摘 要: 群體感應(yīng)(quorum sensing, QS)是細(xì)菌利用信號(hào)分子進(jìn)行種內(nèi)或種間交流的一種通訊機(jī)制,借助該通訊機(jī)制微生物群體可以實(shí)現(xiàn)微生物個(gè)體無(wú)法完成的生理功能或行為調(diào)節(jié),如生物膜形成、毒素分泌和生物發(fā)光等,以增強(qiáng)對(duì)外界脅迫環(huán)境的適應(yīng)性。近期多組學(xué)研究發(fā)現(xiàn),以自體誘導(dǎo)物-2(autoinducer-2, AI-2)為信號(hào)分子、LuxS為調(diào)節(jié)蛋白介導(dǎo)的LuxS/AI-2 QS是瘤胃微生物之間交流的主要通訊機(jī)制,影響著瘤胃微生物對(duì)飼料的利用效率。本文從AI-2的化學(xué)結(jié)構(gòu)和轉(zhuǎn)導(dǎo)途徑對(duì)微生物L(fēng)uxS/AI-2 QS進(jìn)行總結(jié),對(duì)LuxS/AI--2 QS在反芻動(dòng)物瘤胃微生物定殖和飼料消化過(guò)程中的作用進(jìn)行綜述,并對(duì)LuxS/AI-2 QS在飼料消化、應(yīng)激調(diào)控中的潛在作用進(jìn)行展望,以期為通過(guò)LuxS/AI-2 QS調(diào)控瘤胃微生物消化代謝和穩(wěn)態(tài)的生產(chǎn)策略提供理論參考。
關(guān)鍵詞: LuxS/AI-2群體感應(yīng);生物膜;瘤胃微生物;群落穩(wěn)定性;飼料消化
中圖分類號(hào):Q938.15
文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):0366-6964(2024)05-1893-11
收稿日期:2023-07-07
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32260861;32160807);江西省自然科學(xué)基金資助項(xiàng)目(20232BAB215051);江西省主要學(xué)科學(xué)術(shù)和技術(shù)帶頭人培養(yǎng)計(jì)劃“領(lǐng)軍人才”項(xiàng)目(20213BCJL22043);江西農(nóng)業(yè)大學(xué)年輕科研創(chuàng)新團(tuán)隊(duì)項(xiàng)目(JXAUCXTD008)
作者簡(jiǎn)介:龍?zhí)茣煟?998-),男,江西分宜人,研究生,主要從事反芻動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail: 18779001108lth@gmail.com
*通信作者:邱清華,主要從事反芻動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail: rcauqqh@cau.edu.cn
Research Progress on LuxS/AI-2 Quorum Sensing of Rumen Microbe in Ruminants
LONG" Tanghui, ZHOU" Jianghui, ZHAN" Yanbo, ZHANG" Jian, ZHAO" Xianghui, LI" Yanjiao,
OUYANG" Kehui, QIU" Qinghua*
(Jiangxi Province Engineering Research Center of Feed Development/Jiangxi Province Key
Laboratory of Animal Nutrition/College of Animal Science and Technology, Jiangxi
Agricultural University, Nanchang 330045," China)
Abstract:" Quorum sensing (QS) is a communication mechanism utilized by bacteria to facilitate intra-species or inter-species communication through the signaling molecules. Through this communication mechanism, microorganisms can collectively conduct physiological functions or regulate behaviors that cannot be achieved by microbial individual. These functions include biofilm formation, toxin secretion, bioluminescence, and other adaptive responses to enhance the adaptability of microorganisms against external stress environment. Recently, multi-omics studies have revealed that LuxS/AI-2 QS, mediated by the autoinducer-2 (AI-2) signaling molecule and regulated by the LuxS protein, serves as the primary communication mechanism among rumen microbe, influencing their efficiency in feed utilization. This review provides a summary of the LuxS/AI-2 QS in rumen microbe, focusing on the chemical structure of AI-2 and its transduction pathways. The roles of LuxS/AI-2 QS in rumen microbial colonization and feed digestion in ruminants were reviewed, as well as the potential roles of LuxS/AI-2 QS in feed digestion and stress regulation. This review may provide a theoretical reference for production strategy by regulating the digestive metabolism and homeostasis of rumen microbe through LuxS/AI-2 QS.
