摘 要: 胚胎致死異常視覺蛋白1(embryonic lethal abnormal vision like 1, ELAVL1),又被稱為人類抗原R(human antigen R, HuR),是一種典型的RNA結(jié)合蛋白(RNA binding protein,RBP),通過與3′非翻譯區(qū)(3′ untranslated element, 3′UTR)的AU富含元件(AU-rich element,ARE)結(jié)合,在mRNA轉(zhuǎn)錄和翻譯過程中發(fā)揮重要作用。ELAVL1的作用十分廣泛,可調(diào)控腫瘤的發(fā)生發(fā)展、凋亡、遷移與侵襲,是許多癌癥治療的關(guān)鍵靶點(diǎn),還能參與調(diào)節(jié)編碼器官發(fā)育和組織穩(wěn)態(tài)的蛋白質(zhì)和mRNA的水平,也有許多研究表明,ELAVL1通過轉(zhuǎn)錄后調(diào)控和翻譯后修飾來調(diào)節(jié)病毒復(fù)制。本文主要綜述了ELAVL1的生物學(xué)特點(diǎn)、功能、調(diào)控機(jī)制及其在病毒復(fù)制過程中的調(diào)控作用,旨在為進(jìn)一步研究ELAVL1與畜禽病毒復(fù)制之間互作的機(jī)制提供理論參考。
關(guān)鍵詞: ELAVL1;RNA結(jié)合蛋白;病毒;調(diào)控機(jī)制
中圖分類號:S855.3
文獻(xiàn)標(biāo)志碼:A""" 文章編號:0366-6964(2024)05-1914-12
收稿日期:2023-08-03
基金項(xiàng)目:國家自然科學(xué)基金(31702207;U1504308)
作者簡介:余祖華(1977-),女,河南商城人,副教授,博士,主要從事動物分子免疫學(xué)研究,E-mail: yzhd05@163.com;高夢茹(1999-),女,河南駐馬店人,碩士生,主要從事動物疫病病原研究,E-mail:gaomengru-edu@qq.com。余祖華和高夢茹為同等貢獻(xiàn)作者
Research Progress on the Function of RNA Binding Protein ELAVL1 and Its Regulation
of Viral Replication
YU" Zuhua1,2, GAO" Mengru1,2, QI" Zhiying1,2, ZHANG" Jingyu1,2, HE" Lei1,2, CHEN" Jian1,2, DING" Ke1,2
(1.Key Lab of Animal Disease and Public Health/Laboratory of Functional Microbiology and Livestock and Poultry Health
, College of Animal Science and Technology, Henan
University of Science and Technology, Luoyang 471003," China; 2.Key Laboratory of
Live Vector Biomaterials and Animal Disease Prevention and Control, Luoyang 471023," China)
Abstract:" Embryonic lethal abnormal vision like 1 (ELAVL1), also called human antigen R (HuR).It is a typical RNA binding protein (RBP) that binds to the AU-rich element (ARE) in the 3′untranslated element (3′UTR) and plays an important role in the process of mRNA transcription and translation. ELAVL1 has a wide range of functions and can regulate the occurence and development, apoptosis, migration, and invasion of tumors, making it the key target for many cancer treatments. It can also participate in the regulation of protein and mRNA levels encoding organ development and tissue homeostasis. Many studies have also shown that ELAVL1 regulates viral replication through post-transcriptional regulation and post-translational modification. This review summarizes the biological characteristics, functions, regulatory mechanisms of ELAVL1 and its regulatory role in the process of virus replication, aiming to provide a theoretical reference for further studies on the interaction between ELAVL1 and virus replication in livestock and poultry.
Key words: ELAVL1; RNA binding protein; virus; regulatory mechanism
*Corresponding author: YU Zuhua,E-mail: yzhd05@163.com
RNA結(jié)合蛋白(RNA binding protein, RBP)是轉(zhuǎn)錄后基因調(diào)控的關(guān)鍵調(diào)節(jié)因子,據(jù)估計(jì),哺乳動物的基因組編碼了超過1 500個RBP,這些RBP通過與靶RNA結(jié)合后,在轉(zhuǎn)錄后基因調(diào)控過程中發(fā)揮重要的作用,包括選擇性剪接、多聚腺苷酸化、轉(zhuǎn)運(yùn)、亞細(xì)胞定位、豐度和翻譯等[1-2]。RBP與靶mRNA之間的互相結(jié)合作用,對維持內(nèi)環(huán)境穩(wěn)態(tài)十分重要[3]。胚胎致死異常視覺蛋白1(embryonic lethal abnormal vision like 1, ELAVL1)為ELAV家族的一員,也稱為人類抗原R(human antigen R, HuR),是一種典型的RBP[4]。ELAVL1在多種細(xì)胞中廣泛表達(dá),主要存在于正常哺乳細(xì)胞的細(xì)胞核中,受到外源刺激時或在腫瘤細(xì)胞中則主要表達(dá)于細(xì)胞質(zhì)[5]。與哺乳動物不同的是,伊蚊的細(xì)胞質(zhì)中含有大量的ELAVL1同源物蛋白,這反映了ELAVL1在昆蟲和脊椎動物中的作用方式存在先天差異[6]。ELAVL1是基因表達(dá)的關(guān)鍵效應(yīng)因子,通過與3′非翻譯區(qū)(3′untranslated element, 3′UTR)的AU富含元件(AU-rich element, ARE)結(jié)合,發(fā)揮穩(wěn)定mRNA的作用[7]。另有研究表明,ELAVL1還能促進(jìn)和抑制靶mRNA的翻譯[8]。ELAVL1的核質(zhì)轉(zhuǎn)運(yùn)和高表達(dá)與多種腫瘤的發(fā)生發(fā)展及病毒感染相關(guān)[9-10]。病毒種類繁多,多數(shù)對宿主有致病作用,常引起疫病流行,造成重大經(jīng)濟(jì)損失。病毒復(fù)制是一個十分復(fù)雜的過程,必須借助宿主因子在宿主細(xì)胞內(nèi)完成病毒的生命周期,因此,尋找參與病毒復(fù)制的宿主因子及其調(diào)控機(jī)制,對于深入了解病毒與機(jī)體互作的分子機(jī)制,研究新的抗病毒策略具有重要意義[11]。
