳結構的分析。不同的是,特意引入河流型(摩拉水牛)和沼澤型(涪陵水牛)的雜合個體(FM_HY)用于檢驗樣本的遺傳背景。PCA分析顯示沼澤型水牛和河流型水牛兩個亞群明顯分隔開(圖2A)。但來源于Sun等[31]所測序的宜賓水牛YB21個體與已知雜合個體FM_HY距離近,且位于沼澤型與河流型水牛之間,這可能可以解釋該論文中為什么部分南方水牛個體含有河流型水牛祖先成分。這提示,在進行群體遺傳結構分析時,有必要先進行個體遺傳背景的篩選。
河流型和沼澤型水牛間的群體遺傳結構差異得到廣泛關注[31-32]。Sun等[31]將德宏水牛和滇東南水牛劃分為中國西南類群,將涪陵水牛、宜賓水牛、貴州水牛、貴州白水牛劃為長江上游類群;而Luo等[32]將檳榔江水牛、德宏水牛劃為河流型水牛與沼澤型水牛的雜交區(qū),認為德宏水牛含有河流型水牛的遺傳成分。本研究第一個核心目標是探索涪陵水牛是否與毗鄰區(qū)域水牛具有遺傳結構差異。為此,對8個西南地區(qū)沼澤型水牛進行PCA、系統(tǒng)發(fā)育樹、祖先成分分析,結果顯示德宏水牛和滇東南水牛相比西南地區(qū)其他6個水牛品種的確具有明顯的群體結構差異。對分布于長江上游的涪陵水牛、宜賓水牛、貴州水牛、貴州白水牛進行更為細致的分析顯示,涪陵水??煞譃?個類群,相比其他毗鄰區(qū)域品種具有一類獨特的遺傳結構。后續(xù)有必要對涪陵水?;蚪M結構進行深入研究。
長ROH和短ROH可以分別反映較近時期的近交活動(5代以前)和較遠時期的近交活動(最多50代以前)[33-34]。Liu等[35]使用中密度SNP芯片分析了899頭意大利地中海水牛全基因組ROH模式和近交水平,共鑒定出42 433個ROHs片段,以1~4 Mb為主的短片段約占全部短片段的72.29%。相比之下,較大的ROH片段(gt;8 Mb)僅占所有ROH片段的7.97%,基于ROH的近交系數(shù)(FROH)估計在0.020 1~0.037 1之間,表明意大利地中海水牛種群受到歷史上近交事件的影響,但種群近期的近交水平較低?;赗OH計算基因組近交系數(shù)的方法能為遺傳育種提供新的見解,且更能反映群體真實的近交水平[36-38]。Ghoreishifar等[39]基于伊朗Azeri(n=252)和Khuzestani(n=113)河流型水牛SNP基因分型數(shù)據(jù),使用FGRM、FHOM、FUNI以及FROH等不同方法估計近親繁殖系數(shù)并比較4種方法的可靠性,發(fā)現(xiàn)使用基因組近交系數(shù)FROH估計近親繁殖的結果最為可靠。本研究發(fā)現(xiàn),在保種場涪陵水牛群體中,每頭水牛平均含有75.85±12.53個ROHs,遠高于上述國外水牛品種中的平均每頭ROH數(shù)量;并且在涪陵水牛群體中檢測到8個長ROH(gt;16 Mb)片段,最長為24.56 Mb,提示涪陵水牛近期的近交活動較多且可能存在共同祖先。涪陵水牛保種群平均近交系數(shù)為0.056 8,遠低于半同胞交配產(chǎn)生的后代的近交系數(shù),但7頭涪陵水牛近交系數(shù)較高在0.062 5~0.125之間,存在近交風險。
目前,涪陵水牛存在品種數(shù)量少、保種難度大等問題,有必要采取有效的保種措施,并應加快涪陵水牛的基礎研究工作。第一,涪陵水牛具有兩個亞群,應盡快將保護區(qū)內牛只進行遺傳結構鑒定,保種場內和保護區(qū)內按亞群進行有計劃選種選配,防止群體混雜。第二,保種群內的7頭涪陵水牛存在近交風險,可以通過引進新的血統(tǒng),建立健全系譜記錄和基因庫管理體系,避免近交或過度集中某些優(yōu)良基因。第三,基于SNP數(shù)據(jù)進行選擇信號分析有助于挖掘與動物經(jīng)濟性狀相關的基因,例如免疫、肉質、繁殖和熱應激相關的候選基因[32,40-41]。與SNP相比,拷貝數(shù)變異(copy number variation, CNV)可能對畜禽的表型產(chǎn)生更大的影響[42],研究發(fā)現(xiàn)了可能與水牛的適應性、產(chǎn)奶、免疫力等相關的基因CNV[43-45]。因此,后續(xù)可以利用涪陵水牛已有的SNP數(shù)據(jù)進行選擇信號分析挖掘出重要性狀的候選基因,也可以進一步對涪陵水牛開展基因組CNV的研究,更深入的解析其基因組特征,從而篩選涪陵水牛中的優(yōu)良個體,為涪陵水牛的保種和選育提供幫助。
