• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    優(yōu)化結(jié)晶度的CrS/CoS2少層異質(zhì)結(jié)非晶/晶態(tài)界面耦合增強水裂解和甲醇輔助節(jié)能制氫

    2024-08-26 00:00:00陸世玉豆文釗張均王玲武春潔易歡王融金夢
    物理化學(xué)學(xué)報 2024年8期
    關(guān)鍵詞:非晶態(tài)

    摘要:由于電催化劑中的非晶區(qū)和結(jié)晶區(qū)具有不同的物理化學(xué)性質(zhì),因此非晶化/結(jié)晶化工程成為提高電解水催化動力學(xué)的重要策略。然而,在微觀環(huán)境中有效地調(diào)控催化劑的結(jié)晶度仍然是一個嚴峻的挑戰(zhàn)。本文介紹了一種可調(diào)節(jié)結(jié)晶度的新型CrS/CoS2異質(zhì)結(jié)構(gòu),該異質(zhì)結(jié)對氫氣析出反應(yīng)(HER)和氧氣析出反應(yīng)(OER)都具有高效的催化活性。Cr―S―Co鍵的重新分配引起的d帶中心移動有助于調(diào)節(jié)中間體H*和OOH*在催化劑表面的吸附能力,從而優(yōu)化HER和OER的決速步驟。在最佳條件下,非晶態(tài)CrS和高度結(jié)晶的CoS2異質(zhì)結(jié)(A-CrS/HC-CoS2)在HER和OER均表現(xiàn)出優(yōu)異的催化活性,分別為90.6 mV (10 mA?cm?2,HER)和370.5 mV (50 mA?cm?2,OER)。非晶/高晶結(jié)構(gòu)有利于A-CrS/HC-CoS2在水電解過程中的結(jié)構(gòu)和成分演變,因此具有出色的穩(wěn)定性。作為甲醇輔助節(jié)能制氫裝置中的雙功能催化劑,A-CrS/HC-CoS2僅需1.51 V的低槽電壓即可達到10 mA?cm?2的電流密度,證明其是理想的金屬基催化劑的候選材料。本研究為雙功能過渡金屬化合物電催化劑在非晶態(tài)/晶態(tài)異質(zhì)結(jié)構(gòu)中通過結(jié)晶度調(diào)控來提高催化活性和穩(wěn)定性提供了重要啟示。

    關(guān)鍵詞:非晶態(tài)-晶態(tài)耦合界面;異質(zhì)結(jié)構(gòu);結(jié)晶度調(diào)控;水分解;節(jié)能制氫裝置

    中圖分類號:O643

    Abstract: Large-scale hydrogen production through theelectrochemical water splitting technique is an important way foraddressing the impending energy and environmental crisis. Thisapproach requires highly efficient and robust bifunctional cost-effectiveelectrocatalysts. Engineering amorphous and crystalline phases withinelectrocatalysts is a key method for enhancing the catalytic kinetics ofwater electrolysis, due to their unique physicochemical properties. Theinterface and amorphous regions constructed within heterostructuresserve as highly active sites that play a crucial role in electrochemicalreactions. On the other hand, highly crystalline regions within theheterostructure demonstrated high tolerance in harsh environments,which helps to improve the stability of the overall catalyst. However, effectively tailoring the crystalline state of catalystswithin a microenvironment presents a significant challenge. Herein, construction of a novel CrS/CoS2 heterojunction withprecise control over crystallinity were presented. The optimized amorphous CrS/highly crystalline CoS2 heterojunction (ACrS/HC-CoS2) exhibits a low overpotential of 90.6 mV (at 10 mA?cm?2) and 370.5 mV (at 50 mA?cm?2) for hydrogenevolution reaction (HER) and oxygen evolution reaction (OER), respectively. X-ray photoelectron spectroscopy (XPS) anddensity functional theory (DFT) calculations reveal that charge redistribution induces variations in the d-band center valueat the A-CrS/HC-CoS2 heterostructure interface, enhancing the catalytic activity for both HER and OER. The displacementof the d-band due to charge redistribution in the Cr―S―Co bond within A-CrS/HC-CoS2 contributes to the modulation ofthe adsorption capacity of H* and OOH* intermediates on the catalyst surface, thereby optimizing the rate-determiningstep for HER and OER. The amorphous/highly crystalline structure also facilitates the structural and compositionalevolution of A-CrS/HC-CoS2 during water electrolysis, ensuring excellent stability. As a bifunctional catalyst in a methanolassistedenergy-saving hydrogen production device, A-CrS/HC-CoS2 operates at a low cell voltage of 1.51 V to deliver acurrent density of 10 mA?cm?2, making it a promising candidate among metal-based catalysts. The well-preservedamorphous/crystalline heterointerfaces in A-CrS/HC-CoS2, along with favorable changes in surface composition, contributeto robust HER and OER stability. This work provides valuable insights into the manipulation of catalytic activity throughcrystalline control within amorphous/crystalline heterojunctions for bifunctional transition metal compound electrocatalysts.

    Key Words: Amorphous-crystalline interface; Heterostructure; Crystalline degree modulation; Water-splitting;Energy-saving hydrogen device

    1 Introduction

    The booming growth of clean and sustainable energy torestrain the immoderate depletion of fossil fuels is one of thevital approaches to addressing pollution incidents andenvironmental risks while striving for carbon neutrality 1?5.Given hydrogen’s high calorific value (142 MJ?kg?1) andcarbon-free properties, the large-scale production of cleanhydrogen fuel via water electrolysis powered by electricity hasgarnered widespread attention as a crucial element in futureenergy supply 2,6,7. However, the broader adoption of waterelectrolysis has been hampered by the inefficiencies in both thecathodic hydrogen evolution reaction (HER) and the anodicoxygen evolution reaction (OER), necessitating robust andhighly active catalysts to reduce overpotentials and consequentlyreduce operational costs of electrolytic water systems 8,9.

    Despite their effectiveness, precious metal-based catalysts(e.g., Pt-based metal catalysts for HER, Ir/Ru-based metalcatalysts for OER) face inherent limitations such as escalatingcosts, limited elemental resources, and compatibility issues,which severely hinder their scalable utilization 10,11. Therefore,there is a pressing need for the design of earth-abundant,bifunctional alternatives characterized by high activity andstability, such as metal phosphides, metal chalcogenides, metalnitrides, metal carbides, and metal oxides/hydroxides 12?20.

    Among these alternatives, cobalt sulfides (CoS2), as a type of metal chalcogenides, stand out due to their unique physical andchemical properties 21. Notably, the abundant d orbital electronsin cobalt (Co), with an electron configuration of 3d74s2, and itsmetallic conductivity (6.7 × 103 S?cm?1 at 300 K) have garneredsignificant attention in the field of electrocatalytic hydrogenproduction. CoS2, with its high active component content,provides a conducive channel for ion adsorption and transport,thereby accelerating the kinetics of HER and OER 22,23.However, CoS2 faces challenges related to the inadequateadsorption energies of reactive species (H*/OH*) andinsufficiently catalytically active surfaces 15.

    To address these challenges, hybridizing appropriateconstituents to construct heterostructure materials can mitigatethe weakness of individual components, harness their merits,optimize electronic properties, and modify structuralconfigurations. This approach increases active sites and inducesthe restructuring of electron nearby active centers, regulating theadsorption energies of reactive species on the catalyst.Moreover, the amorphous and crystalline regions within theheterostructure play distinct roles: the interface and amorphousportions contain abundant coordination-unsaturated sites andvacancies, serving as highly active sites for electrochemicalreactions, while the highly crystalline regions exhibitrobustness in harsh environments, enhancing the overallcatalyst’s stability 24?26. Therefore, designing and constructing amorphous/crystalline heterostructures represent an effectiveand promising strategy for achieving both high activity andstability in catalysts.