近年來,ELAVL1蛋白的功能研究是研究熱點(diǎn)之一,除了研究其在腫瘤細(xì)胞中發(fā)揮的重要作用,國內(nèi)外關(guān)于ELAVL1對多種病毒復(fù)制影響的研究也日益增多。本文總結(jié)了近年來ELAVL1的相關(guān)研究,主要綜述ELAVL1的生物學(xué)特點(diǎn)、功能、調(diào)控機(jī)制及其在病毒復(fù)制過程中的調(diào)控作用,同時對未來ELAVL1的研究方向進(jìn)行了展望,為進(jìn)一步研究ELAVL1與病毒復(fù)制之間互作的機(jī)制提供參考。
1 ELAVL1的生物學(xué)特點(diǎn)
ELAVL1蛋白由326個氨基酸組成,其編碼基因位于人的第19號染色體,位于小鼠的第8號染色體,位于山羊的第7號染色體,位于雞的第28號染色體[12]。ELAVL1首先在果蠅中被發(fā)現(xiàn),于1996年被鑒定和克隆,在大部分惡性腫瘤中高表達(dá)[4,13-14]。ELAVL1在各種組織中普遍表達(dá),而哺乳動物中的其他ELAV家族成員,包括ELAVL2(HuB)、ELAVL3(HuC)和ELAV4(HuD),幾乎只存在于神經(jīng)元組織中[4,9]。ELAVL1包含3個保守的RNA識別基序(RNA recognition motif,RRM)和1個鉸鏈區(qū),與其它ELAV蛋白具有高度同源性。其中,前兩個位于N端的結(jié)構(gòu)域(RRM1和RRM2)通過10個殘基接頭連接,與3′UTR的ARE結(jié)合;而位于C端的RRM3通過與靶mRNA的3′poly(A)尾結(jié)合,介導(dǎo)典型RNA相互作用,并在RRM3的α-螺旋面存在一個二聚界面(圖1)[15-16]。ARE的序列長度約為17~20個核苷,根據(jù)核心AUUUA五聚體的數(shù)量和分布,可將ARE分為3類:其一是在富AU區(qū)含有AUUUA基序的幾個分散拷貝的基因;其二是具有至少2個重疊的UUAUUA(U/A)(U/A)基序的基因;其三是特征較少的不包含典型的AUUUA基序[17]。ARE介導(dǎo)的mRNA快速降解是哺乳動物細(xì)胞轉(zhuǎn)錄后基因調(diào)控的重要機(jī)制[18]。此外,研究發(fā)現(xiàn)ELAVL1還能與靶基因的5′UTR相互作用,從而調(diào)控翻譯[8]。
正常健康條件下,ELAVL1蛋白主要位于細(xì)胞核中,在刺激因子作用下,ELAVL1與靶mRNA結(jié)合,形成ELAVL1-mRNA復(fù)合物,該復(fù)合物通過核孔被轉(zhuǎn)運(yùn)到細(xì)胞質(zhì),以發(fā)揮其穩(wěn)定靶mRNA和調(diào)節(jié)蛋白質(zhì)翻譯的功能[4]。這種核質(zhì)轉(zhuǎn)運(yùn)是通過位于鉸鏈區(qū)的HuR核質(zhì)穿梭序列(HuR nuclear-cytoplasmic shuttling sequence, HNS)來實(shí)現(xiàn),該序列長52個氨基酸,是ELAVL1發(fā)生翻譯后修飾的主要基序[19]。也有研究表明,在增殖活躍的未分化細(xì)胞中,ELAVL1主要定位于細(xì)胞核,但在誘導(dǎo)和分化過程中,其在細(xì)胞質(zhì)中的豐度顯著增加,在細(xì)胞分化過程完成后又恢復(fù)到核定位[20]。此外,有研究發(fā)現(xiàn)ELAVL1在S期向M期轉(zhuǎn)變時主要以細(xì)胞質(zhì)的形式存在,而在T細(xì)胞中,ELAVL1在早期G1期主要存在于細(xì)胞質(zhì)中[21-22]。
2 ELAVL1的功能和調(diào)控機(jī)制
ELAVL1作為一種反式調(diào)節(jié)因子,與不穩(wěn)定的順式作用元件3′UTR和5′UTR中的ARE結(jié)合,在轉(zhuǎn)運(yùn)蛋白的幫助下通過HNS或染色體區(qū)域維持蛋白1(chromosome maintenance protein 1, CRM1)從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì)中,從而增加mRNA的穩(wěn)定性或蛋白的翻譯來實(shí)現(xiàn)轉(zhuǎn)錄后基因調(diào)控作用[4]。
2.1 ELAVL1與核質(zhì)轉(zhuǎn)運(yùn)
ELAVL1蛋白具有核質(zhì)穿梭的功能,其核質(zhì)易位和細(xì)胞質(zhì)表達(dá)對許多疾病中的活性和功能是必要的[2,23]。據(jù)報道,許多應(yīng)激刺激因子如紫外線輻射、脂多糖、化學(xué)化合物、微環(huán)境改變、細(xì)胞因子、熱休克、病毒感染和激素治療等可誘導(dǎo)ELAVL1穿梭[24]。通常,鉸鏈區(qū)處的磷酸化可以調(diào)節(jié)ELAVL1亞細(xì)胞定位,轉(zhuǎn)運(yùn)CRM1(也稱為輸出蛋白1)、轉(zhuǎn)運(yùn)蛋白1和2以及輸入蛋白α1等組分,也參與ELAVL1的核質(zhì)穿梭[5]。目前已知至少有3種信號通路與ELAVL1蛋白的核質(zhì)轉(zhuǎn)運(yùn)相關(guān)。第1種是p38絲裂原活化蛋白激酶(p38 mitogen-activated protein kinase, p38-MAPK)通路,目前還不確定這條通路的具體機(jī)制,推測是由于p38-MAPK使ELAVL1甲基化,從而影響其核質(zhì)轉(zhuǎn)運(yùn);第2種是蛋白激酶C(protein kinase C,PKC)通路,血管緊張素 II(Angiotension II,AngII)和ATP類似物通過結(jié)合特異性受體,之后與PKC結(jié)合,使PKC輸入到細(xì)胞核與ELAVL1結(jié)合并發(fā)生磷酸化,從而導(dǎo)致ELAVL1向細(xì)胞質(zhì)轉(zhuǎn)運(yùn);第3種是AMP激活激酶(adenosine 5′-monophosphate -activated protein kinase, AMPK)通路,AMPK通過引起輸入蛋白α1的磷酸化和乙?;瘉碜钄郋LAVL1的核質(zhì)穿梭[23-24]。特定的細(xì)胞刺激引起信號通路級聯(lián),促使ELAVL1由細(xì)胞核向細(xì)胞質(zhì)輸出,從而保護(hù)mRNA免受降解[25]。ELAVL1的核質(zhì)轉(zhuǎn)運(yùn)增加了靶mRNA的穩(wěn)定性,促進(jìn)了mRNA的轉(zhuǎn)錄和蛋白翻譯(圖2)[9]。
2.2 ELAVL1穩(wěn)定靶mRNA