4 結 論
本研究基于全基因組測序技術分析了保種場涪陵水牛及西南地區(qū)水牛品種間的遺傳結構,結果表明保種場內涪陵水牛與毗鄰區(qū)域水牛品種間具有明顯的遺傳結構差異;涪陵水牛可劃分為2個類群,與毗鄰區(qū)域水牛品種相比具有一類獨特的群體結構?;赗OH的群體近交系數(shù)分析表明,7頭涪陵水牛近交系數(shù)在0.062 5~0.125之間,存在近交風險。本研究可為今后涪陵水牛的資源保護與利用工作提供理論依據(jù)和基礎數(shù)據(jù)。
參考文獻(References):
[1] 國家畜禽遺傳資源委員會.中國畜禽遺傳資源志·牛志[M].北京:中國農(nóng)業(yè)出版社,2011:335-338.
China National Commission of Animal Genetic Resources.Animal genetic resources in China,Bovines[M].Beijing:China Agriculture Press,2011:335-338.(in Chinese)
[2] 《重慶市畜禽遺傳資源志》編寫組.重慶市畜禽遺傳資源志[M].重慶:重慶出版社,2013:65.
Chongqing Livestock and Poultry Genetic Resources Compilation Group.Animal genetic resources in Chongqing[M]. Chongqing: Chongqing Press,2013:65.(in Chinese)
[1] 國家畜禽遺傳資源委員會辦公室. 關于公布《國家畜禽遺傳資源品種名錄》的通知[J]. 中華人民共和國農(nóng)業(yè)農(nóng)村部公報, 2020(6): 36.
Office of Animal Genetic Resources Committee. Notice on National Breed List of Animal Genetic Resources[J]. Gazette of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020(6): 36.(in Chinese)
[2] 《重慶市畜禽遺傳資源志》編寫組. 重慶市畜禽遺傳資源志[M]. 重慶: 重慶出版社, 2013:65.
Compilation Group of Chongqing Animal Genetic Resources. Animal genetic resources in Chongqing[M]. Chongqing: Chongqing Press, 2013: 65.(in Chinese)
[3] 涪陵水牛育種概況[J].四川畜牧獸醫(yī),1976(2):42-46.
General situation of Fuling buffalo breeding[J].Sichuan Animal amp; Veterinary Sciences,1976(2):42-46.(in Chinese)
[4] 姚仕順,王德緒.摩拉水牛與涪陵水牛雜交效果初報[J].四川畜牧獸醫(yī),1981(4):1-4.
YAO S S,WANG D X.Preliminary report on hybridization effect between Murrah buffalo and Fuling buffalo[J].Sichuan Animal amp; Veterinary Sciences,1981(4):1-4.(in Chinese)
[5] 田有慶,唐玉華,郭春華,等.涪陵水牛染色體組型分析[J].四川畜牧獸醫(yī),1984(4):6-8.