    The element chromium (Cr), known for its unique electronicconfiguration (t2g3eg0), has garnered attention as a specificdopant in electrocatalysts, which alters the charge balance,disrupts the continuousness of local chemical field, and thusmodifies the electronic structure of electrocatalysts 27. Recenttheoretical predictions have suggested that monolayer 2H-CrS2exhibits noble metal-like properties in HER 28. Consequently,the Cr-based sulfide/cobalt sulfide heterojunction holds thepromise of serving as an overall water-splitting catalyst withhigh activity and stability, but no synthesis or study has exploredthe relationship between composition/structure and catalyticperformance for this heterojunction.

    In this study, we synthesized a series of CrS/CoS2heterojunctions with varying degrees of crystallinity using acontrollable sulfurating approach on cobaltous hydroxide/chromic acetate nanosheets. The charge redistribution at the interfaces, mediated by Cr ―S― Co bonding, optimizes theadsorption of H* and OOH* intermediates on the CrS/CoS2heterojunction, thereby accelerating the rate-determining stepsof HER and OER. The amorphous/highly crystalline structure inthe amorphous CrS/highly crystalline CoS2 heterojunction (ACrS/HC-CoS2) not only facilitates the generation of richinterfaces and exposes more active sites, resulting in high HERand OER activities, but also supports the structural andcompositional evolution of A-CrS/HC-CoS2 during waterelectrolysis, ensuring high HER and OER stability. This workillustrates the value of controllable amorphous-crystallinecoupling in enhancing both catalytic activity and durability,offering a versatile strategy to improve the performance of otherbifunctional transition metal compound electrocatalysts.

    2 Results and discussion

    The supplemental material includes a description of theexperimental portion. As illustrated in Fig. 1a, we employed astraightforward two-step strategy to prepare CrS/CoS2 heterojunctions with varying degrees of crystallinity. First, wesynthesized cobaltous hydroxide/chromic acetate precursors viaa facile hydrothermal procedure. Field-emission scanningelectron microscopy (FESEM) images of the cobaltoushydroxide/chromic acetate precursor (Fig. S1) confirmed that itconsisted of nanoflower-like structures with 2D wrinklednanosheets interconnected to each other. Then, the CrS/CoS2heterojunctions with different crystallinity were obtained byprecisely controlling the sulfurization process of the cobaltoushydroxide/chromic acetate precursor using sulfur powder as asource, conducted at varying temperatures for 2 h.

    X-ray diffraction (XRD) technology was used to analyze thecomposition and crystal structure of the prepared catalysts. Forthe A-CrS/HC-CoS2 sample at 500 °C, the peaks located at32.3°, 36.3°, and 39.9° can be assigned to the (002), (021), and(112) planes of CoS2 (JCPDS No. 98-062-4832), and the peakslocated at 29.9°, 45.7° and 53.2° can associated to the (010),(012) and (110) planes of CrS (JCPDS No. 98-004-9666),indicating the successful formation of A-CrS/HC-CoS2heterojunction (Fig. S2). Conversely, there was no discernibleXRD diffraction peak for A-CrS/A-CoS2 (sulfurated at 300 °C),indicating the formation of an amorphous CrS/amorphous CoS2heterojunction (Fig. S3a). The XRD pattern of A-CrS/LC-CoS2(sulfurated at 400 °C) closely resembled that of A-CrS/HC-CoS2but exhibited lower crystallinity in CoS2. Interestingly, uponsulfurization at 600 °C, a significant phase transformation wasobserved, resulting in the formation of the CoCr2S4/CoS1.097heterojunction (Fig. S3b).

    To facilitate comparison, single compounds of CoS2 and CrSwere synthesized by using a similar procedure. The XRDanalysis confirmed that the single-phase CoS2 exhibited highcrystallinity (Fig. S3c), while the XRD pattern of single-phaseCrS appeared amorphous (Fig. S3d), indicating that theformation of the CoS2/CrS heterojunction promoted the crystallization of CrS.

    Transmission electron microscopy (TEM) images confirmedthe flexible nanosheet morphology of A-CrS/HC-CoS2 (Fig. 1b,c).High-resolution TEM (HR-TEM) images further verified that ACrS/HC-CoS2 nanosheets had a few-layer structure with athickness of 8.35 nm (Fig. 1d) and consisted of both amorphousCrS and crystalline CoS2 (Fig. 1e,f). The amorphous CrS domainwas surrounded by crystalline CoS2, creating numerousheterojunction interfaces that facilitated the exposure of moreactive sites. Energy-dispersive spectroscopy (EDS) mappingimages confirmed the uniform distribution of Co, Cr and Selements in A-CrS/HC-CoS2 (Fig. 1g). Both pure CoS2 and CrSexhibited lamellar morphology, with the distinction being thatCoS2 displayed a highly crystalline state (Fig. S4), while CrSappeared amorphous (Fig. S5). In A-CrS/A-CoS2 (Fig. S6), asignificant number of disordered regions were observed.Similarly, TEM images of A-CrS/LC-CoS2 revealed bothamorphous and crystalline region, with CoS2 exhibiting lowercrystallinity compared to A-CrS/HC-CoS2 (Fig. S7).Corresponding EDS mapping images of A-CrS/A-CoS2 and ACrS/LC-CoS2 further conformed the uniform distribution of Co,Cr and S elements in CrS/CoS2 heterojunctions. Notably, in theCoCr2S4/CoS1.097 heterojunction (Fig. S8), two morphologieswere observed: nanowires and nanoparticles. CorrespondingEDS mapping images of CoCr2S4/CoS1.097 indicated unevendistribution of Co, Cr and S elements. These results suggestedthat high-temperature treatment induced Cr to blend into theCoS2 structure, forming a Cr-Co binary metal sulfide. The XRDand TEM findings strongly supported the precise control overthe crystallinity of CrS/CoS2 heterojunctions.

    X-ray photoelectron spectroscopy (XPS) was employed toinvestigate the surface chemical compositions and surfacecharge states of the prepared catalysts. The full XPS spectrum(Figs. 2a and S9a) confirms that A-CrS/A-CoS2, A-CrS/LCFig CoS2 A-CrS/HC-CoS2 and CoCr2S4/CoS1.907 all contain Co, Cr,and S elements. Notably, no signal of Cr was detected in CoS2,and no signal of Co was detected in CrS. High-resolution XPSspectra of Co 2p (Fig. 2b) reveal peaks at 782.5 and 798.7 eV,corresponding to the 2p3/2 and 2p1/2 doublets, respectively 29?31.Compared to pure CoS2, the Co 2p3/2 and 2p1/2 peaks in ACrS/HC-CoS2 exhibit a positive shift, which is consistent withother CrS/CoS2 heterojunction (Fig. S9b). This shift suggests themain existence of Co2+ and strong interactions between CrS andCoS2 32,33. Additionally, low-valence Co was detected inCoCr2S4/CoS1.907 34. The high-resolution XPS spectra of Cr 2pwere split into Cr 2p3/2 and Cr 2p1/2 orbitals, located at 576.2 and585.8 eV, respectively (Fig. 2c) 35?38. The Cr 2p3/2 and Cr 2p1/2peaks in the A-CrS/HC-CoS2 spectra, situated at 577.9 and 587.0eV, respectively (Fig. S9c), can be assigned to high-valenceCr3+. This may contribute to accelerating the reaction kinetics forboth HER and OER 39. The positive shift of ~1.7 eV in thebinding energy of Cr 2p compared to that of CrS implies electronredistribution in A-CrS/HC-CoS2 40,41. In Fig. 2d, the S 2pspectrum exhibits two prominent peaks at 162.4 and 163.8 eV,corresponding to S 2p3/2 and S 2p1/2, respectively 42. Notably, theS 2p peak in A-CrS/HC-CoS2 slightly shifted toward lowerbinding energy compared to that of CoS2 and CrS. This shift canbe attributed to the lower electronegativity of Cr, leading tocharge redistribution on the CoS2 and CrS interface through theCo―S―Cr bond.