ELAVL1通過與靶mRNA 3′UTR的ARE結(jié)合,發(fā)揮穩(wěn)定靶mRNA的作用[8]。ELAVL1穩(wěn)定靶mRNA確切機(jī)制尚未完全闡明,但人們廣泛地認(rèn)為是ELAVL1與靶mRNA的結(jié)合阻斷了mRNA募集到衰變位點(diǎn)[26]。mRNA的穩(wěn)定性取決于它與順式元件和反式調(diào)節(jié)因子的相互作用并高度依賴于poly(A)尾。順式元件存在于mRNA轉(zhuǎn)錄本中,不僅包括非翻譯區(qū),也包括編碼區(qū),ARE是許多mRNA中研究最多的順式元件[27]。ELAVL1則是作為反式調(diào)節(jié)因子。Poly(A)尾是一長串保護(hù)轉(zhuǎn)錄物3′端的腺苷殘基,去除poly(A)尾部,稱為去腺苷酸化,是mRNA降解的第一步[28]。去除mRNA 5′端“帽”結(jié)構(gòu)也是mRNA降解的重要部分[29]。因此,穩(wěn)定mRNA可以保護(hù)其免受降解。ELAVL1可以穩(wěn)定大量的靶mRNA,如環(huán)氧合酶-2(cyclooxygenase-2,COX-2)[30-31]、p53[32]、基質(zhì)金屬蛋白酶(metalloproteinase,MMP)-9[33]和TNF-α[34]等超過80種mRNA[8,16],從而增加相應(yīng)的蛋白產(chǎn)物和轉(zhuǎn)錄產(chǎn)物,參與病理過程[19]。
2.3 ELAVL1轉(zhuǎn)錄水平的調(diào)控
轉(zhuǎn)錄調(diào)控發(fā)生在兩個相互關(guān)聯(lián)的水平上:轉(zhuǎn)錄因子和染色質(zhì)表觀調(diào)控因子[29]。轉(zhuǎn)錄因子結(jié)合到特定的靶基因上后,促進(jìn)或是抑制其表達(dá),是調(diào)控轉(zhuǎn)錄的核心。而染色質(zhì)表觀因子通過影響DNA甲基化、組蛋白修飾等多種事件,增加或干擾轉(zhuǎn)錄因子對啟動子的結(jié)合,影響基因的轉(zhuǎn)錄[35]。研究表明,ELAVL1的啟動子通常包含多個轉(zhuǎn)錄起始位點(diǎn),而且存在可替代的啟動子,這些啟動子在細(xì)胞受到應(yīng)激時可被激活或抑制[36]。Kang等[37]發(fā)現(xiàn),在胃癌中,通過PI3K/AKT/NF-κB途徑激活ELAVL1,有助于腫瘤進(jìn)展,并證明ELAVL1是NF-κB的直接轉(zhuǎn)錄靶標(biāo)。Jeyaraj等[36]發(fā)現(xiàn),ELAVL1 mRNA表達(dá)為兩種交替轉(zhuǎn)錄物,在其5′UTR區(qū)域中變化,較長的約150個堿基,較短的約20個堿基,并發(fā)現(xiàn)NF-κB位點(diǎn)下游約100 bp處的Smad1/5/8結(jié)合位點(diǎn)是ELAVL1短mRNA的正調(diào)節(jié)因子。此外,Govindaraju和Lee[38]發(fā)現(xiàn),Krüppel樣轉(zhuǎn)錄因子8(Krüppel-like factor 8,KLF8)有特異性結(jié)合ELAVL1啟動子的能力,引起ELAVL1長mRNA的增加。
2.4 ELAVL1轉(zhuǎn)錄后水平的調(diào)控
轉(zhuǎn)錄后調(diào)控主要體現(xiàn)在對mRNA前體核內(nèi)不均一核糖核蛋白(heterogeneous nuclear ribonucleoprotein, hnRNP)的剪接和加工、mRNA由細(xì)胞核轉(zhuǎn)至細(xì)胞質(zhì)的過程及定位、mRNA的穩(wěn)定性及其降解過程等多個環(huán)節(jié)進(jìn)行的調(diào)控,在調(diào)節(jié)細(xì)胞基因表達(dá)和形成轉(zhuǎn)錄組及蛋白質(zhì)組中起著重要作用,也是哺乳動物細(xì)胞在應(yīng)激反應(yīng)時控制基因表達(dá)的主要機(jī)制[39-41]。研究發(fā)現(xiàn),miRNA和ELAVL1在轉(zhuǎn)錄后基因調(diào)控中能夠協(xié)作,如vegfa 3′UTR中miR-200b的結(jié)合位點(diǎn)與ELAVL1的結(jié)合位點(diǎn)重疊,也有具有相同的功能位點(diǎn);而miR-548c、miR-122、miR-331、miR-16和miR-519,與ELAVL1則有拮抗作用,降低其與靶mRNA的結(jié)合[9,42]。另外,ELAVL1的豐度也可以由miRNA調(diào)節(jié),已發(fā)現(xiàn)miR-125、miR-519、miR-9、291B-3P、miR-570-3、miR-16、miR-22靶向ELAVL1 mRNA的編碼區(qū)和3′UTR,抑制其表達(dá)。此外,ELAVL1 3′-UTR與miRNA-155-5P還有一個結(jié)合位點(diǎn),該位點(diǎn)穩(wěn)定轉(zhuǎn)錄本,有利于細(xì)胞遷移[16]。除了miRNA,circRNA能充當(dāng)?shù)鞍缀>d,吸附RNA結(jié)合蛋白ELAVL1,隔離靶蛋白阻止其發(fā)揮生物學(xué)功能[40]。ELAVL1通過與FOXO(Forkhead Box O,F(xiàn)OXO)-1 3′UTR內(nèi)的ARE結(jié)合特異性地調(diào)控FoxO1 mRNA的表達(dá)并通過轉(zhuǎn)錄后調(diào)節(jié)FoxO1介導(dǎo)5-氟脲嘧啶(5-fluorouracil,5-FU)誘導(dǎo)的細(xì)胞凋亡[43]。Phillips等[44]鑒定了PABPN1 3′UTR中的多個順式調(diào)節(jié)元件,并在體外和體內(nèi)鑒定了ELAVL1介導(dǎo)的PABPN1調(diào)節(jié),證明ELAVL1是PABPN1轉(zhuǎn)錄和蛋白水平的轉(zhuǎn)錄后調(diào)節(jié)因子。有些RBP如丁酸鹽反應(yīng)因子1(butyrate response factor 1,BRF1)、富含AU的RNA結(jié)合蛋白1(AUrich element RNA-binding factor 1,AUF1)、RNA結(jié)合蛋白TTP(tristetraprolin,TTP)對于ELAVL1和靶基因的結(jié)合也有拮抗作用,它們通過競爭性結(jié)合細(xì)胞因子mRNA,降低其穩(wěn)定性,從而參與炎性細(xì)胞因子的轉(zhuǎn)錄后調(diào)控[45]。
2.5 ELAVL1的翻譯后修飾
蛋白質(zhì)是細(xì)胞生命活動的實(shí)際功能執(zhí)行者,前體蛋白是沒有生物學(xué)活性的,通常需要一系列的翻譯后加工,才能成為具有功能的成熟蛋白[46]。翻譯后修飾(post-translational modifications, PTMs)是細(xì)胞精細(xì)調(diào)控諸多生物學(xué)過程的關(guān)鍵方式之一,對細(xì)胞的生長、分化、凋亡、代謝、免疫等生命過程均具有一定的作用[47]。PTMs通常指蛋白質(zhì)合成后發(fā)生的酶促反應(yīng),包括小分子基團(tuán)或生物分子與一個氨基酸的共價加成、化學(xué)修飾和肽鍵的裂解[48]。ELAVL1的功能可以通過PTMs來調(diào)節(jié),這些修飾包括磷酸化、甲基化、泛素化、類泛素化修飾和蛋白水解等,改變ELAVL1的亞細(xì)胞定位和結(jié)合靶RNA的能力[1]。其中研究最多的是磷酸化修飾。周期素依賴性激酶(cyclin-dependent kinases,cdks)-1可在鉸鏈區(qū)絲氨酸(serine, S)202處磷酸化ELAVL1,增強(qiáng)ELAVL1的核定位[49]。CDK5與神經(jīng)膠質(zhì)瘤細(xì)胞中心體的ELAVL1相互作用,使ELAVL1在S202處磷酸化,降低了ELAVL1與靶mRNA的結(jié)合能力[50]。在細(xì)胞應(yīng)激情況下,檢查點(diǎn)激酶2(checkpoint kinase 2,CHK2)在S88、S100和蘇氨酸(threonine,T)118處磷酸化ELAVL1,并降低其與靶mRNA的結(jié)合能力[51]。p38-MAPK在T118磷酸化ELAVL1,增強(qiáng)了ELAVL1的細(xì)胞質(zhì)定位,提高與靶mRNA的結(jié)合[52]。PKCα在S158和S221處磷酸化ELAVL1,導(dǎo)致ELAVL1由細(xì)胞核轉(zhuǎn)運(yùn)到細(xì)胞質(zhì),但PKCδ在S318磷酸化ELAVL1卻不影響其核質(zhì)轉(zhuǎn)運(yùn),而是增強(qiáng)ELAVL1與COX-2 mRNA的結(jié)合[53-54]。
