• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    優(yōu)化結(jié)晶度的CrS/CoS2少層異質(zhì)結(jié)非晶/晶態(tài)界面耦合增強水裂解和甲醇輔助節(jié)能制氫

    2024-08-26 00:00:00陸世玉豆文釗張均王玲武春潔易歡王融金夢
    物理化學(xué)學(xué)報 2024年8期
    關(guān)鍵詞:非晶態(tài)

    摘要:由于電催化劑中的非晶區(qū)和結(jié)晶區(qū)具有不同的物理化學(xué)性質(zhì),因此非晶化/結(jié)晶化工程成為提高電解水催化動力學(xué)的重要策略。然而,在微觀環(huán)境中有效地調(diào)控催化劑的結(jié)晶度仍然是一個嚴峻的挑戰(zhàn)。本文介紹了一種可調(diào)節(jié)結(jié)晶度的新型CrS/CoS2異質(zhì)結(jié)構(gòu),該異質(zhì)結(jié)對氫氣析出反應(yīng)(HER)和氧氣析出反應(yīng)(OER)都具有高效的催化活性。Cr―S―Co鍵的重新分配引起的d帶中心移動有助于調(diào)節(jié)中間體H*和OOH*在催化劑表面的吸附能力,從而優(yōu)化HER和OER的決速步驟。在最佳條件下,非晶態(tài)CrS和高度結(jié)晶的CoS2異質(zhì)結(jié)(A-CrS/HC-CoS2)在HER和OER均表現(xiàn)出優(yōu)異的催化活性,分別為90.6 mV (10 mA?cm?2,HER)和370.5 mV (50 mA?cm?2,OER)。非晶/高晶結(jié)構(gòu)有利于A-CrS/HC-CoS2在水電解過程中的結(jié)構(gòu)和成分演變,因此具有出色的穩(wěn)定性。作為甲醇輔助節(jié)能制氫裝置中的雙功能催化劑,A-CrS/HC-CoS2僅需1.51 V的低槽電壓即可達到10 mA?cm?2的電流密度,證明其是理想的金屬基催化劑的候選材料。本研究為雙功能過渡金屬化合物電催化劑在非晶態(tài)/晶態(tài)異質(zhì)結(jié)構(gòu)中通過結(jié)晶度調(diào)控來提高催化活性和穩(wěn)定性提供了重要啟示。

    關(guān)鍵詞:非晶態(tài)-晶態(tài)耦合界面;異質(zhì)結(jié)構(gòu);結(jié)晶度調(diào)控;水分解;節(jié)能制氫裝置

    中圖分類號:O643

    Abstract: Large-scale hydrogen production through theelectrochemical water splitting technique is an important way foraddressing the impending energy and environmental crisis. Thisapproach requires highly efficient and robust bifunctional cost-effectiveelectrocatalysts. Engineering amorphous and crystalline phases withinelectrocatalysts is a key method for enhancing the catalytic kinetics ofwater electrolysis, due to their unique physicochemical properties. Theinterface and amorphous regions constructed within heterostructuresserve as highly active sites that play a crucial role in electrochemicalreactions. On the other hand, highly crystalline regions within theheterostructure demonstrated high tolerance in harsh environments,which helps to improve the stability of the overall catalyst. However, effectively tailoring the crystalline state of catalystswithin a microenvironment presents a significant challenge. Herein, construction of a novel CrS/CoS2 heterojunction withprecise control over crystallinity were presented. The optimized amorphous CrS/highly crystalline CoS2 heterojunction (ACrS/HC-CoS2) exhibits a low overpotential of 90.6 mV (at 10 mA?cm?2) and 370.5 mV (at 50 mA?cm?2) for hydrogenevolution reaction (HER) and oxygen evolution reaction (OER), respectively. X-ray photoelectron spectroscopy (XPS) anddensity functional theory (DFT) calculations reveal that charge redistribution induces variations in the d-band center valueat the A-CrS/HC-CoS2 heterostructure interface, enhancing the catalytic activity for both HER and OER. The displacementof the d-band due to charge redistribution in the Cr―S―Co bond within A-CrS/HC-CoS2 contributes to the modulation ofthe adsorption capacity of H* and OOH* intermediates on the catalyst surface, thereby optimizing the rate-determiningstep for HER and OER. The amorphous/highly crystalline structure also facilitates the structural and compositionalevolution of A-CrS/HC-CoS2 during water electrolysis, ensuring excellent stability. As a bifunctional catalyst in a methanolassistedenergy-saving hydrogen production device, A-CrS/HC-CoS2 operates at a low cell voltage of 1.51 V to deliver acurrent density of 10 mA?cm?2, making it a promising candidate among metal-based catalysts. The well-preservedamorphous/crystalline heterointerfaces in A-CrS/HC-CoS2, along with favorable changes in surface composition, contributeto robust HER and OER stability. This work provides valuable insights into the manipulation of catalytic activity throughcrystalline control within amorphous/crystalline heterojunctions for bifunctional transition metal compound electrocatalysts.