    To illustrate the effect of different crystallinities on thecatalytic performance of CrS/CoS2 heterostructures, the aspreparedcatalysts was detected in 1.0 mol?L?1 KOH using atypical three-electrode setup. Fig. 3a,b present the HERpolarization curves and overpotential comparison of A-CrS/HCCoS2,CoS2, CrS, and commercial Pt/C catalysts in alkalinemedia. A-CrS/HC-CoS2 displayed excellent electrochemicalperformance for HER, with overpotentials of only 90.6 and176.1 mV at current densities of 10 and 100 mA?cm?2,respectively, compared with CoS2 (165.9 mV@10mA?cm?2/312.1 mV@100 mA?cm?2) and CrS (173.1 mV@10mA?cm?2/325.4 mV@100 mA?cm?2). The performance of ACrS/HC-CoS2 also surpassed that of A-CrS/A-CoS2 (173.2mV@10 mA?cm?2/341.1 mV@100 mA?cm?2), A-CrS/LC-CoS2(155.5 mV@10 mA?cm?2/278.1 mV@100 mA?cm?2) andCoCr2S4/CoS1.097 (167.3 mV@10 mA?cm?2/312.1 mV@100mA?cm?2) (Figs. 3c and S10a). Notably, the catalyticperformance of A-CrS/HC-CoS2 exceeded that of Pt/C at highcurrent density of ~70 mA?cm?2. The corresponding Tafel slopeof A-CrS/HC-CoS2 (76 mV?dec?1) was also smaller than those of CoCr2S4/CoS1.907 (114 mV?dec?1), CoS2 (106 mV?dec?1), CrS(117 mV?dec?1) and other CrS/CoS2 heterojunctions, such as ACrS/A-CoS2 (135 mV?dec?1) and A-CrS/LC-CoS2 (95mV?dec?1), indicating the faster HER rate of A-CrS/HC-CoS2(Fig. S10b). The A-CrS/HC-CoS2 catalyst also exhibitedsuperior HER activity compared to CoS2, CrS, A-CrS/A-CoS2,and A-CrS/LC-CoS2 catalysts, suggesting enhanced HERactivity through the synergistic effect between amorphous CrSand highly crystalline CoS2. The stability of the A-CrS/HC-CoS2catalyst was confirmed by long-term Chronoamperometry (CP)testing (Fig. 3d). The catalytic performance of A-CrS/HC-CoS2catalysts shows significant enhancement during the 20-h test atcurrent density of 50 and 100 mA?cm?2, respectively.Furthermore, the HER performance of A-CrS/HC-CoS2demonstrated competitiveness with most state-of-the-art HERcatalysts (Fig. 3e, Table S1).

    Inspired by the excellent HER activity of the A-CrS/HC-CoS2,its OER performance was further evaluated in alkalineelectrolytes. A-CrS/HC-CoS2 only requires a minimaloverpotential of 370.5 mV to achieve a current density of 50mA?cm?2. This overpotential is not only significantly lower thanthat needed for CoS2 (390.8 mV), CrS (450.5 mV) and RuO2(410.4 mV), respectively (Fig. 4a,b), but also much smaller than415.2, 397.5 and 399.5 mV required for the A-CrS/A-CoS2, ACrS/LC-CoS2 and CoCr2S4/CoS1.097 (Fig. S11a), respectively.The Tafel slopes, calculated from polarization curves, werefound to be 106 mV?dec?1 for CoS2, 137 mV?dec?1 for CrS, 112mV?dec?1 for RuO2, 80 mV?dec?1 for A-CrS/A-CoS2, 70mV?dec?1 for A-CrS/LC-CoS2, 66 mV?dec?1 for A-CrS/HCCoS2,and 74 mV?dec?1 for CoCr2S4/CoS1.907 (Figs. 4c andS11b). The lower Tafel slope of A-CrS/HC-CoS2 indicates fasterOER kinetics. The electrochemical stability of A-CrS/HC-CoS2was confirmed by CP curves recorded at a constant currentdensity of 50 and 100 mA?cm?2 (Fig. 4d), which showed nosignificant potential decay for at least 20 h. Additionally, theOER performance of A-CrS/HC-CoS2 was competitive withmost reported cobalt-based sulfide OER catalysts (Fig. 4e andTable S2).

    Electrochemical impedance spectroscopy (EIS) wasperformed to gain a better understanding of the improved HERand OER performance for A-CrS/HC-CoS2 (Fig. S12). The EISplots revealed that the charge-transfer resistance (Rct) ofCrS/CoS2 heterojunction, such as A-CrS/A-CoS2 (0.52 Ω), ACrS/LC-CoS2 (0.33 Ω) and CoCr2S4/CoS1.907 (0.43 Ω) weresmaller than that of CoS2 (0.58 Ω) and CrS (0.66 Ω). Notably,the Rct of A-CrS/HC-CoS2 (0.12 Ω) is much smaller than that of other CrS/CoS2 heterojunction. These results indicated thathybrid of CrS and CoS2 can significantly reduce impedanceduring electron transport, and optimization of crystallinity inCrS/CoS2 heterojunctions can efficiently minimize chargetransfer resistance 43.

    The electrochemical active surface area (ECSA) of theprepared catalysts was also calculated based on the double-layercapacitance obtained from cyclic voltammetry (CV) plots atvarious scan rates (Figs. S13 and S14). A-CrS/HC-CoS2exhibited a larger Cdl of 12.9 mF?cm?2 compared to CoS2 (7.7mF?cm?2), CrS (7.1 mF?cm?2), A-CrS/A-CoS2 (2.6 mF?cm?2), ACrS/LC-CoS2 (11.2 mF?cm?2) and CoCr2S4/CoS1.907 (10.8mF?cm?2). The higher Cdl of A-CrS/C-CoS2 can be attributed toits unique amorphous/crystalline few-layer nanosheet structure,which facilitates mass transfer and provides more active sitesduring the HER and OER processes, resulting in enhanced HERand OER activity. These findings suggest that the presence ofamorphous CrS and highly crystalline CoS2 in A-CrS/HC-CoS2not only increases the number of active sites but also improvesintrinsic catalytic ability, leading to enhanced HER and OERperformance.

    DFT calculations were conducted to provide further insightsinto the mechanisms underlying the enhanced electrocatalyticactivity achieved by constructing the CrS-CoS2 heterojunction.Based on the XRD and HRTEM analyses, highly exposed CoS2(002) and CrS (012) crystal facets were selected to construct theheterojunction (Figs. S15 and S16), with a bridge formed by Co-S-Cr interface bonds at the interface (Fig. 5a). Due to theelectronegativity difference between Cr and Co elements (Co:1.88, Cr: 1.66), there was a noticeable redistribution of chargedensity at the interface region in the CrS-CoS2 heterojunction 44.Fig. 5b,e show charge density difference plots that illustrate theelectronic density variation at the CrS-CoS2 heterojunctioninterface. These plots reveal that there is stronger electronaccumulation inside the Co―S bond, indicating that electronswere injected into Co sites once the CrS-CoS2 interface wasformed. Conversely, electron depletion can be observed at theCr-S side, which gives Cr centers in CrS species a highervalence, making them more favorable for adsorption of H*,OOH*, and other adsorbed reaction intermediates. This isconsistent with previous experimental results based on XPSanalysis. In conclusion, the DFT calculations successfullydemonstrated that the CrS/CoS2 few-layer heterojunctioneffectively facilitates interface electron transport.