3 ELAVL1調(diào)控病毒復(fù)制
近年來研究表明,ELAVL1可參與多種病毒的復(fù)制,其對于病毒的調(diào)控機(jī)制的研究主要在于其控制靶mRNA的穩(wěn)定性、亞細(xì)胞定位及RNA干擾方面。然而更具體的調(diào)控機(jī)制在很大程度上還未被探索。
3.1 ELAVL1調(diào)控腺病毒的復(fù)制
腺病毒(Adenovirus,Ad)是一種無包膜的雙鏈DNA病毒,腺病毒載體具有很強(qiáng)的免疫原性,能夠激發(fā)哺乳動物宿主細(xì)胞的先天免疫和特異性免疫,是將外源基因送入宿主細(xì)胞的最有效載體之一[53-56]。有研究表明,腺病毒感染誘導(dǎo)ELAVL1向宿主細(xì)胞的細(xì)胞質(zhì)重新定位,并提高了ARE IVa2 mRNA的穩(wěn)定性,通過敲除ELAVL,抑制了IVa2 mRNA的穩(wěn)定可以減少腺病毒的產(chǎn)生,說明ELAVL1可以促進(jìn)腺病毒的復(fù)制[57]。另有研究發(fā)現(xiàn)E4ORF6缺失的腺病毒DL355具有溶瘤活性,而ELAVL1核質(zhì)轉(zhuǎn)運(yùn)促進(jìn)了腺病毒復(fù)制,并且ELAVL1的核質(zhì)轉(zhuǎn)運(yùn)可由許多刺激因素介導(dǎo)。因此,Ahmed等[58]用乙醇處理DL355并作用于癌細(xì)胞,發(fā)現(xiàn)與未處理相比,促進(jìn)了ELAVL1的細(xì)胞質(zhì)含量,提高了靶mRNA的穩(wěn)定性,也增加了溶瘤活性。順鉑(Cis-diamminedichloroplatinum,CDDP)是治療人類惡性腫瘤常用的抗癌藥物之一。Habiba等[59]將DL355和CDDP聯(lián)合用于腫瘤細(xì)胞并進(jìn)行了體內(nèi)試驗(yàn),發(fā)現(xiàn)二者聯(lián)用能誘導(dǎo)ELAVL1向細(xì)胞質(zhì)轉(zhuǎn)運(yùn),使ARE mRNA穩(wěn)定,增強(qiáng)溶瘤腺病毒DL355的復(fù)制,從而發(fā)揮協(xié)同抗腫瘤作用。以上研究表明,通過一定方式促進(jìn)ELAVL1向細(xì)胞質(zhì)轉(zhuǎn)運(yùn)可以促進(jìn)腺病毒的復(fù)制(表1)。
3.2 ELAVL1調(diào)控肝炎病毒的復(fù)制
肝炎病毒有甲、乙、丙、丁、戊、庚六型[72]。其中,乙型肝炎病毒(hepatitis B virus, HBV)是雙鏈DNA病毒,屬于嗜肝DNA病毒科;丙型肝炎病毒(hepatitis C virus,HCV)是正義單鏈RNA病毒,屬于黃病毒科;丁型肝炎病毒(hepatitis D virus,HDV)是負(fù)義單鏈RNA病毒,為缺陷型病毒[73]。Luo[74]首次發(fā)現(xiàn)ELAVL1與HCV 3′UTR中的富U區(qū)域相互作用,Spngberg等[28]發(fā)現(xiàn)3′UTR主要與病毒的有義鏈結(jié)合,5′UTR主要與病毒的反義鏈結(jié)合。隨后Korf等[61]發(fā)現(xiàn),敲除ELAVL1可抑制HCV復(fù)制,蛋白酶體亞基α7(proteasome α-subunit 7,PSMA7)可調(diào)節(jié)HCV內(nèi)部核糖體進(jìn)入位點(diǎn)(internal ribosomal entry site,IRES)的活性,IRES能招募核糖體對mRNA進(jìn)行翻譯,而敲除ELAVL1與敲除PSMA 7聯(lián)合使用時可增強(qiáng)抑制HCV復(fù)制的效果。Rivas-Aravena等[64]發(fā)現(xiàn),轉(zhuǎn)染ELAVL1 RNA或質(zhì)粒增加了HCV IRES的翻譯,通過內(nèi)源性途徑敲除ELAVL1導(dǎo)致HCV IRES蛋白降低,從而調(diào)節(jié)病毒復(fù)制周期。La自身抗原(La autoantigen,La)已被證明通過與HCV結(jié)合來調(diào)節(jié)HCV的翻譯。Shwetha等[62]發(fā)現(xiàn),ELAVL1在HCV感染宿主后從細(xì)胞核重定位到細(xì)胞質(zhì),與NS5B相互作用,并將ELAVL1募集到病毒RNA合成的區(qū)域,促進(jìn)病毒復(fù)制。此外,ELAVL1與LA相互作用,促進(jìn)LA與3′UTR結(jié)合,增強(qiáng)LA介導(dǎo)的HCV基因組循環(huán)并與聚嘧啶區(qū)結(jié)合蛋白(polypyrimidine tract binding protein,PTB)(PTB是病毒復(fù)制的負(fù)調(diào)節(jié)因子)競爭結(jié)合3′UTR,從而促進(jìn)病毒復(fù)制。之后更深入的研究表明,ELAVL1通過穩(wěn)定和增加miR-122水平促進(jìn)HCV增殖,抗癌藥物Rigosertib具有miR-122調(diào)節(jié)能力,通過靶向polo樣激酶1(polo-like kinase 1,PLK1)并隨后調(diào)節(jié)ELAVL1/miR-122信號傳導(dǎo)發(fā)揮抗HCV活性[60]。ELAVL1還能影響HBV mRNA穩(wěn)定性,敲除ELAVL1可抑制HBV復(fù)制,而且還能抑制肝癌細(xì)胞生長[63]。另外,HBV編碼的X蛋白(X protein,HBX)在HBV誘導(dǎo)的肝細(xì)胞癌中起著重要作用。HBX通過上調(diào)ELAVL1增強(qiáng)HER2 mRNA的穩(wěn)定性來增強(qiáng)HER2蛋白的表達(dá),從而增強(qiáng)肝癌細(xì)胞的遷移能力[75]。HDV是迄今為止發(fā)現(xiàn)的最小的人類病原體,它是一種衛(wèi)星病毒,沒有獨(dú)立的生命周期,只能依靠HBV的功能進(jìn)行復(fù)制和表達(dá)[73]。ELAVL1與HDV的小大δ抗原(small and large delta antigens,S-HDAg和L-HDAg)于體內(nèi)外相互作用,在病毒復(fù)制和生命周期中發(fā)揮關(guān)鍵作用[76]。以上研究表明,ELAVL1可參與調(diào)控肝炎病毒的復(fù)制,通過敲除/低ELAVL1的表達(dá),能達(dá)到抑制病毒復(fù)制的效果。
3.3 ELAVL1調(diào)控辛德比斯病毒的復(fù)制