TIAN Y Q,TANG Y H,GUO C H,et al.Chromosome karyotype analysis of Fuling buffalo[J].Sichuan Animal amp; Veterinary Sciences, 1984(4):6-8.(in Chinese)
[6] 史榮仙,左福元,董學虎.四川水牛血液蛋白多態(tài)性研究[J].四川農(nóng)業(yè)大學學報,1992(1):122-126.
SHI R X,ZUO F Y,DONG X H.Studies on blood protein polymorphism in Sichuan swamp buffaloes[J].Journal of Sichuan Agricultural University,1992(1):122-126.(in Chinese)
[7] 史榮仙,付茂忠,賴松家,等.長江流域水牛血液蛋白多態(tài)性研究[J].遺傳,1995,17(1):7-11.
SHI R X,F(xiàn)U M Z,LAI S J,et al.Study on blood protein polymorphism of buffalo in Yangtze river basin[J].Hereditas (Beijing),1995,17(1):7-11.(in Chinese)
[8] 賴松家,史榮仙,鄭維明.中國水牛血清淀粉酶多態(tài)性及型命名研究[J].四川農(nóng)業(yè)大學學報,1995,13(2):203-207.
LAI S J,SHI R X,ZHENG W M.Study on serum amylase polymorphism and genetypes named of the buffaloes in China[J].Journal of Sichuan Agricultural University,1995,13(2):203-207.(in Chinese)
[9] 齊國強,昝林森,張桂香,等.中國部分地方水牛品種mtDNA D-loop區(qū)遺傳多樣性與起源研究[J].畜牧獸醫(yī)學報,2008,39(1):7-11.
QI G Q,ZAN L S,ZHANG G X,et al.Mitochondrial DNA D-loop genetic diversity and origin of some Chinese domestic buffalo breeds[J].Acta Veterinaria et Zootechnica Sinica,2008,39(1):7-11.(in Chinese)
[10] 謝文美,蘇 銳,李明暉,等.涪陵水牛mtDNA D-loop區(qū)遺傳多樣性研究[J].西北農(nóng)業(yè)學報,2008,17(5):56-60.
XIE W M,SU R,LI M H,et al.Study on mtDNA D-loop genetic diversity in Fuling swamp buffalo[J].Acta Agriculturae Boreali-Occidentalis Sinica,2008,17(5):56-60.(in Chinese)
[11] LOPEZ B I M,AN N,SRIKANTH K,et al.Genomic prediction based on SNP functional annotation using imputed whole-genome sequence data in Korean Hanwoo cattle[J].Front Genet,2021,11:603822.
[12] DEMIR E,MORAVACˇGKOV N,KARSLI T,et al.Future perspective of NGS data for evaluation of population genetic structure in Turkish cattle[J].Acta Fytotechn Zootechn,2022,25(2):117-121.
[13] WU F,SUN H,LU S X,et al.Genetic diversity and selection signatures within Diannan small-ear pigs revealed by next-generation sequencing[J].Front Genet,2020,11:733.
[14] CEBALLOS F C,JOSHI P K,CLARK D W,et al.Runs of homozygosity:windows into population history and trait architecture[J].Nat Rev Genet,2018,19(4):220-234.
[15] ONZIMA R B,UPADHYAY M R,DOEKES H P,et al.Genome-wide characterization of selection signatures and runs of homozygosity in Ugandan goat breeds[J].Front Genet,2018,9:318.
[16] SHI L Y,WANG L G,LIU J X,et al.Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population[J].J Anim Sci Biotechnol,2020,11(1):46.
[17] MARRAS G,GASPA G,SORBOLINI S,et al.Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy[J].Anim Genet,2015,46(2):110-121.
[18] YANG J,LEE S H,GODDARD M E,et al.GCTA:a tool for genome-wide complex trait analysis[J].Am J Hum Genet,2011, 88(1):76-82.
[19] LIU Y S,NYUNOYA T,LENG S G,et al.Softwares and methods for estimating genetic ancestry in human populations[J].Hum Genomics,2013,7(1):1.ALEXANDER D H, LANGE K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation[J]. BMC Bioinformatics, 2011, 12: 246.