    The geometrical configurations and free energy of hydrogenadsorption (ΔGH*) on different reaction sites of CoS2, CrS andCrS/CoS2 heterostructure were shown in Figs. 5c and S17. TheΔGH* on the CrS/CoS2 surface was ?0.08 eV, which is closer tothe thermoneutral state compared to both CoS2 and CrS. Theresult indicates that both fast proton transfer and rapid hydrogenrelease processes occur on CrS/CoS2 heterostructure. Asdepicted in (Fig. 5d), the Gibbs free energy (ΔG) during the OERprocess with four-electrons pathway were calculated (theproposed reaction pathway of OER process were shown in Figs.S18–S20). Apparently, the third electron transfer step (*O +H2O → *OOH + H+ + e?) determines the potential determiningstep (PDS) for three catalysts. For pure CrS, the overpotential is2.48 eV, indicating that the nucleophilic attack of OH? is verydifficult in Cr centers. However, after introducing the Cr-S-Cointerface by combining it with CoS2, the overpotential is reducedto 0.43 eV, demonstrating the significant role of constructingCrS/CoS2 heterointerfaces in lowering the thermodynamicenergy barrier and optimizing reaction activity. The d bandcenter is a well-accepted descriptor, which has been widely usedto understand variations in chemisorption energies of variousadsorbates on catalyst surfaces. In general, a high d-band center implies a strong affinity to adsorbates due to less filling ofadsorbate-metal antibonding states. As shown in (Figs. 5f, S21and S22), Cr sites in CrS possess higher d-band center than Cosites in CoS2, indicating that stronger interaction with reactionintermediate, including OH*, H* and other adsorbates. In otherword, the desorption of H* is difficult in CrS catalyst surfaces.The results are consistent with the previous ΔGH* analysis. ForHER process, an appropriate ΔGH (≈ 0 eV) is vital for effectivecatalytic performance. As a result, when the CrS/CoS2heterojunction has formed, the charge redistribution in theinterface could improve the electronic structure by altering dband center value, which is in favor of water splitting processes.

    The performance of the A-CrS/HC-CoS2 catalyst wasevaluated in an overall water splitting and methanol-assisted H2production device consisted of two-electrode configurationswith A-CrS/HC-CoS2 both as cathode and anode were evaluatedin 1 mol?L?1 KOH solution. The bi-functional A-CrS/HC-CoS2demonstrated excellent performance, requiring a cell voltage of1.74 V to achieve a stable current density of 10 mA?cm?2 inoverall water splitting, which was very close to a commercialPt/C//RuO2 counterpart (1.73 V@10 mA?cm?2) (Fig. 6a,b). Moreimportantly, in methanol-assisted H2 production, the deviceequipped with A-CrS/HC-CoS2 as both cathode and anodeexhibited a low cell voltage of 1.51 V to achieve a currentdensity of 10 mA?cm?2, significantly outperforming thePt/C//RuO2 device (1.70 V@10 mA?cm?2). The water-splittingdevice equipped with bifunctional A-CrS/HC-CoS2 could beeasily powered by a small solar cell (Fig. 6c). Moreover, thelong-term stability of the A-CrS/HC-CoS2-based device (Fig.6d) was evaluated, and it exhibited superior stability after 20 h,while the counterpart device (Pt/C//RuO2) exhibited significantperformance degradation within just a few hours. These resultssuggest that A-CrS/HC-CoS2 has the potential to replaceprecious metal catalysts in achieving high-efficiency watersplitting and methanol-assisted H2 production devices. Theassembled A-CrS/HC-CoS2//A-CrS/HC-CoS2 electrolyzer also demonstrated competitiveness compared to other electrolyzersreported in previous studies (Fig. 6e and Table S3).

    To gain a deeper understanding of the electrocatalyticbehaviors, ex situ analyses of structure robustness and surfacecomposition changes of A-CrS/HC-CoS2 after long-termstability tests for both HER and OER were conducted. The XRDpatterns of A-CrS/HC-CoS2 after electrolysis showed that themain peaks of CoS2 and CrS were still present, indicating thatthe crystal structure of the catalyst remained intact duringelectrolysis (Fig. S23). In the survey spectrum (Fig. S24), thesignal of Cr in A-CrS/HC-CoS2 after HER decreased comparedto that of fresh A-CrS/HC-CoS2, suggesting partial dissolutionof Cr during the HER process. Interestingly, the fine spectrumof Co in A-CrS/HC-CoS2 after HER and OER exhibited only aslight negative shift compared to fresh A-CrS/HC-CoS2 (Fig.7a), indicating that the low oxidation state of Co induced by thepotential has high activity, which corresponds to the enhancedactivity observed during HER and OER stability. The highresolutionXPS spectrum of Cr slightly shifts after OER,indicating that the high valence state of Cr was maintainedduring the OER process, while the signal of Cr in A-CrS/HCCoS2after HER was too low to be detected (Fig. 7b). Partialdissolution of Cr from A-CrS/HC-CoS2 during the HER processwould produce a large number of Cr vacancies, which likelycontributed to the significant enhancement of catalyticperformance during HER. In addition, the S―S bond in ACrS/HC-CoS2 after HER and OER fully transformed into S―Obonds on the surface of A-CrS/HC-CoS2 (Fig. 7c). The TEMimages showed that the A-CrS/HC-CoS2 nanosheet structurewas well-maintained after HER (Fig. 7d) and OER (Fig. 7h), andthe STEM images and corresponding mappings of A-CrS/HCCoS2after HER (Fig. 7g) and OER (Fig. 7k) confirmed theelemental distribution of Co, Cr, and S in the A-CrS/HC-CoS2.After the HER process, A-CrS/HC-CoS2 exhibited themorphology of amorphous nanosheets with some CoS2 dotsanchored (Fig. 7e,f), while after the OER process, A-CrS/HCCoS2underwent restructuring, with amorphous regions formingat the surface edges of the nanosheets (Fig. 7i,j). This indicatedthe formation of a Co/Cr oxyhydroxides layer. It’s worthemphasizing that the well-maintained amorphous/crystallineheterointerfaces in A-CrS/HC-CoS2 and favorable changes insurface composition contributed to the robust HER and OERstability.

    3 Conclusions

    In summary, we have prepared CrS/CoS2 heterojunction withvarying degrees of crystallinity and systematically investigatedthe relationship between their microstructure, electronicproperties, electrocatalytic HER/OER performance anddurability. Thanks to the synergistic effect of theamorphous/highly crystalline structure and heterojunction,electronic coupling at the interfaces via the Cr―S―Co bond has been significantly strengthened, and the d-band center has beenfinely tuned. It optimizes H*/OOH* intermediate adsorption andreduces the kinetic barriers of the HER and OER processes,resulting in outstanding HER and OER activity. Theheterojunction interface, coupling amorphous and highlycrystalline morphologies, fully exposes the active sites, therebysignificantly enhancing the HER and OER performance, whichalso facilitates the structural and composition evolution of ACrS/HC-CoS2 during water electrolysis, enabling excellentstability. The HER and OER overpotential of A-CrS/HC-CoS2surpasses that of most other related Co-based compoundcatalysts. As a bifunctional catalyst in a methanol-assistedenergy-saving hydrogen production device, it achieves a currentdensity of 10 mA?cm?2 at a low cell voltage of 1.51 V, making itan excellent candidate among metal-based catalysts. This workprovides a strategy for finely tuning the catalytic activity ofamorphous-crystalline heterojunction electrocatalysts, whichcan be applied to enhance the activity and durability of otherrelated electrocatalysts.