辛德比斯病毒(Sindbis virus,SinV)是甲病毒屬的模式病毒,該病毒的復(fù)制只發(fā)生在細(xì)胞質(zhì)中。研究發(fā)現(xiàn),SinV以及甲病毒屬的西方馬腦炎病毒、羅斯河病毒和基孔肯亞病毒在感染細(xì)胞時ELAVL1都發(fā)生了重定位,并且其機(jī)制與細(xì)胞應(yīng)激時不同(應(yīng)激時主要為Caspase介導(dǎo)的蛋白裂解)[67]。敲除ELAVL導(dǎo)致SinV RNA的衰變率顯著增加,并抑制了病毒復(fù)制[66]。研究還發(fā)現(xiàn),設(shè)計(jì)SinV突變體,停止了絕大多數(shù)病毒基因的表達(dá)和復(fù)制,隨后感染細(xì)胞,發(fā)現(xiàn)大多數(shù)ELAVL位于細(xì)胞核中,說明ELAVL1的重定位需要SinV的表達(dá)和復(fù)制。此外,在SinV感染時,ELAVL1發(fā)生了去磷酸化,也影響了細(xì)胞核內(nèi)前體mRNA的選擇性多聚腺苷酸化和剪接,這一過程與ELAVL被留在細(xì)胞質(zhì)有關(guān)[40]。以上研究表明,ELAVL1通過核質(zhì)轉(zhuǎn)運(yùn)可調(diào)控SinV的復(fù)制,且ELAVL1的翻譯后修飾調(diào)控其核質(zhì)轉(zhuǎn)運(yùn)。之前的研究發(fā)現(xiàn),細(xì)胞應(yīng)激可以通過改變ELAVL1殘基(如Ser-88、Ser-100、Thr 118、Ser-158、Ser-202、Ser-221、Ser-242、Ser-318)的磷酸化而影響其核質(zhì)穿梭的關(guān)鍵因素[1]。然而在SinV感染后,ELAVL1蛋白發(fā)生的修飾不同于在細(xì)胞應(yīng)激反應(yīng)下發(fā)生的變化,而是發(fā)生了去磷酸化。因此,還需明確SinV引起的ELAVL1核質(zhì)轉(zhuǎn)運(yùn)的翻譯后修飾方式及其調(diào)控機(jī)制。
3.4 ELAVL1調(diào)控其它病毒的復(fù)制
研究發(fā)現(xiàn)ELAVL1直接與人類免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)逆轉(zhuǎn)錄酶(reverse transcriptase,RT)的核糖核酸酶H(Ribonuclease H,RNase H)區(qū)域相互作用影響HIV-1的復(fù)制[65]。隨后有研究人員重復(fù)試驗(yàn),發(fā)現(xiàn)ELAVL不是直接通過與RT復(fù)合物的相互作用來干擾HIV-1的復(fù)制,而是可能通過不明宿主因子或RNA介導(dǎo)的間接作用來干擾HIV-1的復(fù)制[77]。ELAVL1是莖-環(huán)II(stem loop II,SL-II)控制病毒翻譯的關(guān)鍵IRES相關(guān)反式作用因子(IRES-associated trans-acting factors,ITAFs),有研究表明,ELAVL1與腸道病毒71型(Enterovirus 71, EV71)5′UTR的SL-II結(jié)合,促進(jìn)IRES依賴的復(fù)制和翻譯。病毒衍生的小RNA(virus-derived small RNA 1,VSRNA1)可增強(qiáng)ELAVL1與SL-II的結(jié)合,從而更加促進(jìn)EV71的復(fù)制和翻譯。敲除ELAVL1能降低EV71滴度約1 000倍,當(dāng)與敲除Argonaute 2聯(lián)合使用時,病毒滴度降低了近100萬倍[69,78]。而在柯薩奇B3病毒(coxsackie virus B3, CVB3)中,發(fā)現(xiàn)ELAVL1不直接影響翻譯并且不直接與IRES相互作用,而是通過置換病毒復(fù)制的正調(diào)節(jié)因子細(xì)胞多聚(rC)結(jié)合蛋白2(poly(rC)binding protein 2,PCBP-2)來抑制病毒復(fù)制[70]。此外,ELAVL1在寨卡病毒(Zika virus,ZIKV)上的作用不似其它病毒,敲除ELAVL1增加了ZIKV的蛋白和RNA水平以及病毒滴度,促進(jìn)了病毒復(fù)制,同時ELAVL1在ZIKV感染時也發(fā)生了核質(zhì)轉(zhuǎn)運(yùn)[10]。這表明同一宿主蛋白在不同病毒感染中的功能具有多樣性,也表明ELAVL1在不同病毒感染中對病毒復(fù)制的影響是有差異的。
4 展 望
ELAVL1以往的研究多集中于其在腫瘤方面的作用,它在幾乎所有類型癌癥中均呈異常高表達(dá),可以影響腫瘤細(xì)胞的增殖、侵襲與遷移,是治療各種癌癥的潛在治療靶標(biāo),并參與調(diào)節(jié)編碼關(guān)鍵過程(如器官發(fā)育和組織穩(wěn)態(tài))的蛋白質(zhì)和mRNA的水平,這體現(xiàn)了其與整個生物體的相關(guān)性[23,79-81]。近年來,ELAVL1在病毒方面的研究逐漸增加,發(fā)現(xiàn)其在黃病毒科、腺病毒科、嗜肝DNA病毒科、皰疹病毒科、逆轉(zhuǎn)錄病毒科、正黏病毒科、小RNA病毒科、乳頭瘤病毒科、披膜病毒科等均發(fā)揮一定的作用,并且主要表現(xiàn)在病毒復(fù)制方面。雖然ELAVL1的表達(dá)對于病毒復(fù)制有著十分重要的作用,但其具體機(jī)制的相關(guān)研究還不夠深入。確定ELAVL1在病毒感染中發(fā)揮的作用及其具體機(jī)制,將為病毒-宿主相互作用提供新的見解[84]。ELAVL1的核質(zhì)轉(zhuǎn)運(yùn)及其定位對病毒感染有一定影響,深入研究ELAVL1核質(zhì)轉(zhuǎn)運(yùn)的調(diào)節(jié)機(jī)制,進(jìn)行定向突變,改變其定位,可為病毒相關(guān)研究提供更多的可能。目前已有ELAVL1的小分子抑制劑MS-444、KH3和CMLD-2等,并且已在多種體外和體內(nèi)模型中使用,相信未來能為病毒的防治提供更加合理、高效的方案[15,79,83]。
目前,ELAVL1在感染畜禽的動物病毒上的功能和作用機(jī)制方面還鮮有研究。Du等[84]發(fā)現(xiàn),感染豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)會激活MEK1-ERK1/2-C/EBPβ信號通路,從而上調(diào)小膠質(zhì)細(xì)胞中COX-2和前列腺素E2(prostaglandin E2,PGE2)的產(chǎn)生。Sajiki等[85]發(fā)現(xiàn),在牛感染牛白血病病毒(bovine leukemia virus,BLV)期間,COX-2的表達(dá)升高,血漿中PGE2的濃度也出現(xiàn)升高。這表明COX-2在某些畜禽病毒感染中也發(fā)揮一定的作用。家禽養(yǎng)殖中,最常見的致腫瘤性病毒有3種,即馬立克病病毒(Marek’s disease virus,MDV)、禽白血病病毒(Avian Leukosis virus,ALV)和禽網(wǎng)狀內(nèi)皮組織增殖病毒(reticuloendotheliosis virus,REV),導(dǎo)致家禽的生產(chǎn)性能下降,甚至死亡,給養(yǎng)殖戶造成較大的經(jīng)濟(jì)損失[86-87]。Kamble等[88]發(fā)現(xiàn),MDV強(qiáng)毒株激活COX-2/PGE2途徑,其以EP2和EP4(PGE2的受體)依賴性方式調(diào)節(jié)T細(xì)胞增殖,口服COX-2和PGE2抑制劑可恢復(fù)MDV感染雞的T細(xì)胞增殖,表明COX-2和PGE2的表達(dá)在MDV感染致腫瘤發(fā)生中具有重要的作用。目前,已有多項(xiàng)研究表明ELAVL1和COX-2的表達(dá)有一定的相關(guān)性,二者在腫瘤中都呈高表達(dá)[89-91]。此外,ELAVL1還能穩(wěn)定COX-2 mRNA的穩(wěn)定性[92]。因此推測,ELAVL1在畜禽病毒感染中具有重要的調(diào)控作用。ELAVL1能否影響家禽致腫瘤性病毒的復(fù)制及其致腫瘤的發(fā)生是值得探討的。
參考文獻(xiàn)(References):
[1] GRAMMATIKAKIS I,ABDELMOHSEN K,GOROSPE M.Posttranslational control of HuR function[J].WIREs RNA,2017,8(1):e1372.