[20] 趙真堅,王書杰,陳 棟,等.基于低深度全基因組測序分析內江豬群體結構和遺傳多樣性[J].畜牧獸醫(yī)學報,2023,54(6):2297-2307.
ZHAO Z J,WANG S J,CHEN D,et al.Population structure and genetic diversity analysis of Neijiang pigs based on low-coverage whole genome sequencing[J].Acta Veterinaria et Zootechnica Sinica,2023,54(6):2297-2307.(in Chinese)
[21] 陶 璇,楊雪梅,梁 艷,等.基于SNP芯片的丫杈豬保種群體遺傳結構研究[J].畜牧獸醫(yī)學報,2023,54(6):2308-2319.
TAO X,YANG X M,LIANG Y,et al.Analysis of genetic structure of conservation population in Yacha pig based on SNP chip[J].Acta Veterinaria et Zootechnica Sinica,2023,54(6):2308-2319.(in Chinese)
[22] 胡紫平,王立剛,宗文成,等.基于基因組SNP和ROH的劍白香豬群體遺傳結構解析[J].畜牧獸醫(yī)學報,2023,54(10):4117-4125.
HU Z P,WANG L G,ZONG W C,et al.Genetic structure analysis of Jianbai Xiang pig population based on genomic SNP and ROH[J].Acta Veterinaria et Zootechnica Sinica,2023,54(10):4117-4125.(in Chinese)
[23] 齊麗娜,陸雪林,楊凱旋,等.基于SNP芯片分析新浦東雞的遺傳多樣性和遺傳結構[J].畜牧獸醫(yī)學報,2023,54(12):4962-4971.
QI L N,LU X L,YANG K X,et al.Analysis of genetic diversity and genetic structure of new Pudong chicken based on SNP chips[J].Acta Veterinaria et Zootechnica Sinica,2023,54(12):4962-4971.(in Chinese)
[24] 武艷平,魏 岳,康昭風,等.基于全基因組SNP分析8個地方雞品種的遺傳多樣性[J].畜牧獸醫(yī)學報,2022,53(2):646-653.
WU Y P,WEI Y,KANG Z F,et al.Genetic diversity analysis of 8 local chicken breeds based on whole genome SNP[J].Acta Veterinaria et Zootechnica Sinica,2022,53(2):646-653.(in Chinese)
[25] 高超群,曹然然,杜文蘋,等.基于全基因組SNP標記分析中國地方雞品種的遺傳多樣性和種群結構[J].畜牧獸醫(yī)學報,2023,54(2):554-562.
GAO C Q,CAO R R,DU W P,et al.Genetic diversity and population structure analysis of Chinese native chicken breeds using genome-wide SNPs[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):554-562.(in Chinese)
[26] 劉宏祥,沈永杰,張麗華,等.基于簡化基因組測序的婁門鴨遺傳多樣性評價[J].畜牧獸醫(yī)學報,2022,53(6):1735-1748.
LIU H X,SHEN Y J,ZHANG L H,et al.Genetic diversity evaluation of Loumen duck based on reduced-representation genome sequencing[J].Acta Veterinaria et Zootechnica Sinica,2022,53(6):1735-1748.(in Chinese)
[27] 馬浩然,張路培,金生云,等.利用高密度SNP芯片評估中國地方肉牛品種基因組親緣關系[J].畜牧獸醫(yī)學報, 2023,54(10):4174-4185.
MA H R,ZHANG L P,JIN S Y,et al.Assessment of the genomic relationships for Chinese indigenous beef cattle using high-density SNP chip[J].Acta Veterinaria et Zootechnica Sinica,2023,54(10):4174-4185.(in Chinese)
[28] 馬克巖,韓金濤,白雅琴,等.基于簡化基因組測序的永登七山羊遺傳多樣性分析[J].畜牧獸醫(yī)學報,2023,54(5):1939-1950.