    Author Contributions: Conceptualization, S. Lu and M. Jin;Methodology, W. Dou, J. Zhang, L. Wang, C. Wu and H. Yi;Software, R. Wang; Investigation, W. Dou, J. Zhang, L. Wang C.Wu and H. Yi; Writing-Original Draft Preparation, S. Lu, W. Dou,R. Wang, M. Jin; Writing-Review amp; Editing, S. Lu, W. Dou, R.Wang, M. Jin; Supervision, S. Lu and M. Jin; FundingAcquisition, S. Lu, R. Wang and M. Jin. The manuscript waswritten through contributions of all authors. All authors havegiven approval to the final version of the manuscript.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.;Jin, S. J. Am. Chem. Soc. 2014, 136 (28), 10053.doi: 10.1021/ja504099w

    (2) Huang, G.; Xiao, Z.; Chen, R.; Wang, S. ACS Sustain. Chem. Eng.2018, 6 (12), 15954. doi: 10.1021/acssuschemeng.8b04397

    (3) Liu, Z.; Zhao, L.; Liu, Y.; Gao, Z.; Yuan, S.; Li, X.; Li, N.; Miao, S.Appl. Catal. B-Environ. 2019, 246, 296.doi: 10.1016/j.apcatb.2019.01.062

    (4) Lu, S.-Y.; Jin, M.; Zhang, Y.; Niu, Y.-B.; Gao, J.-C.; Li, C. M. Adv.Energ. Mater. 2018, 8 (11), 1702545. doi: 10.1002/aenm.201702545

    (5) Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang,Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39 (8), 2210039.[于彥會, 饒鵬, 封蘇陽, 陳民, 鄧培林, 李靜, 苗政培, 康振燁,沈義俊, 田新龍. 物理化學(xué)學(xué)報, 2023, 39 (8), 2210039.]doi: 10.3866/PKU.WHXB202210039

    (6) Yu, L.; Huang, X.; Zhang, Q.; Zhang, Z. Acta Phys. -Chim. Sin. 2022,38 (6), 2109020. [于樂, 黃小清, 張橋保, 張志成. 物理化學(xué)學(xué)報,2022, 38 (6), 2109020.] doi: 10.3866/PKU.WHXB202109020

    (7) Tang, S.; Wang, C.; Pu, X.; Gu, X.; Chen, Z. Acta Phys. -Chim. Sin.2023, 39 (8), 2212037. [唐生龍, 王春蕾, 蒲想俊, 顧向奎,陳重學(xué). 物理化學(xué)學(xué)報, 2023, 39 (8), 2212037.]doi: 10.3866/PKU.WHXB202212037

    (8) Sun, K.; Zhao, Y.; Yin, J.; Jin, J.; Liu, H.; Xi, P. Acta Phys. -Chim.Sin. 2022, 38 (6), 2107005. [孫軻, 趙永青, 殷杰, 靳晶, 劉翰文,席聘賢. 物理化學(xué)學(xué)報, 2022, 38 (6), 2107005.]doi: 10.3866/PKU.WHXB202107005

    (9) Feng, L. L.; Yu, G.; Wu, Y.; Li, G. D.; Li, H.; Sun, Y.; Asefa, T.;Chen, W.; Zou, X. J. Am. Chem. Soc. 2015, 137 (44), 14023.doi: 10.1021/jacs.5b08186

    (10) Gao, Z.; Li, M.; Wang, J.; Zhu, J.; Zhao, X.; Huang, H.; Zhang, J.;Wu, Y.; Fu, Y.; Wang, X. Carbon 2018, 139, 369.doi: 10.1016/j.carbon.2018.07.006

    (11) Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.;Guo, S. Adv. Energy Mater. 2020, 10 (11), 1903120.doi: 10.1002/aenm.201903120

    (12) Zhang, L.; Zhang, J.; Fang, J.; Wang, X. Y.; Yin, L.; Zhu, W.; Zhuang,Z. Small 2021, 17 (28), 2100832. doi: 10.1002/smll.202100832

    (13) Wang, S. Acta Phys. -Chim. Sin. 2021, 37 (7), 2011013. [王雙印.物理化學(xué)學(xué)報, 2021, 37 (7), 2011013.]doi: 10.3866/PKU.WHXB202011013

    (14) Guo, Y.; Gan, L.; Shang, C.; Wang, E.; Wang, J. Advan. Funct. Mater.2017, 27 (5), 1602699. doi: 10.1002/adfm.201602699

    (15) Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. ACS Sustain.Chem. Eng. 2019, 7 (3), 2899. doi: 10.1021/acssuschemeng.8b05462

    (16) Chen, B.; Wang, J.; He, S.; Shen, Y.; Huang, S.; Zhou, H. J. Alloy.Compd. 2023, 948, 169655. doi: 10.1016/j.jallcom.2023.169655

    (17) Lu, S.-Y.; Li, S.; Jin, M.; Gao, J.; Zhang, Y. Appl. Catal. B-Environ.2020, 267, 118675. doi: 10.1016/j.apcatb.2020.118675

    (18) Peng, W.; Wang, Z.; Lu, R.; Li, Q.; Wang, Z.; Zhao, Y.; Xu, L.; Mai,L. Chem. Eng. J. 2023, 457, 141173. doi: 10.1016/j.cej.2022.141173

    (19) Han, L.; Wu, Y.; Zhao, B.; Meng, W.; Zhang, D.; Li, M.; Pang, R.;Zhang, Y.; Cao, A.; Shang, Y. ACS Appl. Mater. Interfaces 2022, 14(27), 30847. doi: 10.1021/acsami.2c06122

    (20) Xu, H.; Zhang, W. D.; Yao, Y.; Yang, J.; Liu, J.; Gu, Z. G.; Yan, X.J. Colloid Interface Sci. 2022, 629, 501.doi: 10.1016/j.jcis.2022.09.072

    (21) Jin, M.; Lu, S.-Y.; Ma, L.; Gan, M.-Y.; Lei, Y.; Zhang, X.-L.; Fu, G.;Yang, P.-S.; Yan, M.-F. J. Power Sources 2017, 341, 294.doi: 10.1016/j.jpowsour.2016.12.013

    (22) Zhang, J.; Xiao, B.; Liu, X.; Liu, P.; Xi, P.; Xiao, W.; Ding, J.; Gao,D.; Xue, D. J. Mater. Chem. A 2017, 5 (33), 17601.doi: 10.1039/c7ta05433e

    (23) Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. ACSEnergy Lett. 2018, 3 (4), 779. doi: 10.1021/acsenergylett.8b00066

    (24) Xie, M.; Li, C.; Zhang, S.; Zhang, Z.; Li, Y.; Chen, X. B.; Shi, Z.;Feng, S. Small 2023, 2301436. doi: 10.1002/smll.202301436

    (25) Yang, L.; Huang, L.; Yao, Y.; Jiao, L. Appl. Catal. B-Environ. 2021,282, 119584. doi: 10.1016/j.apcatb.2020.119584

    (26) Han, K. H.; Seok, J. Y.; Kim, I. H.; Woo, K.; Kim, J. H.; Yang, G. G.;Choi, H. J.; Kwon, S.; Jung, E. I.; Kim, S. O. Adv. Mater. 2022, 34(34), 2203992. doi: 10.1002/adma.202203992

    (27) Shifa, T. A.; Gradone, A.; Yusupov, K.; Ibrahim, K. B.; Jugovac, M.;Sheverdyaeva, P. M.; Rosen, J.; Morandi, V.; Moras, P.; Vomiero, A.Chem. Eng. J. 2023, 453, 139781. doi: 10.1016/j.cej.2022.139781

    (28) Sun, F.; Hong, A.; Zhou, W.; Yuan, C.; Zhang, W. Mater. Today 2020,25, 101707. doi: 10.1016/j.mtcomm.2020.101707

    (29) Fang, B.; He, N.; Li, Y.; Lu, T.; He, P.; Chen, X.; Zhao, Z.; Pan, L.Electrochim. Acta 2023, 448, 142187.doi: 10.1016/j.electacta.2023.142187

    (30) Wu, Q.; Liu, L.; Guo, H.; Li, L.; Tai, X. J. Alloy. Compd. 2020, 821,153219. doi: 10.1016/j.jallcom.2019.153219

    (31) Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.;Sun, X. New J. Chem. 2017, 41 (12), 4754. doi: 10.1039/c7nj00326a