Key words: LuxS/AI-2 quorum sensing; biofilm; rumen microbe; community stability; feed digestion
*Corresponding author: QIU Qinghua,E-mail: rcauqqh@cau.edu.cn
反芻動(dòng)物瘤胃微生物菌群是一個(gè)龐大的群體,包括細(xì)菌、原蟲(chóng)、真菌、產(chǎn)甲烷菌和噬菌體,在瘤胃中的濃度分別高達(dá)1011、106、106、109和1010個(gè)·mL-1瘤胃液[1]。細(xì)菌通常以群居的方式存在,無(wú)論是在非生物表面還是在瘤胃內(nèi),細(xì)菌都會(huì)在復(fù)雜的微生物群落中聚集。在這些動(dòng)態(tài)聚集中,細(xì)菌密集堆積、相互依賴以提供碳代謝物保證自身的正常繁殖和生長(zhǎng)。為了在復(fù)雜多變的環(huán)境中生存,細(xì)菌會(huì)通過(guò)群體感應(yīng)(quorum sensing,QS)感知周?chē)⑸锏拇嬖?,并與它們密切交流,從而達(dá)到協(xié)調(diào)各種生理活動(dòng)的目的[2]。
1 LuxS/AI-2介導(dǎo)的群體感應(yīng)系統(tǒng)
QS由三個(gè)不同類型的系統(tǒng)組成,這三個(gè)系統(tǒng)使用不同類型的自體誘導(dǎo)物(autoinducer molecule,AI),即QS信號(hào)分子。第一個(gè)系統(tǒng)通過(guò)?;呓z氨酸內(nèi)酯(acylated homoserine lactones,AHLs)類信號(hào)分子感知細(xì)胞的密度,一般認(rèn)為這是一種革蘭陰性菌進(jìn)行物種內(nèi)部通訊的QS系統(tǒng)[3];第二個(gè)系統(tǒng)利用自誘導(dǎo)肽(autoinducing peptides,AIPs)類分子作為AI,其信號(hào)識(shí)別系統(tǒng)是AIP經(jīng)過(guò)加工修飾后,與跨膜受體結(jié)合觸發(fā)雙組分磷酸化信號(hào)轉(zhuǎn)導(dǎo)過(guò)程,從而響應(yīng)調(diào)控蛋白來(lái)誘導(dǎo)相關(guān)基因的表達(dá)[4];第三個(gè)系統(tǒng)由自體誘導(dǎo)物-2(autoinducer-2, AI-2)介導(dǎo),其產(chǎn)生受到luxS基因編碼的影響,在革蘭陰性菌和革蘭陽(yáng)性菌中均發(fā)現(xiàn)了luxS基因的同源物,因此LuxS/AI-2 QS常被認(rèn)為是微生物進(jìn)行種間交流的通訊方式[5]。近些年研究發(fā)現(xiàn),QS普遍存在于瘤胃微生物中,而瘤胃微生物中的丁酸弧菌、普雷沃氏菌、瘤胃球菌和假丁酸弧菌這4個(gè)菌屬含有的luxS基因數(shù)量最多,暗示這些細(xì)菌可能具有AI-2信號(hào)轉(zhuǎn)導(dǎo)能力;多組學(xué)研究發(fā)現(xiàn),瘤胃內(nèi)普雷沃氏菌的LuxS合成酶表達(dá)水平較高[6],表明瘤胃內(nèi)該屬主要是以LuxS/AI-2 QS作為通訊方式。
1.1 AI-2的合成
AI-2的生物合成途徑如圖1A所示。AI-2是由4,5-二羥基-2,3-戊二酮(DPD)自發(fā)環(huán)化形成的一種物質(zhì),是LuxS催化裂解S-核糖基高半胱氨酸的產(chǎn)物[7]。DPD的合成在所有細(xì)菌中非常相似,起始代謝物是S-腺苷蛋氨酸(SAM),它作為甲基轉(zhuǎn)移酶的甲基供體,通過(guò)甲基化轉(zhuǎn)化為S-腺苷高半胱氨酸(SAH);SAH被Pfs酶分解為S-核苷酸同型半胱氨酸(SRH)和腺嘌呤,SRH最終作為L(zhǎng)uxS酶的底物,用于合成DPD和副產(chǎn)品同型半胱氨酸[7]。DPD自發(fā)的環(huán)化作用導(dǎo)致了兩個(gè)嵌合型呋喃酮的形成,分別是(2S,4S)-2,4-二羥基-2-甲基-二氫呋喃-3-酮(S-DHMF)和(2R,4S)-2,4-二羥基-2-甲基-二氫呋喃-3-酮(R-DHMF)(圖1B);S-DHMF和R-DHMF經(jīng)水合作用得到相應(yīng)的(2S,4S)-和(2R,4S)-2-甲基-2,3,3,4-四羥基-四氫呋喃(分別為S-THMF和R-THMF);隨著B(niǎo)(OH)4-的加入,S-THMF會(huì)自發(fā)形成S-THMF硼酸鹽[7]。DPD的所有構(gòu)象都可以相互轉(zhuǎn)化,并且處于平衡狀態(tài),這也導(dǎo)致了AI-2的普遍性[7]。AI-2的生物活性形式包括R-THMF(存在于大腸桿菌或傷寒沙門(mén)菌等腸桿菌中)和S-THMF硼酸鹽(存在于哈維弧菌等海洋細(xì)菌中)[8]。
1.2 AI-2的感知
用于種間交流的AI-2信號(hào)分子在細(xì)菌中被細(xì)菌周質(zhì)結(jié)合蛋白(bacterial periplasmic binding proteins, bPBPs)結(jié)合,導(dǎo)致構(gòu)象發(fā)生變化,其中AI-2受體蛋白LuxP和LsrB分別與S-THMF硼酸鹽和R-THMF結(jié)合[10]。
哈維弧菌的受體蛋白LuxP是第一個(gè)確定晶體結(jié)構(gòu)的蛋白[11-12]。在對(duì)鼠傷寒沙門(mén)菌LsrB的結(jié)構(gòu)進(jìn)行研究后,發(fā)現(xiàn)這兩種受體只能結(jié)合它們自己物種特有的AI-2,且LsrB中的呋喃糖環(huán)與LuxP中的硼酸鹽環(huán)和大腸桿菌核糖結(jié)合蛋白(ribose binding protein, RBP)中的核糖環(huán)占據(jù)相同的位置[7,12]。只有進(jìn)行大的結(jié)構(gòu)重新排列,LsrB結(jié)合位點(diǎn)才有足夠的空間來(lái)容納S-THMF硼酸鹽[8]。此外,AI-2的結(jié)合會(huì)改變蛋白的構(gòu)象,通過(guò)旋轉(zhuǎn)結(jié)構(gòu)域從具有開(kāi)放結(jié)構(gòu)的ApoLuxP和ApoLsrB轉(zhuǎn)變?yōu)榉忾]結(jié)構(gòu)的HoloLuxP和HoloLsrB[11]。
在哈維弧菌的LuxP中,有9個(gè)氨基酸參與AI-2的結(jié)合;在鼠傷寒沙門(mén)菌中,有6個(gè)氨基酸參與AI-2的結(jié)合,且每種自體誘導(dǎo)物會(huì)結(jié)合特定的受體蛋白[7,12]。體內(nèi)研究表明,S-THMF硼酸鹽不能與受體LsrB結(jié)合[7]。體外研究發(fā)現(xiàn),只有S-THMF硼酸鹽可以與LuxP結(jié)合[13]。此外,Laganenka等[14]也鑒定了LsrB為鼠傷寒沙門(mén)菌中的AI-2信號(hào)分子受體。
1.3 AI-2的信號(hào)轉(zhuǎn)導(dǎo)