    Key Words: Amorphous-crystalline interface; Heterostructure; Crystalline degree modulation; Water-splitting;Energy-saving hydrogen device

    1 Introduction

    The booming growth of clean and sustainable energy torestrain the immoderate depletion of fossil fuels is one of thevital approaches to addressing pollution incidents andenvironmental risks while striving for carbon neutrality 1?5.Given hydrogen’s high calorific value (142 MJ?kg?1) andcarbon-free properties, the large-scale production of cleanhydrogen fuel via water electrolysis powered by electricity hasgarnered widespread attention as a crucial element in futureenergy supply 2,6,7. However, the broader adoption of waterelectrolysis has been hampered by the inefficiencies in both thecathodic hydrogen evolution reaction (HER) and the anodicoxygen evolution reaction (OER), necessitating robust andhighly active catalysts to reduce overpotentials and consequentlyreduce operational costs of electrolytic water systems 8,9.

    Despite their effectiveness, precious metal-based catalysts(e.g., Pt-based metal catalysts for HER, Ir/Ru-based metalcatalysts for OER) face inherent limitations such as escalatingcosts, limited elemental resources, and compatibility issues,which severely hinder their scalable utilization 10,11. Therefore,there is a pressing need for the design of earth-abundant,bifunctional alternatives characterized by high activity andstability, such as metal phosphides, metal chalcogenides, metalnitrides, metal carbides, and metal oxides/hydroxides 12?20.

    Among these alternatives, cobalt sulfides (CoS2), as a type of metal chalcogenides, stand out due to their unique physical andchemical properties 21. Notably, the abundant d orbital electronsin cobalt (Co), with an electron configuration of 3d74s2, and itsmetallic conductivity (6.7 × 103 S?cm?1 at 300 K) have garneredsignificant attention in the field of electrocatalytic hydrogenproduction. CoS2, with its high active component content,provides a conducive channel for ion adsorption and transport,thereby accelerating the kinetics of HER and OER 22,23.However, CoS2 faces challenges related to the inadequateadsorption energies of reactive species (H*/OH*) andinsufficiently catalytically active surfaces 15.

    To address these challenges, hybridizing appropriateconstituents to construct heterostructure materials can mitigatethe weakness of individual components, harness their merits,optimize electronic properties, and modify structuralconfigurations. This approach increases active sites and inducesthe restructuring of electron nearby active centers, regulating theadsorption energies of reactive species on the catalyst.Moreover, the amorphous and crystalline regions within theheterostructure play distinct roles: the interface and amorphousportions contain abundant coordination-unsaturated sites andvacancies, serving as highly active sites for electrochemicalreactions, while the highly crystalline regions exhibitrobustness in harsh environments, enhancing the overallcatalyst’s stability 24?26. Therefore, designing and constructing amorphous/crystalline heterostructures represent an effectiveand promising strategy for achieving both high activity andstability in catalysts.