    (32) Hao, J.; Yang, W.; Peng, Z.; Zhang, C.; Huang, Z.; Shi, W. ACSCatal. 2017, 7, 4214. doi: 10.1021/acscatal.7b00792

    (33) Jin, M.; Wang, R.; Jia, B.; Zhang, J.; Liu, H.; Lu, S.-Y. Appl. Surf.Sci. 2022, 591, 153201. doi: 10.1016/j.apsusc.2022.153201

    (34) Wang, P.; Bai, P.; Mu, J.; Jing, J.; Wang, L.; Su, Y. J. ColloidInterface Sci. 2023, 642, 1. doi: 10.1016/j.jcis.2023.03.133

    (35) Cao, X.; Wang, T.; Qin, H.; Lin, G.; Zhao, L.; Jiao, L. Nano Res.2022, 16 (3), 3665. doi: 10.1007/s12274-022-4635-5

    (36) Cao, F.; Li, M.; Hu, Y.; Wu, X.; Li, X.; Meng, X.; Zhang, P.; Li, S.;Qin, G. Chem. Eng. J. 2023, 472, 144970.doi: 10.1016/j.cej.2023.144970

    (37) Zhang, S.-H.; Wu, M.-F.; Tang, T.-T.; Xing, Q.-J.; Peng, C.-Q.; Li, F.;Liu, H.; Luo, X.-B.; Zou, J.-P.; Min, X.-B.; et al. Chem. Eng. J. 2018,335, 945. doi: 10.1016/j.cej.2017.10.182

    (38) Wu, Y.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C.; Liu, M.;Lu, X. Adv. Mater. 2019, 31 (15), 1900178.doi: 10.1002/adma.201900178

    (39) Dong, C.; Yuan, X.; Wang, X.; Liu, X.; Dong, W.; Wang, R.; Duan,Y.; Huang, F. J. Mater. Chem. A 2016, 4 (29), 11292.doi: 10.1039/c6ta04052g

    (40) Liu, D.; Tong, R.; Qu, Y.; Zhu, Q.; Zhong, X.; Fang, M.; Ho Lo, K.;Zhang, F.; Ye, Y.; Tang, Y.; et al. Appl. Catal. B-Environ. 2020, 267,118721. doi: 10.1016/j.apcatb.2020.118721

    (41) Zhu, L.; Susac, D.; Teo, M.; Wong, K.; Wong, P.; Parsons, R.;Bizzotto, D.; Mitchell, K.; Campbell, S. J. Catal. 2008, 258 (1), 235.doi: 10.1016/j.jcat.2008.06.016

    (42) Jin, M.; Lu, S.-Y.; Zhong, X.; Liu, H.; Liu, H.; Gan, M.; Ma, L. ACSSustain. Chem. Eng. 2020, 8 (4), 1933.doi: 10.1021/acssuschemeng.9b06329

    (43) Lu, S. Y.; Wang, J.; Wang, X.; Yang, W.; Jin, M.; Xu, L.; Yang, H.;Ge, X.; Shang, C.; Chao, Y.; et al. Small Methods 2022, 6 (6),2101551. doi: 10.1002/smtd.202101551

    (44) Fu, T.; Li, Z. Chem. Eng. Sci. 2015, 135, 3.doi: 10.1016/j.ces.2015.03.007

    中國科協(xié)青年人才托舉工程(2021QNRC001), 重慶市自然科學(xué)基金(CSTB2022NSCQ-MSX0557, cstc2020jcyj-msxmX0670, 2023NSCQ-MSX3724), 重慶科技學(xué)院人才引進項目(ckrc2021050, ckrc20230401, ckrc2021053), 重慶市教委科學(xué)技術(shù)研究計劃項目(KJQN202001525, KJQN202201532,KJQN202301542),國家自然科學(xué)基金(22109016)及中國材料基因工程高通量計算平臺開放研究基金(CNMGE2023016)資助