在海洋細(xì)菌哈維弧菌中,AI-1和AI-2進(jìn)入同一下游信號(hào)通路,對(duì)光產(chǎn)生、III型分泌、金屬蛋白酶產(chǎn)生、菌落形態(tài)和鐵載體的產(chǎn)生具有協(xié)同作用[15-18]。研究發(fā)現(xiàn),與其他自體誘導(dǎo)物不同,AI-2促進(jìn)了種間信號(hào)的轉(zhuǎn)導(dǎo)。一半以上的革蘭陰性菌和革蘭陽(yáng)性菌中含有與luxS同源的基因,luxS是編碼哈維弧菌AI-2合成酶的基因[8]。除luxS基因外,這些細(xì)菌還含有在AI-2合成過(guò)程中直接在luxS基因上游起作用的Pfs酶[19]。對(duì)哈維弧菌的檢測(cè)發(fā)現(xiàn),多數(shù)菌種可以釋放有活性的AI-2,并且可對(duì)AI-2信號(hào)分子產(chǎn)生應(yīng)答[20-22]。AI-2調(diào)節(jié)的細(xì)胞功能和基因非常廣泛,例如在人類病原體霍亂弧菌中AI-2調(diào)節(jié)70多個(gè)基因的表達(dá),包括編碼霍亂毒素和毒素共調(diào)節(jié)菌毛以及生物膜形成所需的菌毛[16-17,23-24]。
1.3.1 S-THMF的AI-2的信號(hào)轉(zhuǎn)導(dǎo)
AI-2與受體LuxP結(jié)合后會(huì)激發(fā)哈維弧菌的LuxPQ感應(yīng)系統(tǒng)(圖2)。Neiditch等[11]發(fā)現(xiàn),無(wú)論是否存在AI-2,LuxP和LuxQ都會(huì)結(jié)合形成復(fù)合物,這種復(fù)合物不僅具有兩種相反酶活性——激酶和磷酸酶,兩者之間形成的結(jié)構(gòu)域還可以用來(lái)結(jié)合不同的配體且兩者結(jié)合的緊密程度會(huì)影響細(xì)菌對(duì)AI-2的敏感性。AI-2信號(hào)分子通過(guò)含有保守組氨酸(H)和天冬氨酸(D)殘基的雙組分蛋白質(zhì)來(lái)介導(dǎo)磷酸轉(zhuǎn)移,從而將信息傳遞給LuxO[25-26]。這種混合的雙組分傳感器激酶,由周質(zhì)傳感器域、細(xì)胞質(zhì)組氨酸激酶和反應(yīng)調(diào)節(jié)域組成[11]。在低細(xì)胞密度下,LuxQ充當(dāng)激酶,交叉磷酸化組氨酸激酶結(jié)構(gòu)域內(nèi)的組氨酸殘基,經(jīng)過(guò)一系列磷酸轉(zhuǎn)移反應(yīng)最終導(dǎo)致LuxO的磷酸化,使得磷酸化的LuxO間接抑制轉(zhuǎn)錄激活因子LuxR;在高細(xì)胞密度下,LuxQ從激酶轉(zhuǎn)化為磷酸酶,與AI-2結(jié)合的LuxP相互作用[11]。LuxQ的去磷酸化導(dǎo)致磷酸基團(tuán)通過(guò)AI-2信號(hào)轉(zhuǎn)導(dǎo)途徑逆行,從而抑制LuxR,LuxR的抑制會(huì)激活lux操縱子的轉(zhuǎn)錄,編碼負(fù)責(zé)光產(chǎn)生的熒光素酶;因此,AI-2與LuxP的結(jié)合通過(guò)多條途徑發(fā)揮作用,以刺激生物發(fā)光[11]。
1.3.2 R-THMF的AI-2的信號(hào)轉(zhuǎn)導(dǎo)
在鼠傷寒沙門(mén)菌中,R-THMF通過(guò)LsrATP結(jié)合ABC型轉(zhuǎn)運(yùn)蛋白進(jìn)入細(xì)菌[27]。AI-2誘導(dǎo)lsrACDBFGE操縱子的轉(zhuǎn)錄,其中前4個(gè)編碼Lsr轉(zhuǎn)運(yùn)體,LsrF和LsrG可能參與AI-2的磷酸化修飾,LsrE的功能尚不清楚[27]。LsrK是一種激酶,可以調(diào)節(jié)lsr操縱子和AI-2的轉(zhuǎn)運(yùn),在進(jìn)入細(xì)胞后磷酸化AI-2,AI-2的磷酸化導(dǎo)致其被隔離在細(xì)胞質(zhì)中,進(jìn)而誘導(dǎo)LsrR失活(LsrR是lsr操縱子的阻遏物),促進(jìn)AI-2轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞(圖3)。
1.4 AI-2的終止
在鼠傷寒沙門(mén)菌中,細(xì)胞外AI-2活性在指數(shù)生長(zhǎng)后期累積到最大水平,隨后AI-2活性從培養(yǎng)基中消失;然而也有證據(jù)顯示,無(wú)細(xì)胞培養(yǎng)液中的AI-2可以長(zhǎng)時(shí)間保持活性,這表明AI-2活性從細(xì)胞外環(huán)境中消失并不是由AI-2分子結(jié)構(gòu)不穩(wěn)定引起的[28]。從培養(yǎng)基中消除AI-2可能是細(xì)菌自身的行為,并且通過(guò)遺傳分析已經(jīng)確定鼠傷寒沙門(mén)菌中一組lsr基因和LsrR蛋白,lsr操縱子轉(zhuǎn)錄受AI-2信號(hào)分子的調(diào)控,而AI-2對(duì)lsr的調(diào)節(jié)受LsrR的影響;因此Lsr復(fù)合物的功能是將細(xì)胞外AI-2轉(zhuǎn)運(yùn)到細(xì)胞質(zhì)中進(jìn)行內(nèi)化,隨后內(nèi)化的AI-2被其他的lsr操縱子編碼的酶加工失活[27,29]。
2 LuxS/AI-2群體感應(yīng)對(duì)微生物的調(diào)控作用
細(xì)菌生物膜是細(xì)菌為適應(yīng)外界環(huán)境,通過(guò)分泌胞外聚合物(extracellular polymeric substances,EPS),使細(xì)菌包裹在EPS中從而形成的大量細(xì)菌聚集膜狀物,是細(xì)菌的一種自我保護(hù)性生長(zhǎng)方式[17]。微生物通過(guò)生物膜附著在物體表面來(lái)構(gòu)建生物膜群落[30-31],這些附著的群落與醫(yī)學(xué)、農(nóng)業(yè)和環(huán)境息息相關(guān)[31-33]。
2.1 LuxS/AI-2群體感應(yīng)對(duì)病原微生物的調(diào)控作用
病原微生物群體感應(yīng)是近年來(lái)微生物學(xué)領(lǐng)域的研究熱點(diǎn),這些研究主要關(guān)注微生物在人類和動(dòng)植物體內(nèi)形成QS并產(chǎn)生協(xié)同效應(yīng)的機(jī)制及其對(duì)宿主的影響[34-35]。目前已發(fā)現(xiàn)多種病原微生物的群體感應(yīng)信號(hào)分子和受體,這些信號(hào)分子能夠影響病原微生物的發(fā)育、毒力和耐藥性,目前確定的細(xì)菌及表型列于表1。進(jìn)一步研究群體感應(yīng)機(jī)制可以更好地理解病原微生物與宿主的相互作用,為開(kāi)發(fā)調(diào)控微生物菌群的策略提供新思路。
2.2 LuxS/AI-2群體感應(yīng)對(duì)生物膜的調(diào)控作用