[2] WANG H,DING N N,GUO J,et al.Dysregulation of TTP and HuR plays an important role in cancers[J].Tumor Biol,2016,37(11):14451-14461.
[3] SCHULTZ C W,PREET R,DHIR T,et al.Understanding and targeting the disease-related RNA binding protein human antigen R (HuR)[J].WIRev RNA,2020,11(3):e1581.
[4] GOUTAS D,PERGARIS A,GIAGINIS C,et al.HuR as therapeutic target in cancer:what the future holds[J].Curr Med Chem,2022,29(1):56-65.
[5] WANG J,GUO Y,CHU H L,et al.Multiple functions of the RNA-binding protein HuR in cancer progression,treatment responses and prognosis[J].Int J Mol Sci,2013,14(5):10015-10041.
[6] KEENE J D.RNA regulons:coordination of post-transcriptional events[J].Nat Rev Genet,2007,8(7):533-543.
[7] SIDALI A,TEOTIA V,SOLAIMAN N S,et al.AU-rich element RNA binding proteins:at the crossroads of post-transcriptional regulation and genome integrity[J].Int J Mol Sci,2022,23(1):96.
[8] SRIKANTAN S,GOROSPE M.HuR function in disease[J].Front Biosci (Landmark Ed),2012,17(1):189-205.
[9] 曹楠婧,王九菊.RNA結(jié)合蛋白HuR的研究進(jìn)展[J].生命的化學(xué),2021,41(6):1222-1229.
CAO N J,WANG J J.Research progress of RNA binding protein HuR[J].Chemistry of Life,2021,41(6):1222-1229.(in Chinese)
[10] BONENFANT G,WILLIAMS N,NETZBAND R,et al.Zika virus subverts stress granules to promote and restrict viral gene expression[J].J Virol,2019,93(12):e00520-19.
[11] 馮曉輝,湯 承,朱 鑫,等.核不均一核糖核蛋白與病毒復(fù)制[J].畜牧獸醫(yī)學(xué)報,2015,46(6):882-888.
FENG X H,TANG C,ZHU X,et al.Heterogeneous nuclear ribonucleoprotein and virus replication[J].Acta Veterinaria et Zootechnica Sinica,2015,46(6):882-888.(in Chinese)
[12] 孫嚴(yán)金,薛亞男,仲 濤,等.HuR的功能及其對肌肉生長發(fā)育的調(diào)控作用[J].畜牧獸醫(yī)學(xué)報,2022,53(5):1345-1353.
SUN Y J,XUE Y N,ZHONG T,et al.The function of HuR and its regulation on muscle growth and development[J].Acta Veterinaria et Zootechnica Sinica,2022,53(5):1345-1353.(in Chinese)
[13] MA W J,CHENG S,CAMPBELL C,et al.Cloning and characterization of HuR,a ubiquitously expressed Elav-like protein[J].J Biol Chem,1996,271(14):8144-8151.
[14] SUBRAMANIAN P,GARGANI S,PALLADINI A,et al.The RNA binding protein human antigen R is a gatekeeper of liver homeostasis[J].Hepatology,2022,75(4):881-897.
[15] PAPATHEOFANI V,LEVIDOU G,SARANTIS P,et al.HuR protein in hepatocellular carcinoma:implications in development,prognosis and treatment[J].Biomedicines,2021,9(2):119.
[16] LACHIONDO-ORTEGA S,DELGADO T C,BAOS-JAIME B,et al.Hu antigen R (HuR) protein structure,function and regulation in hepatobiliary tumors[J].Cancers (Basel),2022,14(11):2666.
[17] YOO J,KANG J,LEE H N,et al.Kaposin-B enhances the PROX1 mRNA stability during lymphatic reprogramming of vascular endothelial cells by Kaposi’s sarcoma herpes virus[J].PLoS Pathog,2010,6(8):e1001046.
[18] SONG X Q,SHI X,LI W J,et al.The RNA-binding protein HuR in digestive system tumors[J].Biomed Res Int,2020,2020:9656051.
[19] LEVIDOU G,KOTTA-LOIZOU I,TASOULAS J,et al.Clinical significance and biological role of HuR in head and neck carcinomas[J].Dis Markers,2018,2018:4020937.
[20] GOMEZ-SANTOS L,VAZQUEZ-CHANTADA M,MATO J M,et al.SAMe and HuR in liver physiology:usefulness of stem cells in hepatic differentiation research[J].Methods Mol Biol,2012,826:133-149.
[21] ATASOY U,WATSON J,PATEL D,et al.ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation[J].J Cell Sci,1998,111(21):3145-3156.
[22] KIM H H,GOROSPE M.Phosphorylated HuR shuttles in cycles[J].Cell Cycle,2008,7(20):3124-3126.
[23] 陳禹鑫,殷文婕,蔣 壯,等.RNA結(jié)合蛋白ELAVL1與腫瘤進(jìn)展的關(guān)系研究[J].中國現(xiàn)代醫(yī)學(xué)雜志,2021,31(13):65-70.
CHEN Y X,YIN W J,JIANG Z,et al.Review on relationship between RNA-binding protein ELAVL1 and tumor progression[J].China Journal of Modern Medicine,2021,31(13):65-70.(in Chinese)
[24] DOLLER A,PFEILSCHIFTER J,EBERHARDT W.Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR[J].Cell Signal,2008,20(12):2165-2173.
[25] SMITH M R,COSTA G.RNA-binding proteins and translation control in angiogenesis[J].FEBS J,2022,289(24):7788-7809.
[26] SRIKANTAN S,TOMINAGA K,GOROSPE M.Functional interplay between RNA-binding protein HuR and microRNAs[J].Curr Protein Pept Sci,2012,13(4):372-379.
[27] FEIGERLOV E,BATTAGLIA-HSU S F.Role of post-transcriptional regulation of mRNA stability in renal pathophysiology:focus on chronic kidney disease[J].FASEB J,2017,31(2):457-468.
[28] SPNGBERG K,WIKLUND L,SCHWARTZ S.HuR,a protein implicated in oncogene and growth factor mRNA decay,binds to the 3′ ends of hepatitis C virus RNA of both polarities[J].Virology,2000,274(2):378-390.
[29] 何 苗.基于CRISPR-dCas9/Cas13a的轉(zhuǎn)錄及轉(zhuǎn)錄后調(diào)控體系構(gòu)建與應(yīng)用[D].合肥:中國科學(xué)技術(shù)大學(xué),2022.
HE M.The construction of CRISPR-dCas9/Cas13a-Based systems for transcriptional and post-Transcriptional regulation and its application[D].Hefei:University of Science and Technology of China,2022.(in Chinese).
[30] BARBISAN F,MAZZUCCHELLI R,SANTINELLI A,et al.Overexpression of ELAV-like protein HuR is associated with increased COX-2 expression in atrophy,high-grade prostatic intraepithelial neoplasia,and incidental prostate cancer in cystoprostatectomies[J].Eur Urol,2009,56(1):105-112.
[31] KAKUGUCHI W,KITAMURA T,KUROSHIMA T,et al.HuR knockdown changes the oncogenic potential of oral cancer cells[J].Mol Cancer Res,2010,8(4):520-528.