    猜你喜歡
    非晶態(tài)
    Mg基非晶態(tài)儲氫合金的研究進展
    植物補光用非晶態(tài)La2Ti2O7∶Eu3+熒光粉的燃燒合成及性能
    具有近室溫磁熱效應(yīng)的Fe71Mo9P13C7塊體非晶態(tài)合金*
    功能材料(2022年3期)2022-04-11 12:36:52
    科學(xué)家合成次晶態(tài)金剛石
    賀利氏攜手通快研究非晶態(tài)金屬三維打印
    機械制造(2020年5期)2020-02-20 03:41:19
    新材料應(yīng)用探索之非晶態(tài)合金
    鐘表(2019年1期)2019-02-25 08:40:58
    納米非晶態(tài)水化硅酸鈣接觸硬化膠凝性能研究
    非晶態(tài)合金與氫相互作用的研究進展?
    非晶態(tài)物質(zhì)的本質(zhì)和特性
    推廣使用非晶態(tài)變壓器的效益分析和前景
    h日本视频在线播放| 亚洲三级黄色毛片| 久久韩国三级中文字幕| 国产伦理片在线播放av一区| 亚洲人成网站高清观看| 又爽又黄无遮挡网站| a级毛色黄片| 免费在线观看成人毛片| 日本欧美国产在线视频| 毛片女人毛片| 在现免费观看毛片| 久久久久网色| 国产亚洲精品久久久com| 日本欧美国产在线视频| 国产老妇伦熟女老妇高清| 五月天丁香电影| 国产精品熟女久久久久浪| 男插女下体视频免费在线播放| 国产免费视频播放在线视频 | 秋霞伦理黄片| 一级毛片aaaaaa免费看小| 男女那种视频在线观看| 真实男女啪啪啪动态图| 国产在线一区二区三区精| 亚洲久久久久久中文字幕| 又爽又黄a免费视频| 日韩欧美国产在线观看| 女的被弄到高潮叫床怎么办| 国产一级毛片在线| 中文字幕制服av| 欧美高清性xxxxhd video| 欧美极品一区二区三区四区| 欧美高清性xxxxhd video| 久久精品国产鲁丝片午夜精品| 高清在线视频一区二区三区| 亚洲国产精品国产精品| 国产 一区 欧美 日韩| 亚洲国产精品国产精品| 国产精品麻豆人妻色哟哟久久 | 草草在线视频免费看| 一级毛片 在线播放| 色吧在线观看| 2018国产大陆天天弄谢| 国产精品一区二区三区四区久久| 97超视频在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆成人av视频| 国内精品一区二区在线观看| 国产成人精品福利久久| 亚洲成人av在线免费| 1000部很黄的大片| 男女边摸边吃奶| 人人妻人人澡欧美一区二区| 亚洲欧美日韩无卡精品| 日韩伦理黄色片| 亚洲国产av新网站| 精品一区二区免费观看| 亚洲一级一片aⅴ在线观看| 2018国产大陆天天弄谢| 国产一区二区亚洲精品在线观看| 嫩草影院精品99| 搡老乐熟女国产| 欧美激情在线99| 亚洲国产精品成人综合色| 大香蕉97超碰在线| 熟女人妻精品中文字幕| 久久99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 又爽又黄a免费视频| 国产淫语在线视频| 午夜免费男女啪啪视频观看| 久久鲁丝午夜福利片| 一级毛片黄色毛片免费观看视频| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| 免费观看在线日韩| 我的老师免费观看完整版| 永久网站在线| 只有这里有精品99| 五月伊人婷婷丁香| 七月丁香在线播放| 亚洲18禁久久av| 亚洲av电影在线观看一区二区三区 | 欧美激情久久久久久爽电影| 欧美区成人在线视频| 两个人的视频大全免费| 婷婷色麻豆天堂久久| 国产一区二区三区av在线| 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 亚洲av.av天堂| 一边亲一边摸免费视频| 91久久精品国产一区二区三区| 青春草亚洲视频在线观看| 国产黄片视频在线免费观看| 亚洲精品影视一区二区三区av| 六月丁香七月| 能在线免费看毛片的网站| 色视频www国产| 一本一本综合久久| 男人和女人高潮做爰伦理| 日韩亚洲欧美综合| 免费黄色在线免费观看| 久久99热6这里只有精品| 亚洲av电影不卡..在线观看| 直男gayav资源| 久久久a久久爽久久v久久| 成人午夜精彩视频在线观看| 欧美激情国产日韩精品一区| av在线亚洲专区| 国产成人午夜福利电影在线观看| 高清视频免费观看一区二区 | 久久精品综合一区二区三区| 中国国产av一级| 在线观看美女被高潮喷水网站| 一二三四中文在线观看免费高清| 2021少妇久久久久久久久久久| 一级黄片播放器| 日本黄色片子视频| 又爽又黄无遮挡网站| 国产久久久一区二区三区| 丝袜喷水一区| 夜夜爽夜夜爽视频| 日韩国内少妇激情av| 99视频精品全部免费 在线| 日韩欧美 国产精品| 国产一区二区三区av在线| 精品久久久久久电影网| 国产精品无大码| 国产精品av视频在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲91精品色在线| 色哟哟·www| 噜噜噜噜噜久久久久久91| 观看美女的网站| 一区二区三区免费毛片| 久久久久网色| 国产单亲对白刺激| 亚洲av在线观看美女高潮| 午夜免费观看性视频| 网址你懂的国产日韩在线| 寂寞人妻少妇视频99o| 国产亚洲5aaaaa淫片| 看非洲黑人一级黄片| 久久久成人免费电影| 久久久精品94久久精品| 久久99热这里只频精品6学生| 亚洲婷婷狠狠爱综合网| 国产片特级美女逼逼视频| 晚上一个人看的免费电影| 99久久人妻综合| 国产成人午夜福利电影在线观看| 网址你懂的国产日韩在线| 肉色欧美久久久久久久蜜桃 | 22中文网久久字幕| eeuss影院久久| 亚洲av男天堂| 亚洲欧洲日产国产| 日日摸夜夜添夜夜爱| 在线 av 中文字幕| 日本黄色片子视频| 中文在线观看免费www的网站| 欧美潮喷喷水| 一个人看视频在线观看www免费| 成年女人看的毛片在线观看| 一区二区三区高清视频在线| 五月伊人婷婷丁香| 国产成人福利小说| 国产精品久久久久久av不卡| 在线免费观看不下载黄p国产| 中文字幕免费在线视频6| 欧美97在线视频| 特级一级黄色大片| 精品熟女少妇av免费看| 少妇人妻一区二区三区视频| 日日撸夜夜添| 色综合站精品国产| 听说在线观看完整版免费高清| 好男人视频免费观看在线| 超碰97精品在线观看| 欧美高清性xxxxhd video| 日韩视频在线欧美| 亚洲第一区二区三区不卡| 26uuu在线亚洲综合色| 国产成人福利小说| 91精品国产九色| 亚洲欧美精品自产自拍| 国产亚洲5aaaaa淫片| 黑人高潮一二区| 女人十人毛片免费观看3o分钟| 精品一区二区三区视频在线| 亚洲久久久久久中文字幕| 成人综合一区亚洲| 黄色一级大片看看| 国产av在哪里看| 日韩av免费高清视频| 97热精品久久久久久| 久久精品国产亚洲网站| 国产乱人偷精品视频| 91精品一卡2卡3卡4卡| 国产午夜福利久久久久久| 日本午夜av视频| 高清av免费在线| 一区二区三区乱码不卡18| 如何舔出高潮| 国产欧美日韩精品一区二区| 欧美区成人在线视频| 人人妻人人澡欧美一区二区| 美女黄网站色视频| 日日干狠狠操夜夜爽| 亚洲国产精品成人久久小说| 午夜久久久久精精品| 国产成人freesex在线| 精品熟女少妇av免费看| 精华霜和精华液先用哪个| 色哟哟·www| 亚洲欧美清纯卡通| 成年av动漫网址| 免费看不卡的av| 两个人的视频大全免费| 成人国产麻豆网| 亚洲精品久久午夜乱码| 久久人人爽人人片av| 欧美一级a爱片免费观看看| 免费无遮挡裸体视频| 久久久午夜欧美精品| 国产一区亚洲一区在线观看| 69av精品久久久久久| 狂野欧美白嫩少妇大欣赏| 精品99又大又爽又粗少妇毛片| 日日摸夜夜添夜夜添av毛片| 边亲边吃奶的免费视频| 精品久久久久久电影网| av在线播放精品| 国产精品一区www在线观看| 日本三级黄在线观看| 中文资源天堂在线| 亚洲av日韩在线播放| 久久这里只有精品中国| 日本av手机在线免费观看| 99热6这里只有精品| 国产伦精品一区二区三区四那| 久久久久久久久久人人人人人人| 久久国产乱子免费精品| 国产亚洲午夜精品一区二区久久 | 国产成年人精品一区二区| 视频中文字幕在线观看| 少妇熟女欧美另类| 日韩视频在线欧美| 国产老妇女一区| av国产免费在线观看| 欧美性感艳星| 国产精品美女特级片免费视频播放器| 久久草成人影院| 国产色婷婷99| 看十八女毛片水多多多| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 亚洲人与动物交配视频| av线在线观看网站| 少妇高潮的动态图| 免费看a级黄色片| 精品一区在线观看国产| 久久久久精品性色| 天堂av国产一区二区熟女人妻| 久久久久久九九精品二区国产| 爱豆传媒免费全集在线观看| 一级毛片我不卡| 别揉我奶头 嗯啊视频| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 欧美日韩视频高清一区二区三区二| 久久久久性生活片| 91精品一卡2卡3卡4卡| 自拍偷自拍亚洲精品老妇| 欧美性猛交╳xxx乱大交人| 色视频www国产| 高清视频免费观看一区二区 | 国产人妻一区二区三区在| av专区在线播放| 亚洲精品自拍成人| 最近视频中文字幕2019在线8| 麻豆乱淫一区二区| 亚洲精品一二三| 日本色播在线视频| 欧美激情在线99| 直男gayav资源| 一级二级三级毛片免费看| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 永久免费av网站大全| 精品久久国产蜜桃| 亚洲人与动物交配视频| 国产亚洲精品av在线| 街头女战士在线观看网站| 一夜夜www| 高清毛片免费看| 国产精品久久久久久久电影| 欧美精品国产亚洲| 