    The element chromium (Cr), known for its unique electronicconfiguration (t2g3eg0), has garnered attention as a specificdopant in electrocatalysts, which alters the charge balance,disrupts the continuousness of local chemical field, and thusmodifies the electronic structure of electrocatalysts 27. Recenttheoretical predictions have suggested that monolayer 2H-CrS2exhibits noble metal-like properties in HER 28. Consequently,the Cr-based sulfide/cobalt sulfide heterojunction holds thepromise of serving as an overall water-splitting catalyst withhigh activity and stability, but no synthesis or study has exploredthe relationship between composition/structure and catalyticperformance for this heterojunction.

    In this study, we synthesized a series of CrS/CoS2heterojunctions with varying degrees of crystallinity using acontrollable sulfurating approach on cobaltous hydroxide/chromic acetate nanosheets. The charge redistribution at the interfaces, mediated by Cr ―S― Co bonding, optimizes theadsorption of H* and OOH* intermediates on the CrS/CoS2heterojunction, thereby accelerating the rate-determining stepsof HER and OER. The amorphous/highly crystalline structure inthe amorphous CrS/highly crystalline CoS2 heterojunction (ACrS/HC-CoS2) not only facilitates the generation of richinterfaces and exposes more active sites, resulting in high HERand OER activities, but also supports the structural andcompositional evolution of A-CrS/HC-CoS2 during waterelectrolysis, ensuring high HER and OER stability. This workillustrates the value of controllable amorphous-crystallinecoupling in enhancing both catalytic activity and durability,offering a versatile strategy to improve the performance of otherbifunctional transition metal compound electrocatalysts.

    2 Results and discussion

    The supplemental material includes a description of theexperimental portion. As illustrated in Fig. 1a, we employed astraightforward two-step strategy to prepare CrS/CoS2 heterojunctions with varying degrees of crystallinity. First, wesynthesized cobaltous hydroxide/chromic acetate precursors viaa facile hydrothermal procedure. Field-emission scanningelectron microscopy (FESEM) images of the cobaltoushydroxide/chromic acetate precursor (Fig. S1) confirmed that itconsisted of nanoflower-like structures with 2D wrinklednanosheets interconnected to each other. Then, the CrS/CoS2heterojunctions with different crystallinity were obtained byprecisely controlling the sulfurization process of the cobaltoushydroxide/chromic acetate precursor using sulfur powder as asource, conducted at varying temperatures for 2 h.

    X-ray diffraction (XRD) technology was used to analyze thecomposition and crystal structure of the prepared catalysts. Forthe A-CrS/HC-CoS2 sample at 500 °C, the peaks located at32.3°, 36.3°, and 39.9° can be assigned to the (002), (021), and(112) planes of CoS2 (JCPDS No. 98-062-4832), and the peakslocated at 29.9°, 45.7° and 53.2° can associated to the (010),(012) and (110) planes of CrS (JCPDS No. 98-004-9666),indicating the successful formation of A-CrS/HC-CoS2heterojunction (Fig. S2). Conversely, there was no discernibleXRD diffraction peak for A-CrS/A-CoS2 (sulfurated at 300 °C),indicating the formation of an amorphous CrS/amorphous CoS2heterojunction (Fig. S3a). The XRD pattern of A-CrS/LC-CoS2(sulfurated at 400 °C) closely resembled that of A-CrS/HC-CoS2but exhibited lower crystallinity in CoS2. Interestingly, uponsulfurization at 600 °C, a significant phase transformation wasobserved, resulting in the formation of the CoCr2S4/CoS1.097heterojunction (Fig. S3b).

    To facilitate comparison, single compounds of CoS2 and CrSwere synthesized by using a similar procedure. The XRDanalysis confirmed that the single-phase CoS2 exhibited highcrystallinity (Fig. S3c), while the XRD pattern of single-phaseCrS appeared amorphous (Fig. S3d), indicating that theformation of the CoS2/CrS heterojunction promoted the crystallization of CrS.