[32] ZOU T T,MAZAN-MAMCZARZ K,RAO J N,et al.Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs[J].J Biol Chem,2006,281(28):19387-19394.
[33] KRISHNAMURTHY P,RAJASINGH J,LAMBERS E,et al.IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR[J].Circ Res,2009,104(2):e9-e18.
[34] TSCHERNATSCH M M O,MLECNIK B,TRAJANOSKI Z,et al.LPL-mediated lipolysis of VLDL induces an upregulation of AU-rich mRNAs and an activation of HuR in endothelial cells[J].Atherosclerosis,2006,189(2):310-317.
[35] 楊 陽.Zfp217參與轉(zhuǎn)錄調(diào)控和轉(zhuǎn)錄后m6A修飾調(diào)控脂肪細(xì)胞生成的機(jī)制[D].武漢:華中農(nóng)業(yè)大學(xué),2019.
YANG Y.Mechanism of Zfp217 regulating adipogenesis through transcriptional regulation and m6A posttranscriptional modification[D].Wuhan:Huazhong Agricultural University,2019.(in Chinese)
[36] JEYARAJ S C,SINGH M,AYUPOVA D A,et al.Transcriptional control of human antigen R by bone morphogenetic protein[J].J Biol Chem,2010,285(7):4432-4440.
[37] KANG M J,RYU B K,LEE M G,et al.NF-κB activates transcription of the RNA-binding factor HuR,via PI3K-AKT signaling,to promote gastric tumorigenesis[J].Gastroenterology,2008,135(6):2030-2042.e3.
[38] JEYARAJ S C,SINGH M,AYUPOVA D A,et al.Transcriptional control of human antigen R by bone morphogenetic protein[J].J Biol Chem,2010,285(7):4432-4440.
[38] GOVINDARAJU S,LEE B S.Krüppel -like factor 8 is a stress-responsive transcription factor that regulates expression of HuR[J].Cell Physiol Biochem,2014,34(2):519-532.
[39] XIAO L,LI X X,CHUNG H K,et al.RNA-binding protein HuR regulates paneth cell function by altering membrane localization of TLR2 via post-transcriptional control of CNPY3[J].Gastroenterology,2019,157(3):731-743.
[40] BARNHART M D,MOON S L,EMCH A W,et al.Changes in cellular mRNA stability,splicing,and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus[J].Cell Rep,2013,5(4):909-917.
[41] 楊 旭,訾晶晶,郭 宏,等.LncRNA參與轉(zhuǎn)錄后調(diào)控作用機(jī)制研究進(jìn)展[J].天津農(nóng)學(xué)院學(xué)報,2022,29(2):85-87,91.
YANG X,ZI J J,GUO H,et al.Research progress on the mechanism of lncRNA involved in post-transcriptional regulation[J].Journal of Tianjin Agricultural University,2022,29(2):85-87,91.(in Chinese)
[42] CHANG S H,HLA T.Post-transcriptional gene regulation by HuR and microRNAs in angiogenesis[J].Curr Opin Hematol,2014,21(3):235-240.
[43] LI Y B,YU J H,DU D H,et al.Involvement of post-transcriptional regulation of FOXO1 by HuR in 5-FU-induced apoptosis in breast cancer cells[J].Oncol Lett,2013,6(1):156-160.
[44] PHILLIPS B L,BANERJEE A,SANCHEZ B J,et al.Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR[J].Nucleic Acids Res,2018,46(15):7643-7661.
[45] GUO J,LEI M,CHENG F,et al.RNA-binding proteins tristetraprolin and human antigen R are novel modulators of podocyte injury in diabetic kidney disease[J].Cell Death Dis,2020,11(6):413.
[46] 劉蘭香.基于蛋白翻譯后修飾和轉(zhuǎn)錄組改變的腸道微生物調(diào)節(jié)海馬功能機(jī)制研究[D].重慶:重慶醫(yī)科大學(xué),2020.
LIU L X.Study on the mechanism of intestinal microbes regulating hippocampal function based on protein post-translational modifications and transcriptome changes[D].Chongqing:Chongqing Medical University,2020.(in Chinese)
[47] LIU J,QIAN C,CAO X T.Post-translational modification control of innate immunity[J].Immunity,2016,45(1):15-30.
[48] 劉 靜,李亞超,周夢巖,等.植物蛋白質(zhì)翻譯后修飾組學(xué)研究進(jìn)展[J].生物技術(shù)通報,2021,37(1):67-76.
LIU J,LI Y C,ZHOU M Y,et al.Advances in the studies of plant protein post-translational modification[J].Biotechnology Bulletin,2021,37(1):67-76.(in Chinese)
[49] KIM H H,ABDELMOHSEN K,LAL A,et al.Nuclear HuR accumulation through phosphorylation by Cdk1[J].Genes Dev,2008,22(13):1804-1815.
[50] FILIPPOVA N,YANG X H,KING P,et al.Phosphoregulation of the RNA-binding protein Hu antigen R (HuR) by Cdk5 affects centrosome function[J].J Biol Chem,2012,287(38):32277-32287.
[51] ABDELMOHSEN K,PULLMANN R Jr,LAL A,et al.Phosphorylation of HuR by Chk2 regulates SIRT1 expression[J].Mol Cell,2007,25(4):543-557.
[52] LAFARGA V,CUADRADO A,LOPEZ DE SILANES I,et al.p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21Cip1 mRNA mediates the G1/S checkpoint[J].Mol Cell Biol,2009,29(16):4341-4351.
[53] DOLLER A,HUWILER A,MLLER R,et al.Protein kinase Cα-dependent phosphorylation of the mRNA-stabilizing factor HuR:implications for posttranscriptional regulation of cyclooxygenase-2[J].Mol Biol Cell,2007,18(6):2137-2148.
[54] DOLLER A,SCHLEPCKOW K,SCHWALBE H,et al.Tandem phosphorylation of serines 221 and 318 by protein kinase Cδ coordinates mRNA binding and nucleocytoplasmic shuttling of HuR[J].Mol Cell Biol,2010,30(6):1397-1410.
[55] LYNCH J P,F(xiàn)ISHBEIN M,ECHAVARRIA M.Adenovirus[J].Semin Respir Crit Care Med,2011,32(4):494-511.
[56] 郝彥霞.腺病毒載體特異性單域抗體的篩選、制備及其鑒定[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2022.
HAO Y X.Screening,preparation and identification of Adenoviral vector specific single domain antibodies[D].Hohhot:Inner Mongolia Agricultural University,2022.(in Chinese)
[57] JEHUNG J P,KITAMURA T,YANAGAWA-MATSUDA A,et al.Adenovirus infection induces HuR relocalization to facilitate virus replication[J].Biochem Biophys Res Commun,2018,495(2):1795-1800.
[58] AHMED I,ALAM M T,YANAGAWA-MATSUDA A,et al.Enhanced oncolytic activity of E4orf6-deficient adenovirus by facilitating nuclear export of HuR[J].Biochem Biophys Res Commun,2020,529(2):494-499.
[59] HABIBA U,HOSSAIN E,YANAGAWA-MATSUDA A,et al.Cisplatin relocalizes RNA binding protein HuR and enhances the oncolytic activity of E4orf6 deleted adenovirus[J].Cancers,2020,12(4):809.
[60] SEO Y,KANG Y,HAM Y,et al.PLK1-ELAVL1/HuR-miR-122 signaling facilitates hepatitis C virus proliferation[J].Proc Natl Acad Sci U S A,2022,119(51):e2214911119.
[61] KORF M,JARCZAK D,BEGER C,et al.Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors[J].J Hepatol,2005,43(2):225-234.