細(xì)菌通過(guò)AI-2進(jìn)行種間交流[45],AI-2作為DPD的衍生物,可以協(xié)調(diào)含有l(wèi)uxS基因的細(xì)菌在種間通訊中的行為。有研究發(fā)現(xiàn),LuxS對(duì)生物膜形成的影響發(fā)生在初始黏附之后,在LuxS控制下的生物膜相關(guān)基因參與生物膜的早期形成,從而導(dǎo)致從表面黏附狀態(tài)轉(zhuǎn)變?yōu)樾律锬顟B(tài)[46]。Slater等[47]發(fā)現(xiàn),LuxS/AI-2有可能通過(guò)誘導(dǎo)細(xì)菌差異代謝導(dǎo)致噬菌體介導(dǎo)宿主細(xì)胞裂解產(chǎn)生eDNA,eDNA進(jìn)一步黏附細(xì)胞到生物膜內(nèi)[48-51],進(jìn)而開(kāi)始生物膜的形成。Peng等[52]發(fā)現(xiàn),在早期構(gòu)建枯草芽孢桿菌3D生物膜結(jié)構(gòu)過(guò)程中,eDNA與EPS具有協(xié)同作用,eDNA通過(guò)連接其他細(xì)菌的細(xì)胞質(zhì)蛋白來(lái)逐漸穩(wěn)定生物膜結(jié)構(gòu)[53]。在植物乳桿菌中,添加外源AI-2可以增加EPS含量,并且抑制lamC和ftsH基因的表達(dá)[54]。在形成初級(jí)生物膜后可作為其他微生物的支架,生物膜形成后期EPS逐漸將細(xì)菌結(jié)合在一起發(fā)展為細(xì)胞聚集體,最終形成具有高細(xì)胞密度的多種類混合生物膜,這種生物膜表型使得單個(gè)細(xì)胞具有更強(qiáng)的環(huán)境耐受性和營(yíng)養(yǎng)獲取能力[52,55-57]。此外,Sugimoto等[58]研究發(fā)現(xiàn),在生物膜內(nèi)的細(xì)胞外基質(zhì)中微生物之間存在樹(shù)枝狀納米管狀網(wǎng)絡(luò),并且能觀察到DNA和蛋白質(zhì)網(wǎng)絡(luò),這表明生物膜中確實(shí)存在多細(xì)胞之間的通訊。
3 LuxS/AI-2群感應(yīng)體在瘤胃內(nèi)的研究進(jìn)展
隨著檢測(cè)技術(shù)的升級(jí)和普及,瘤胃微生物群體感應(yīng)研究熱度逐步提高,研究深度和廣度也在進(jìn)一步延伸和拓展。目前已證實(shí)AI-2介導(dǎo)的QS廣泛存在于瘤胃微生物中[59],在多個(gè)瘤胃微生物菌屬中均檢測(cè)到luxS基因序列,其中包括許多裂解菌和飼料顆粒上生物膜內(nèi)的微生物[60]。Xie等[61]通過(guò)宏基因組學(xué)發(fā)現(xiàn),高剩余采食量(residual feed intake,RFI)的奶牛瘤胃內(nèi)QS和DNA復(fù)制更加活躍,微生物多樣性更為豐富,在代謝途徑上更加多樣且集中于丁酸鹽和甲烷的代謝,而低RFI奶牛瘤胃內(nèi)微生物則集中于丙酸的代謝。此外,Li等[62]的研究表明,丁酸鹽和甲烷恰恰是半纖維素和果膠的代謝產(chǎn)物。低RFI奶牛表現(xiàn)為更高的飼料利用率,由此推測(cè),CH4代謝可能是導(dǎo)致飼料利用率降低的主要原因,這使得AI-2介導(dǎo)的QS系統(tǒng)有可能成為調(diào)控瘤胃微生物生態(tài)和飼料利用率的一種方式[63-64],從而為反芻動(dòng)物的高效生產(chǎn)提供新思路和新靶點(diǎn)。
3.1 瘤胃微生物在飼料消化過(guò)程中的定殖模式
瘤胃內(nèi)纖維降解菌通常附著在攝入的植物顆粒上并與周?chē)h(huán)境形成獨(dú)特的微型生態(tài)系統(tǒng),這種生態(tài)系統(tǒng)通過(guò)生物膜來(lái)降解和發(fā)酵纖維,發(fā)酵產(chǎn)物為宿主提供能量和營(yíng)養(yǎng)[65-66]。Minato等[67]報(bào)道,附著于飼料顆粒的瘤胃細(xì)菌的內(nèi)切葡聚糖酶占瘤胃總內(nèi)切葡聚糖酶的80%。上述研究結(jié)果表明,附著于植物顆粒的瘤胃細(xì)菌在纖維降解中起主要作用。Cheng等[68]通過(guò)電子顯微鏡法觀察到瘤胃細(xì)菌能迅速附著于植物細(xì)胞壁。Mosoni等[69]通過(guò)體外培養(yǎng)試驗(yàn)發(fā)現(xiàn),在培養(yǎng)45 min后白色瘤胃球菌和黃色瘤胃球菌對(duì)纖維素的附著出現(xiàn)高峰。此外,Koike等[70]在瘤胃纖維降解菌對(duì)植物纖維附著的影響試驗(yàn)中發(fā)現(xiàn),在瘤胃內(nèi)培養(yǎng)5 min后,附著于干草的產(chǎn)琥珀酸絲狀桿菌和黃色瘤胃球菌的數(shù)量分別達(dá)到105和104·g-1干物質(zhì)(DM),培養(yǎng)10 min后,菌株的數(shù)量提高了10倍;此后數(shù)量持續(xù)上升,產(chǎn)琥珀酸絲狀桿菌和黃色瘤胃球菌在培養(yǎng)24 h達(dá)到最大值(分別為109和107·g-1 DM),白色瘤胃球菌在培養(yǎng)48 h達(dá)到最大值(106·g-1 DM)。以上研究表明,瘤胃纖維降解細(xì)菌可迅速附著于進(jìn)入瘤胃的飼料纖維,并且大部分的附著在10 min內(nèi)完成。
瘤胃微生物可在飼料消化過(guò)程中通過(guò)形成生物膜實(shí)現(xiàn)定殖,瘤胃內(nèi)生物膜的形成主要有4個(gè)階段(圖4):1)底物與細(xì)菌相互接近開(kāi)始初級(jí)定殖。Bar-Zeev等[71]研究表明,大多數(shù)水生生態(tài)系統(tǒng)中都含有非常“黏”的浮游透明外聚合物顆粒(transparent exopolymer particles,TEP),雖然TEP尚未在瘤胃內(nèi)發(fā)現(xiàn),但它們很可能以動(dòng)物反芻過(guò)程中從飼料顆粒表面釋放的脫落生物膜碎片的形式存在,TEP可在飼料顆粒表面迅速形成生物膜微生物附著點(diǎn)[71-72];2)開(kāi)始建立生物膜后,初級(jí)定殖者開(kāi)始水解固體飼料中復(fù)雜結(jié)構(gòu)的化合物,由此形成初級(jí)群落;3)次級(jí)定殖者逐漸被初級(jí)定殖者的代謝物或者其他細(xì)菌產(chǎn)生的信號(hào)分子等誘導(dǎo)物吸引[73],并將自己嵌入初始定殖者周?chē)募?xì)胞外聚合物中建立菌落,同化細(xì)菌水解的一些中間產(chǎn)物(主要是單糖、肽和氨基酸)來(lái)生長(zhǎng);隨著生物膜的生長(zhǎng),更多需要特定底物的微生物也會(huì)進(jìn)入生物膜;這些細(xì)菌可以利用最初定殖的微生物和植物顆粒內(nèi)的真菌所產(chǎn)生的代謝產(chǎn)物作為生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì),生物膜隨著它們的生長(zhǎng)而成熟;通過(guò)糖酵解途徑逐漸將碳水化合物降解為揮發(fā)性脂肪酸(volatile fatty acids,VFA);產(chǎn)生的H2大部分通過(guò)產(chǎn)甲烷菌合成CH4[74];4)最終細(xì)菌不可逆地附著在表面,形成具有三維結(jié)構(gòu)的多糖體,生物膜完全成熟后就會(huì)脫落并在瘤胃內(nèi)分散[53,75]。生物膜形成過(guò)程中的每個(gè)階段都取決于上一個(gè)階段的完成程度,飼料消化過(guò)程中瘤胃內(nèi)生物膜的形成類似于微生物黏附到固體基質(zhì)上的一般模式,其可能的形成示意圖如圖4。