51国产日韩欧美| 国产精品不卡视频一区二区| av播播在线观看一区| 亚洲国产精品成人综合色| 亚洲精品乱码久久久v下载方式| 欧美最新免费一区二区三区| 久久这里只有精品中国| 丰满少妇做爰视频| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 国产黄a三级三级三级人| 亚洲精品第二区| 99re6热这里在线精品视频| 久久久午夜欧美精品| 美女xxoo啪啪120秒动态图| 国产一级毛片在线| 免费大片黄手机在线观看| 少妇丰满av| 亚洲最大成人手机在线| 欧美潮喷喷水| 免费高清在线观看视频在线观看| 成人漫画全彩无遮挡| 三级国产精品片| 午夜视频国产福利| 亚洲精品日韩在线中文字幕| 综合色丁香网| 狠狠精品人妻久久久久久综合| 看十八女毛片水多多多| 久久久久久伊人网av| 毛片女人毛片| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 99九九线精品视频在线观看视频| 国产单亲对白刺激| 少妇高潮的动态图| 色吧在线观看| 国产精品久久久久久精品电影小说 | 成人高潮视频无遮挡免费网站| 街头女战士在线观看网站| 亚洲欧美日韩卡通动漫| 高清在线视频一区二区三区| 精品熟女少妇av免费看| 天堂√8在线中文| 51国产日韩欧美| 成人高潮视频无遮挡免费网站| 亚洲国产av新网站| 免费观看的影片在线观看| 成人一区二区视频在线观看| 国产av在哪里看| 亚洲国产精品成人综合色| av在线老鸭窝| 两个人的视频大全免费| 男女国产视频网站| 国产91av在线免费观看| 精品熟女少妇av免费看| 男女边吃奶边做爰视频| 亚洲精品第二区| 亚洲欧美日韩东京热| 菩萨蛮人人尽说江南好唐韦庄| 18禁在线播放成人免费| 欧美zozozo另类| 99久国产av精品| 九九在线视频观看精品| 听说在线观看完整版免费高清| 精品久久久精品久久久| 黑人高潮一二区| 91精品国产九色| 身体一侧抽搐| 日韩成人av中文字幕在线观看| 免费观看精品视频网站| 亚洲精品成人久久久久久| 能在线免费观看的黄片| 在线a可以看的网站| 国产高清有码在线观看视频| 午夜免费观看性视频| 最新中文字幕久久久久| 国产麻豆成人av免费视频| 国产高清不卡午夜福利| 国产精品爽爽va在线观看网站| 久久久久久久亚洲中文字幕| 国产成人精品久久久久久| 久久久久久久午夜电影| 日本一本二区三区精品| 亚洲国产精品sss在线观看| 男插女下体视频免费在线播放| 久久久久久久久久成人| 亚洲av成人av| 极品少妇高潮喷水抽搐| 亚洲国产av新网站| 99热这里只有精品一区| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 成人午夜精彩视频在线观看| 一级毛片黄色毛片免费观看视频| 超碰av人人做人人爽久久| 午夜免费观看性视频| 亚洲国产av新网站| 女的被弄到高潮叫床怎么办| 在线a可以看的网站| 国产成人a∨麻豆精品| 精品久久久久久久人妻蜜臀av| 少妇丰满av| 亚洲国产精品成人久久小说| av天堂中文字幕网| 免费观看性生交大片5| 国产高清三级在线| 免费观看a级毛片全部| 国产av码专区亚洲av| 精品一区二区三区人妻视频| 婷婷色麻豆天堂久久| 亚洲熟女精品中文字幕| 国产午夜福利久久久久久| 亚洲av二区三区四区| 久久久久久久久久久丰满| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 麻豆精品久久久久久蜜桃| 国产毛片a区久久久久| 五月玫瑰六月丁香| 女的被弄到高潮叫床怎么办| 国产爱豆传媒在线观看| 欧美成人a在线观看| 国产精品人妻久久久久久| 日日撸夜夜添| 99热全是精品| 午夜福利在线观看免费完整高清在| 搡老妇女老女人老熟妇| 日韩电影二区| 2018国产大陆天天弄谢| 久久久色成人| 国产精品一区二区三区四区免费观看| 又粗又硬又长又爽又黄的视频| 天堂俺去俺来也www色官网 | 看十八女毛片水多多多| 国国产精品蜜臀av免费| 亚洲精品乱码久久久v下载方式| 日韩av不卡免费在线播放| 性插视频无遮挡在线免费观看| av专区在线播放| 亚洲av.av天堂| 免费看日本二区| 人妻夜夜爽99麻豆av| 国产精品久久久久久av不卡| 免费看不卡的av| 国产精品人妻久久久影院| 嘟嘟电影网在线观看| 日韩人妻高清精品专区| 18禁在线无遮挡免费观看视频| 80岁老熟妇乱子伦牲交| 最新中文字幕久久久久| 韩国高清视频一区二区三区| 99视频精品全部免费 在线| 青青草视频在线视频观看| av在线老鸭窝| 日韩中字成人| 久久人人爽人人片av| 国产精品一区二区性色av| 一个人观看的视频www高清免费观看| 国产欧美日韩精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 免费看av在线观看网站| 91久久精品电影网| 美女内射精品一级片tv| av在线亚洲专区| 久久人人爽人人爽人人片va| 日本三级黄在线观看| 亚洲乱码一区二区免费版| 亚洲人成网站在线播| 中文资源天堂在线| 亚洲精品乱久久久久久| 99久国产av精品| 亚洲av中文av极速乱| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 99久久精品国产国产毛片| 亚洲av二区三区四区| 一夜夜www| av在线亚洲专区| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品 | 亚洲aⅴ乱码一区二区在线播放| 久久久欧美国产精品| 高清av免费在线| av在线老鸭窝| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄无遮挡网站| 神马国产精品三级电影在线观看| 简卡轻食公司| 亚洲第一区二区三区不卡| 国产成人a∨麻豆精品| 免费看光身美女| 少妇裸体淫交视频免费看高清| 国产午夜精品一二区理论片| 亚洲国产欧美在线一区| 亚洲天堂国产精品一区在线| 黄片wwwwww| 一级av片app| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 1000部很黄的大片| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 国产av国产精品国产| 伊人久久精品亚洲午夜| 嫩草影院精品99| 赤兔流量卡办理| 国产亚洲午夜精品一区二区久久 | 天堂网av新在线| 最近最新中文字幕免费大全7| 色尼玛亚洲综合影院| 日韩中字成人| 特大巨黑吊av在线直播| 国产精品无大码| 建设人人有责人人尽责人人享有的 | 久久国产乱子免费精品| 麻豆精品久久久久久蜜桃| 亚洲av国产av综合av卡| 午夜爱爱视频在线播放| 两个人的视频大全免费| 毛片女人毛片| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 成人高潮视频无遮挡免费网站| 日本av手机在线免费观看| 国产伦理片在线播放av一区| 最近视频中文字幕2019在线8| 久久这里有精品视频免费| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| a级一级毛片免费在线观看| 亚州av有码| 国产大屁股一区二区在线视频| 国产伦精品一区二区三区视频9| 欧美 日韩 精品 国产| 91aial.com中文字幕在线观看| 美女高潮的动态| 亚洲自拍偷在线| 三级国产精品片| 国产精品福利在线免费观看| 成年免费大片在线观看| 久久99蜜桃精品久久| 久久久久性生活片| 国产亚洲5aaaaa淫片| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 午夜福利在线在线| 三级毛片av免费| 国产黄频视频在线观看| 日本黄色片子视频| 国产精品国产三级专区第一集| 最近2019中文字幕mv第一页| 亚洲精品自拍成人| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 97精品久久久久久久久久精品| 午夜福利高清视频| 午夜激情福利司机影院| 汤姆久久久久久久影院中文字幕 | 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 大又大粗又爽又黄少妇毛片口| 一边亲一边摸免费视频| 亚洲av中文字字幕乱码综合| 国产视频首页在线观看| 久久久久免费精品人妻一区二区| 99九九线精品视频在线观看视频| 国产精品99久久久久久久久| 国产高清有码在线观看视频| 久久久久国产网址| 91精品伊人久久大香线蕉| 网址你懂的国产日韩在线| 国产av国产精品国产| 看十八女毛片水多多多| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩欧美精品在线观看| 国产精品三级大全| 久久久精品免费免费高清| 亚洲最大成人av| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜爱| 最近中文字幕2019免费版| 2021少妇久久久久久久久久久| av在线蜜桃| 亚洲人与动物交配视频| 免费看a级黄色片| 国产v大片淫在线免费观看| 亚洲欧洲国产日韩| 国产综合懂色| 久久久国产一区二区| 赤兔流量卡办理| 日本免费a在线| h日本视频在线播放| 一区二区三区乱码不卡18| 午夜福利在线观看免费完整高清在| 男人和女人高潮做爰伦理| 亚洲精品自拍成人| 成人二区视频| 日韩精品有码人妻一区| 国产大屁股一区二区在线视频| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 91精品伊人久久大香线蕉| 高清午夜精品一区二区三区| 毛片女人毛片| 亚洲av中文av极速乱| 99久国产av精品| 日本wwww免费看|