[62] SHWETHA S,KUMAR A,MULLICK R,et al.HuR displaces polypyrimidine tract binding protein to facilitate la binding to the 3′ untranslated region and enhances hepatitis C virus replication[J].J Virol,2015,89(22):11356-11371.
[63] KANZAKI H,CHIBA T,KANEKO T,et al.The RNA-binding protein ELAVL1 regulates hepatitis B virus replication and growth of hepatocellular carcinoma cells[J].Int J Mol Sci,2022,23(14):7878.
[64] RIVAS-ARAVENA A,RAMDOHR P,VALLEJOS M,et al.The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites[J].Virology,2009,392(2):178-185.
[65] LEMAY J,MAIDOU-PEINDARA P,BADER T,et al.HuR interacts with human immunodeficiency virus type 1 reverse transcriptase,and modulates reverse transcription in infected cells[J].Retrovirology,2008,5(1):47.
[66] SOKOLOSKI K J,DICKSON A M,CHASKEY E L,et al.Sindbis virus usurps the cellular HuR protein to stabilize its transcripts and promote productive infections in mammalian and mosquito cells[J].Cell Host Microbe,2010,8(2):196-207.
[67] DICKSON A M,ANDERSON J R,BARNHART M D,et al.Dephosphorylation of HuR protein during alphavirus infection is associated with HuR relocalization to the cytoplasm[J].J Biol Chem,2012,287(43):36229-36238.
[68] NILSSON K,ABDURAHMAN S,SCHWARTZ S.Influenza virus natural sequence heterogeneity in segment 8 affects interactions with cellular RNA-binding proteins and splicing efficiency[J].Virology,2020,549:39-50.
[69] LI M L,BREWER G.Functional analyses of mammalian virus 5′UTR-derived,small RNAs that regulate virus translation[J].Methods,2020,183:13-20.
[70] GAO H X,LIN Y X,HUANG C B,et al.A genome-wide CRISPR screen identifies HuR as a regulator of apoptosis induced by dsRNA and virus[J].J Cell Sci,2022,135(6):jcs258855.
[71] GEORGE B,DAVE P,RANI P,et al.Cellular protein HuR regulates the switching of genomic RNA templates for differential functions during the coxsackievirus B3 life cycle[J].J Virol,2021,95(21):e0091521.
[72] 農(nóng) 汝,吳俊儀,黃 寧,等.圈養(yǎng)靈長類動物肝炎病毒血清流行病學(xué)的調(diào)查[J].現(xiàn)代畜牧獸醫(yī),2023(2):65-68.
NONG R,WU J Y,HUANG N,et al.Investigation of seroepidemiology of hepatitis virus in captive primates[J].Modern Journal of Animal Husbandry and Veterinary Medicine,2023(2):65-68.(in Chinese)
[73] LIOU J W,MANI H,YEN J H.Viral hepatitis,cholesterol metabolism,and cholesterol-lowering natural compounds[J].Int J Mol Sci,2022,23(7):3897.
[74] LUO G X.Cellular proteins bind to the poly(U) tract of the 3′ untranslated region of hepatitis C virus RNA genome[J].Virology,1999,256(1):105-118.
[75] HUNG C M,HUANG W C,PAN H L,et al.Hepatitis B virus X upregulates HuR protein level to stabilize HER2 expression in hepatocellular carcinoma cells[J].Biomed Res Int,2014,2014:827415.
[76] CASACA A,F(xiàn)ARDILHA M,DA CRUZ E SILVA E,et al.In vivo interaction of the hepatitis delta virus small antigen with the ELAV-like protein HuR[J].Open Virol J,2011,5:12-21.
[78] BARNHART M D,MOON S L,EMCH A W,et al.Changes in cellular mRNA stability,splicing,and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus[J].Cell Rep,2013,5(4):909-917.
[77] AHN J,BYEON I J L,DHARMASENA S,et al.The RNA binding protein HuR does not interact directly with HIV-1 reverse transcriptase and does not affect reverse transcription in vitro[J].Retrovirology,2010,7:40.
[78] LIN J Y,BREWER G,LI M L.HuR and Ago2 bind the internal ribosome entry site of enterovirus 71 and promote virus translation and replication[J].PLoS One,2015,10(10):e0140291.
[79] ASSONI G,LA PIETRA V,DIGILIO R,et al.HuR-targeted agents:an insight into medicinal chemistry,biophysical,computational studies and pharmacological effects on cancer models[J].Adv Drug Deliv Rev,2022,181:114088.
[80] EBERHARDT W,BADAWI A,BIYANEE A,et al.Cytoskeleton-dependent transport as a potential target for interfering with post-transcriptional HuR mRNA regulons[J].Front Pharmacol,2016,7:251.
[81] RAGURAMAN R,SHANMUGARAMA S,MEHTA M,et al.Drug delivery approaches for HuR-targeted therapy for lung cancer[J].Adv Drug Deliv Rev,2022,180:114068.
[82] KOTTA-LOIZOU I,VASILOPOULOS S N,COUTTS R H A,et al.Current evidence and future perspectives on HuR and breast cancer development,prognosis,and treatment[J].Neoplasia,2016,18(11):674-688.
[83] LIU Y B,LI X Z,ZHANG H,et al.HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer[J].Oncogene,2021,40(12):2230-2242.
[84] DU L,WANG H L,LIU F,et al.NSP2 is important for highly pathogenic porcine reproductive and respiratory syndrome virus to trigger high fever-related COX-2-PGE2 pathway in pigs[J].Front Immunol,2021,12:657071.
[85] SAJIKI Y,KONNAI S,OKAGAWA T,et al.Prostaglandin E2-induced immune exhaustion and enhancement of antiviral effects by anti-PD-L1 antibody combined with COX-2 inhibitor in bovine leukemia virus infection[J].J Immunol,2019,203(5):1313-1324.
[86] 崔 燕,呂 茜,史 藝.禽病毒性腫瘤病的診斷與防控[J].湖北畜牧獸醫(yī),2013,34(11):19-20.
CUI Y,LV X,SHI Y.Diagnosis and control of avian viral neoplastic diseases[J].Hubei Journal of Animal and Veterinary Sciences,2013,34(11):19-20.(in Chinese)
[87] SHI M Y,LI M,WANG W W,et al.The emergence of a vv+MDV can break through the protections provided by the current vaccines[J].Viruses,2020,12(9):1048.
[88] KAMBLE N,GURUNG A,KAUFER B B,P et al.Marek’s disease virus modulates T cell proliferation via activation of cyclooxygenase 2-dependent prostaglandin E2[J].Front Immunol,2021,12:801781.
[89] 王夢雅.HuR、COX-2和VEGF-C在非小細(xì)胞肺癌中的表達(dá)及預(yù)后作用[D].濟(jì)寧:濟(jì)寧醫(yī)學(xué)院,2022.
WANG M Y.The expression and prognosis of HuR,COX-2 and VEGF-C in non-small cell lung cancer[D].Jining:Jining Medical University,2022.(in Chinese)
[90] MITSUNARI K,MIYATA Y,ASAI A,et al.Human antigen R is positively associated with malignant aggressiveness via upregulation of cell proliferation,migration,and vascular endothelial growth factors and cyclooxygenase-2 in prostate cancer[J].Transl Res,2016,175:116-128.
[91] LEIJON H,SALMENKIVI K,HEISKANEN I,et al.HuR in pheochromocytomas and paragangliomas-overexpression in verified malignant tumors[J].Apmis,2016,124(9):757-763.
[92] ZHANG J,BOWDEN G T.UVB irradiation regulates Cox-2 mRNA stability through AMPK and HuR in human keratinocytes[J].Mol Carcinog,2008,47(12):974-983.
(編輯 編輯范子娟)