3.2 飼料消化過(guò)程中瘤胃微生物L(fēng)uxS/AI-2群體感應(yīng)變化
瘤胃微生物L(fēng)uxS/AI-2群體感應(yīng)可以調(diào)控細(xì)菌生物膜的形成[76]。生物膜可以促進(jìn)瘤胃微生物將纖維素轉(zhuǎn)化為VFA[77]。從這個(gè)視角來(lái)看,調(diào)控這種感應(yīng)可以促進(jìn)細(xì)菌生物膜的形成,激活細(xì)菌的消化機(jī)制,進(jìn)而維持瘤胃內(nèi)微生物的生態(tài)平衡[78]。有研究發(fā)現(xiàn),普雷沃氏菌作為初級(jí)定殖階段的優(yōu)勢(shì)菌屬,與QS相關(guān)的luxS基因表達(dá)最為豐富,且在QS中表現(xiàn)出“合作關(guān)系”,而其他優(yōu)勢(shì)菌屬表現(xiàn)為“自私不合作”[79]。Ghali等[60]的研究同樣表明,普雷沃氏菌中的luxS基因含量豐富、表達(dá)更為活躍,暗示該菌可能參與了纖維素的降解;此外在瘤胃內(nèi)降解纖維的主要細(xì)菌是黃色瘤胃球菌、白色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌,這些菌屬中的luxS基因含量也較為豐富。
飼料消化與瘤胃微生物QS密切相關(guān)。在瘤胃微生物定殖初期,由于可溶性、易發(fā)酵的營(yíng)養(yǎng)物質(zhì)較多,變形菌門(mén)在降解初期大量增殖并在30 min后完成第一次的飼料降解,擬桿菌門(mén)和梭菌綱隨后逐漸取代變形菌門(mén),附著在飼料顆粒上形成的微生物群落可以在很長(zhǎng)一段時(shí)間內(nèi)得以保留[65]。這些初始定殖階段微生物豐度的變化與Ghali等[60]的發(fā)現(xiàn)類似,在宏基因組數(shù)據(jù)庫(kù)中檢測(cè)到的luxS基因序列中,擬桿菌門(mén)(主要是普雷沃氏菌屬)和厚壁菌門(mén)(主要是梭菌綱)占比超過(guò)96%。在次級(jí)階段的定殖過(guò)程中,纖維桿菌作為主要的纖維素降解菌屬,通過(guò)分泌一系列的纖維素分解酶來(lái)降解纖維[65]。然而也有研究發(fā)現(xiàn),當(dāng)把纖維素作為唯一碳源時(shí)纖維桿菌卻無(wú)法生長(zhǎng)[80],這可能是由于缺乏一些多糖的異構(gòu)酶和轉(zhuǎn)運(yùn)蛋白[81]。退化的運(yùn)動(dòng)性和趨化性[82]暗示著纖維桿菌的作用僅僅是降解纖維素并為其他瘤胃微生物提供營(yíng)養(yǎng)代謝產(chǎn)物,由此推測(cè)纖維桿菌是被動(dòng)地通過(guò)初級(jí)定殖形成的生物膜基質(zhì)黏附在植物纖維上,從而啟動(dòng)纖維降解[81]。然而,初級(jí)定殖的微生物群落如何識(shí)別纖維桿菌并與其“合作”的過(guò)程或纖維桿菌是否僅感知而不產(chǎn)生信號(hào)分子目前并未見(jiàn)報(bào)道[2]。在瘤胃中與纖維桿菌作用類似的密螺旋體不能以纖維素作為唯一碳源生長(zhǎng)[65],目前已發(fā)現(xiàn)密螺旋體屬是螺旋體門(mén)中l(wèi)uxS基因含量最豐富的屬[60],但其是否與纖維桿菌類似僅作為單一的纖維素降解者還是兼具與其他微生物溝通的交流使命還有待研究。Huws等[79]在對(duì)附著群落進(jìn)行基因相關(guān)性網(wǎng)絡(luò)分析時(shí)發(fā)現(xiàn),優(yōu)勢(shì)菌(除普雷沃氏菌外)幾乎沒(méi)有基因相關(guān)性。在代謝功能和微生物多樣性豐富的瘤胃中,瘤胃微生物之間的交流頻繁[61],表明群體感應(yīng)這種交流機(jī)制同樣存在于部分豐度較低的微生物群落中,這些豐度較低的菌屬可能以某種方式對(duì)群落結(jié)構(gòu)、穩(wěn)定性和生態(tài)系統(tǒng)功能產(chǎn)生影響,并進(jìn)一步影響宿主生產(chǎn)性能[83]。
4 展 望
LuxS/AI-2介導(dǎo)的QS作為存在于瘤胃內(nèi)并調(diào)控瘤胃微生物生態(tài)的一種通訊方式,通過(guò)形成生物膜來(lái)幫助宿主提高纖維降解和養(yǎng)分利用能力,這種群體感應(yīng)不僅調(diào)節(jié)了微生物自身的生理行為,對(duì)維持瘤胃內(nèi)微生物多樣性和群落穩(wěn)定也起到了重要的作用。動(dòng)物遭受應(yīng)激后機(jī)體出現(xiàn)不同程度的免疫力降低和炎癥反應(yīng),瘤胃微生物短時(shí)間內(nèi)無(wú)法適應(yīng)這種變化,進(jìn)而無(wú)法有效降解日糧中的大部分營(yíng)養(yǎng)素,導(dǎo)致采食量下降和各種應(yīng)激綜合征。理論上,動(dòng)物應(yīng)激后瘤胃微生物L(fēng)uxS/AI-2群體感應(yīng)系統(tǒng)會(huì)受到影響,使得微生物之間“通訊失聯(lián)”,無(wú)法快速形成相應(yīng)的細(xì)菌生物膜來(lái)抵抗這種應(yīng)激,進(jìn)而無(wú)法對(duì)劇烈變化的周?chē)h(huán)境和體內(nèi)代謝做出快速的應(yīng)答。生物膜的形成受LuxS/AI-2群體感應(yīng)調(diào)控,如果能在動(dòng)物應(yīng)激前就加入能增強(qiáng)瘤胃微生物L(fēng)uxS/AI-2群體感應(yīng)的物質(zhì),進(jìn)而提前形成更多的生物膜來(lái)抵抗這種應(yīng)激,是不是意味著可以緩解應(yīng)激呢?AI-2作為細(xì)菌種間交流的一種通訊信號(hào),進(jìn)一步了解它的作用機(jī)制有助于人們更好地理解瘤胃微生物的交流模式,通過(guò)調(diào)控這種交流來(lái)加強(qiáng)或抑制生物膜的形成,進(jìn)而調(diào)節(jié)各類營(yíng)養(yǎng)物質(zhì)的消化代謝、緩解應(yīng)激,解決反芻動(dòng)物生產(chǎn)上飼料轉(zhuǎn)化效率低、環(huán)境應(yīng)激等問(wèn)題。
參考文獻(xiàn)(References):