MA K Y,HAN J T,BAI Y Q,et al.Genetic diversity analysis of Yongdeng Qishan sheep based on specific-locus amplified fragment sequencing[J].Acta Veterinaria et Zootechnica Sinica,2023,54(5):1939-1950.(in Chinese)
[29] 張任豹,周東輝,周李生,等.基于70 K SNP芯片分析濟寧青山羊保種群體的遺傳結構[J].畜牧獸醫(yī)學報,2023,54(7):2836-2847.
ZHANG R B,ZHOU D H,ZHOU L S,et al.Analysis of genetic structure of conservation population in Jining gray goats based on 70 K SNP chip[J].Acta Veterinaria et Zootechnica Sinica,2023,54(7):2836-2847.(in Chinese)
[30] 李隱俠,牙生江·那斯爾,賽里克·都曼,等.SNP芯片評估柯爾克孜羊群體遺傳多樣性和遺傳結構[J].畜牧獸醫(yī)學報, 2023,54(2):572-583.
LI Y X,NASIER Y,DUMAN S,et al.Evaluation of genetic diversity and genetic structure in Kirgiz sheep population based on SNPs chip[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):572-583.(in Chinese)
[31] SUN T,SHEN J F,ACHILLI A,et al.Genomic analyses reveal distinct genetic architectures and selective pressures in buffaloes[J]. Gigascience,2020,9(2):giz166.
[32] LUO X E,ZHOU Y,ZHANG B,et al.Understanding divergent domestication traits from the whole-genome sequencing of swamp- and river-buffalo populations[J].Natl Sci Rev,2020,7(3):686-701.
[33] FERENACˇGAKOVIC' M,SLKNER J,CURIK I.Estimating autozygosity from high-throughput information:effects of SNP density and genotyping errors[J].Genet Sel Evol,2013,45(1):42.
[34] MASTRANGELO S,CIANI E,MARSAN P A,et al.Conservation status and historical relatedness of Italian cattle breeds[J].Genet Sel Evol,2018,50(1):35.
[35] LIU S H,MA X Y,HASSAN F U,et al.Genome-wide analysis of runs of homozygosity in Italian Mediterranean buffalo[J].J Dairy Sci,2022,105(5):4324-4334.
[36] PURFIELD D C,BERRY D P,MCPARLAND S,et al.Runs of homozygosity and population history in cattle[J].BMC Genet,2012, 13(1):70.
[37] PERIPOLLI E,MUNARI D P,SILVA M V G B,et al.Runs of homozygosity:current knowledge and applications in livestock[J]. Anim Genet,2017,48(3):255-271.
[38] PERIPOLLI E,STAFUZZA N B,MUNARI D P,et al.Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle[J].BMC Genomics,2018,19(1):34.
[39] GHOREISHIFAR S M,MORADI-SHAHRBABAK H,F(xiàn)ALLAHI M H,et al.Genomic measures of inbreeding coefficients and genome-wide scan for runs of homozygosity islands in Iranian river buffalo,Bubalus bubalis[J].BMC Genet,2020,21(1):16.
[40] RAFIEPOUR M,EBRAHIMIE E,VAHIDI M F,et al.Whole-genome resequencing reveals adaptation prior to the divergence of buffalo subspecies[J].Genome Biol Evol,2021,13(1):evaa231.
[41] NASCIMENTO A V,CARDOSO D F,SANTOS D J A,et al.Inbreeding coefficients and runs of homozygosity islands in Brazilian water buffalo[J].J Dairy Sci,2021,104(2):1917-1927.
[42] MILLS R E,WALTER K,STEWART C,et al.Mapping copy number variation by population-scale genome sequencing[J].Nature, 2011,470(7332):59-65.
[43] STRILLACCI M G,MORADI-SHAHRBABAK H,DAVOUDI P,et al.A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes[J].BMC Genomics,2021,22(1):305.
[44] ZHANG X F,CHEN N B,CHEN H,et al.Comparative analyses of copy number variations between swamp and river buffalo[J].Gene,2022,830:146509.
[45] YANG L,HAN J Z,DENG T X,et al.Comparative analyses of copy number variations between swamp buffaloes and river buffaloes[J].Anim Genet,2023,54(2):199-206.
(編輯 郭云雁)