[1] MORGAVI D P,KELLY W J,JANSSEN P H,et al.Rumen microbial (meta)genomics and its application to ruminant production[J].Animal,2013,7(S1):184-201.
[2] RANAVA D,BACKES C,KARTHIKEYAN G,et al.Metabolic exchange and energetic coupling between nutritionally stressed bacterial species:role of quorum-sensing molecules[J].mBio,2021,12(1):e02758-20.
[3] MCNAB R,LAMONT R J.Microbial dinner-party conversations:the role of LuxS in interspecies communication[J].J Med Microbiol,2003,52(Pt 7):541-545.
[4] WANG Y S,BIAN Z R,WANG Y.Biofilm formation and inhibition mediated by bacterial quorum sensing[J].Appl Microbiol Biotechnol,2022,106(19):6365-6381.
[5] MITSUMORI M,XU L M,KAJIKAWA H,et al.Possible quorum sensing in the rumen microbial community:detection of quorum-sensing signal molecules from rumen bacteria[J].FEMS Microbiol Lett,2003,219(1):47-52.
[6] WON M Y,OYAMA L B,COURTNEY S J,et al.Can rumen bacteria communicate to each other?[J].Microbiome,2020,8(1):23.
[7] MILLER S T,XAVIER K B,CAMPAGNA S R,et al.Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2[J].Mol Cell,2004,15(5):677-687.
[8] MIRANDA V,TORCATO I M,XAVIER K B,et al.Synthesis of d-desthiobiotin-AI-2 as a novel chemical probe for autoinducer-2 quorum sensing receptors[J].Bioorg Chem,2019,92:103200.
[9] SCHAUDER S,SHOKAT K,SURETTE M G,et al.The LuxS family of bacterial autoinducers:biosynthesis of a novel quorum-sensing signal molecule[J].Mol Microbiol,2001,41(2):463-476.
[10] TORCATO I M,KASAL M R,BRITO P H,et al.Identification of novel autoinducer-2 receptors in Clostridia reveals plasticity in the binding site of the LsrB receptor family[J].J Biol Chem,2019,294(12):4450-4463.
[11] NEIDITCH M B,F(xiàn)EDERLE M J,MILLER S T,et al.Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2[J].Mol Cell,2005,18(5):507-518.
[12] CHEN X,SCHAUDER S,POTIER N,et al.Structural identification of a bacterial quorum-sensing signal containing boron[J].Nature,2002,415(6871):545-549.
[13] RAJAMANI S,ZHU J G,PEI D H,et al.A LuxP-FRET-based reporter for the detection and quantification of AI-2 bacterial quorum-sensing signal compounds[J].Biochemistry,2007,46(13):3990-3997.
[14] LAGANENKA L,LEE J W,MALFERTHEINER L,et al.Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut[J].Nat Microbiol,2023,8(2):204-217.
[15] KEIZERS M,DOBRINDT U,BERGER M.A simple biosensor-based assay for quantitative autoinducer-2 analysis[J].ACS Synth Biol,2022,11(2):747-759.
[16] KUMAR S,KUMAR C B,RAJENDRAN V,et al.Delineating virulence of Vibrio campbellii:a predominant luminescent bacterial pathogen in Indian shrimp hatcheries[J].Sci Rep,2021,11(1):15831.
[17] BISWAS S,MUKHERJEE P,MANNA T,et al.Quorum sensing autoinducer(s) and flagellum independently mediate EPS signaling in Vibrio cholerae through LuxO-independent mechanism[J].Microb Ecol,2019,77(3):616-630.
[18] TAL A,SIDE D D,BUCCOLIERI G,et al.Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade[J].PLoS One,2014,9(6):e100825.
[19] GU Y,LI B,TIAN J J,et al.The response of LuxS/AI-2 quorum sensing in Lactobacillus fermentum 2-1 to changes in environmental growth conditions[J].Ann Microbiol,2018,68(5):287-294.
[20] CHAI Y M,MA Q W,NONG X,et al.Dissecting LuxS/AI-2 quorum sensing system-mediated phenyllactic acid production mechanisms of Lactiplantibacillus plantarum L3[J].Food Res Int,2023,166:112582.
[21] AQAWI M,SIONOV R V,F(xiàn)RIEDMAN M,et al.The antibacterial effect of cannabigerol toward Streptococcus mutans is influenced by the autoinducers 21-CSP and AI-2[J].Biomedicines,2023,11(3):668.
[22] MENG F Q,ZHAO M W,LU Z X.The LuxS/AI-2 system regulates the probiotic activities of lactic acid bacteria[J].Trends Food Sci Technol,2022,127:272-279.
[23] HERZOG R,PESCHEK N,F(xiàn)RHLICH K S,et al.Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae[J].Nucleic Acids Res,2019,47(6):3171-3183.
[24] BRIDGES A A,BASSLER B L.The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal[J].PLoS Biol,2019,17(11):e3000429.
[25] BOYACI H,SHAH T,HURLEY A,et al.Structure,regulation,and inhibition of the quorum-sensing signal integrator LuxO[J].PLoS Biol,2016,14(5):e1002464.
[26] RAYCHAUDHURI S,JAIN V,DONGRE M.Identification of a constitutively active variant of LuxO that affects production of HA/protease and biofilm development in a non-O1,non-O139 Vibrio cholerae O110[J].Gene,2006,369:126-133.
[27] TAGA M E,MILLER S T,BASSLER B L.Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium[J].Mol Microbiol,2003,50(4):1411-1427.
[28] TAGA M E,SEMMELHACK J L,BASSLER B L.The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium[J].Mol Microbiol,2001,42(3):777-793.
[29] TAGA M E,BASSLER B L.Chemical communication among bacteria[J].Proc Natl Acad Sci U S A,2003,100(S2):14549-14554.
[30] TOLKER-NIELSEN T.Biofilm development[M]//GHANNOUM M,PARSEK M,WHITELEY M,et al.Microbial Biofilms.2nd ed.Washington:American Society for Microbiology,2015:51-66.
[31] KOLTER R,GREENBERG E P.Microbial sciences:the superficial life of microbes[J].Nature,2006,441(7091):300-302.
[32] CHU P L,F(xiàn)ENG Y M,LONG Z Q,et al.Novel benzothiazole derivatives as potential anti-quorum sensing agents for managing plant bacterial diseases:synthesis,antibacterial activity assessment,and SAR study[J].J Agric Food Chem,2023,71(17):6525-6540.
[33] RYBTKE M,HULTQVIST L D,GIVSKOV M,et al.Pseudomonas aeruginosa biofilm infections:community structure,antimicrobial tolerance and immune response[J].J Mol Biol,2015,427(23):3628-3645.
[34] HUSSLER S,BECKER T.The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations[J].PLoS Pathog,2008,4(9):e1000166.
[35] VENDEVILLE A,WINZER K,HEURLIER K,et al.Making ’sense’ of metabolism:autoinducer-2,LuxS and pathogenic bacteria[J].Nat Rev Microbiol,2005,3(5):383-396.
[36] WANG Y,WANG Y X,SUN L Y,et al.The LuxS/AI-2 system of Streptococcus suis[J].Appl Microbiol Biotechnol,2018,102(17):7231-7238.
[37] WANG Y,YI L,ZHANG Z C,et al.Overexpression of luxS cannot increase autoinducer-2 production,only affect the growth and biofilm formation in Streptococcus suis[J].Sci World J,2013,2013:924276.
[38] LAGANENKA L,COLIN R,SOURJIK V.Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli[J].Nat Commun,2016,7(1):12984.
[39] HEGDE M,ENGLERT D L,SCHROCK S,et al.Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein[J].J Bacteriol,2011,193(3):768-773.
[40] WEN Y C,HUANG H M,TANG T C,et al.AI-2 represses CagA expression and bacterial adhesion,attenuating the Helicobacter pylori-induced inflammatory response of gastric epithelial cells[J].Helicobacter,2021,26(2):e12778.
[41] ANDERSON J K,HUANG J Y,WREDEN C,et al.Chemorepulsion from the quorum signal autoinducer-2 promotes Helicobacter pylori biofilm dispersal[J].mBio,2015,6(4):e00379.
[42] CLUZEL M E,ZANELLA-CLE?ON I,COZZONE A J,et al.The Staphylococcus aureus autoinducer-2 synthase LuxS is regulated by Ser/Thr phosphorylation[J].J Bacteriol,2010,192(23):6295-6301.
[43] ZHANG L J,SHEN Y,QIU L L,et al.The suppression effect of SCH-79797 on Streptococcus mutans biofilm formation[J].J Oral Microbiol,2022,14(1):2061113.
[44] SZTAJER H,LEMME A,VILCHEZ R,et al.Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation[J].J Bacteriol,2008,190(1):401-415.
[45] RODRIGUES M V,KIS P,XAVIER K B,et al.Synthesis and potential of Autoinducer-2 and analogs to manipulate inter-species quorum sensing[J].ISR J Chem,2023,63(5-6):e202200091.
[46] MAYER C,BORGES A,F(xiàn)LAMENT-SIMON S C,et al.Quorum sensing architecture network in Escherichia coli virulence and pathogenesis[J].FEMS Microbiol Rev,2023,47(4):fuad031.
[47] SLATER R T,F(xiàn)ROST L R,JOSSI S E,et al.Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms[J].Sci Rep,2019,9:9903.
[48] ARENAS J,TOMMASSEN J.Meningococcal biofilm formation:Let’s stick together[J].Trends Microbiol,2017,25(2):113-124.
[49] ROUSSEL-JAZD V,GRIJPSTRA J,VAN DAM V,et al.Lipidation of the autotransporter NalP of Neisseria meningitidis is required for its function in the release of cell-surface-exposed proteins[J].Microbiology (Reading),2013,159(Pt 2):286-295.
[50] ROUSSEL-JAZD V,JONGERIUS I,BOS M P,et al.NalP-mediated proteolytic release of lactoferrin-binding protein B from the meningococcal cell surface[J].Infect Immun,2010,78(7):3083-3089.
[51] VAN ULSEN P,VAN ALPHEN L,HOVE J T,et al.A Neisserial autotransporter NalP modulating the processing of other autotransporters[J].Mol Microbiol,2003,50(3):1017-1030.
[52] PENG N,CAI P,MORTIMER M,et al.The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm[J].BMC Microbiol,2020,20:115.
[53] HOBLEY L,HARKINS C,MACPHEE C E,et al.Giving structure to the biofilm matrix:an overview of individual strategies and emerging common themes[J].FEMS Microbiol Rev,2015,39(5):649-669.
[54] GU Y,TIAN J J,ZHANG Y,et al.Dissecting signal molecule AI-2 mediated biofilm formation and environmental tolerance in Lactobacillus plantarum[J].J Biosci Bioeng,2021,131(2):153-160.
[55] MUHAMMAD M H,IDRIS A L,F(xiàn)AN X,et al.Beyond risk:bacterial biofilms and their regulating approaches[J].Front Microbiol,2020,11:928.
[56] KRAGH K N,HUTCHISON J B,MELAUGH G,et al.Role of multicellular aggregates in biofilm formation[J].mBio,2016,7(2):e00237.
[57] NUNAN N,WU K J,YOUNG I M,et al.Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil[J].FEMS Microbiol Ecol,2003,44(2):203-215.
[58] SUGIMOTO S,OKUDA K I,MIYAKAWA R,et al.Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy[J].Sci Rep,2016,6:25889.
[59] LIU X Z,LIU Q M,SUN S H,et al.Exploring AI-2-mediated interspecies communications within rumen microbial communities[J].Microbiome,2022,10:167.
[60] GHALI I,SHINKAI T,MITSUMORI M.Mining of luxS genes from rumen microbial consortia by metagenomic and metatranscriptomic approaches[J].Anim Sci J,2016,87(5):666-673.
[61] XIE Y Y,SUN H Z,XUE M Y,et al.Metagenomics reveals differences in microbial composition and metabolic functions in the rumen of dairy cows with different residual feed intake[J].Anim Microbiome,2022,4(1):19.
[62] LI Q S,WANG R,MA Z Y,et al.Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants[J].ISME J,2022,16(11):2535-2546.
[63] 郭??担f(wàn)發(fā)春,沈維軍,等.畜禽消化道細(xì)菌群體感應(yīng)及相關(guān)調(diào)控技術(shù)研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(6):1678-1688.
GUO H K,WAN F C,SHEN W J,et al.Research progress and related regulation technology on bacterial quorum sensing in the gastro-intestinal tract of livestock and poultry[J].Acta Veterinaria et Zootechnica Sinica,2022,53(6):1678-1688.(in Chinese)
[64] 冉 濤,譚支良.反芻家畜瘤胃微生物群體感應(yīng)[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2012,24(7):1207-1215.
RAN T,TAN Z L.Rumen microbial quorum-sensing of ruminant livestock[J].Chinese Journal of Animal Nutrition,2012,24(7):1207-1215.(in Chinese)
[65] VAHIDI M F,GHARECHAHI J,BEHMANESH M,et al.Diversity of microbes colonizing forages of varying lignocellulose properties in the sheep rumen[J].PeerJ,2021,9:e10463.
[66] COMTET-MARRE S,PARISOT N,LEPERCQ P,et al.Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet[J].Front Microbiol,2017,8:67.
[67] MINATO H,ENDO A,OOTOMO Y,et al.Ecological treatise on the rumen fermentation:II.The amylolytic and cellulolytic activities of the fractionated bacterial portions attached to the rumen solids[J].J Gen Appl Microbiol,1966,12(1):53-69.
[68] CHENG K J,STEWART C S,DINSDALE D,et al.Electron microscopy of bacteria involved in the digestion of plant cell walls[J].Anim Feed Sci Technol,1984,10(2-3):93-120.
[69] MOSONI P,F(xiàn)ONTY G,GOUET P.Competition between ruminal cellulolytic bacteria for adhesion to cellulose[J].Ann Zootech,1996,45(S1):298.
[70] KOIKE S,PAN J,KOBAYASHI Y,et al.Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR[J].J Dairy Sci,2003,86(4):1429-1435.
[71] BAR-ZEEV E,BERMAN-FRANK I,GIRSHEVITZ O,et al.Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles[J].Proc Natl Acad Sci U S A,2012,109(23):9119-9124.
[72] LENG R A.The rumen- a fermentation vat or a series of organized structured microbial consortia:implications for the mitigation of enteric methane production by feed additives[J].Livest Res Rural Dev,2011,23(12):258.
[73] SPEZIALE P,PIETROCOLA G,F(xiàn)OSTER T J,et al.Protein-based biofilm matrices in Staphylococci[J].Front Cell Infect Microbiol,2014,4:171.
[74] LENG R A.Interactions between microbial consortia in biofilms:a paradigm shift in rumen microbial ecology and enteric methane mitigation[J].Anim Prod Sci,2014,54(5):519-543.
[75] MCCALL A,EDGERTON M.Real-time approach to flow cell imaging of Candida albicans biofilm development[J].J Fungi,2017,3(1):13.
[76] HUWS S,MAYORGA O L,KIM E J,et al.Microbial colonization and subsequent biofilm formation by ruminal microorganisms on fresh perennial ryegrass[C]//2007 Conference on Gastrointestinal Function (CGIF).Chicago,2007.
[77] XIROS C,SHAHAB R L,STUDER M H P.A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome[J].Appl Microbiol Biotechnol,2019,103(8):3355-3365.
[78] DOBRETSOV S,TEPLITSKI M,PAUL V.Mini-review:quorum sensing in the marine environment and its relationship to biofouling[J].Biofouling,2009,25(5):413-427.
[79] HUWS S A,EDWARDS J E,LIN W C,et al.Microbiomes attached to fresh perennial ryegrass are temporally resilient and adapt to changing ecological niches[J].Microbiome,2021,9(1):143.
[80] SOROKIN D Y,GUMEROV V M,RAKITIN A L,et al.Genome analysis of Chitinivibrio alkaliphilus gen.nov.,sp.nov.,a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3[J].Environ Microbiol,2014,16(6):1549-1565.
[81] SUEN G,WEIMER P J,STEVENSON D M,et al.The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist[J].PLoS One,2011,6(4):e18814.
[82] RAHMAN N A,PARKS D H,VANWONTERGHEM I,et al.A phylogenomic analysis of the bacterial phylum Fibrobacteres[J].Front Microbiol,2016,6:1469.
[83] SHABAT S K B,SASSON G,DORON-FAIGENBOIM A,et al.Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J].ISME J,2016,10(12):2958-2972.
(編輯 范子娟)