    Transmission electron microscopy (TEM) images confirmedthe flexible nanosheet morphology of A-CrS/HC-CoS2 (Fig. 1b,c).High-resolution TEM (HR-TEM) images further verified that ACrS/HC-CoS2 nanosheets had a few-layer structure with athickness of 8.35 nm (Fig. 1d) and consisted of both amorphousCrS and crystalline CoS2 (Fig. 1e,f). The amorphous CrS domainwas surrounded by crystalline CoS2, creating numerousheterojunction interfaces that facilitated the exposure of moreactive sites. Energy-dispersive spectroscopy (EDS) mappingimages confirmed the uniform distribution of Co, Cr and Selements in A-CrS/HC-CoS2 (Fig. 1g). Both pure CoS2 and CrSexhibited lamellar morphology, with the distinction being thatCoS2 displayed a highly crystalline state (Fig. S4), while CrSappeared amorphous (Fig. S5). In A-CrS/A-CoS2 (Fig. S6), asignificant number of disordered regions were observed.Similarly, TEM images of A-CrS/LC-CoS2 revealed bothamorphous and crystalline region, with CoS2 exhibiting lowercrystallinity compared to A-CrS/HC-CoS2 (Fig. S7).Corresponding EDS mapping images of A-CrS/A-CoS2 and ACrS/LC-CoS2 further conformed the uniform distribution of Co,Cr and S elements in CrS/CoS2 heterojunctions. Notably, in theCoCr2S4/CoS1.097 heterojunction (Fig. S8), two morphologieswere observed: nanowires and nanoparticles. CorrespondingEDS mapping images of CoCr2S4/CoS1.097 indicated unevendistribution of Co, Cr and S elements. These results suggestedthat high-temperature treatment induced Cr to blend into theCoS2 structure, forming a Cr-Co binary metal sulfide. The XRDand TEM findings strongly supported the precise control overthe crystallinity of CrS/CoS2 heterojunctions.

    X-ray photoelectron spectroscopy (XPS) was employed toinvestigate the surface chemical compositions and surfacecharge states of the prepared catalysts. The full XPS spectrum(Figs. 2a and S9a) confirms that A-CrS/A-CoS2, A-CrS/LCFig CoS2 A-CrS/HC-CoS2 and CoCr2S4/CoS1.907 all contain Co, Cr,and S elements. Notably, no signal of Cr was detected in CoS2,and no signal of Co was detected in CrS. High-resolution XPSspectra of Co 2p (Fig. 2b) reveal peaks at 782.5 and 798.7 eV,corresponding to the 2p3/2 and 2p1/2 doublets, respectively 29?31.Compared to pure CoS2, the Co 2p3/2 and 2p1/2 peaks in ACrS/HC-CoS2 exhibit a positive shift, which is consistent withother CrS/CoS2 heterojunction (Fig. S9b). This shift suggests themain existence of Co2+ and strong interactions between CrS andCoS2 32,33. Additionally, low-valence Co was detected inCoCr2S4/CoS1.907 34. The high-resolution XPS spectra of Cr 2pwere split into Cr 2p3/2 and Cr 2p1/2 orbitals, located at 576.2 and585.8 eV, respectively (Fig. 2c) 35?38. The Cr 2p3/2 and Cr 2p1/2peaks in the A-CrS/HC-CoS2 spectra, situated at 577.9 and 587.0eV, respectively (Fig. S9c), can be assigned to high-valenceCr3+. This may contribute to accelerating the reaction kinetics forboth HER and OER 39. The positive shift of ~1.7 eV in thebinding energy of Cr 2p compared to that of CrS implies electronredistribution in A-CrS/HC-CoS2 40,41. In Fig. 2d, the S 2pspectrum exhibits two prominent peaks at 162.4 and 163.8 eV,corresponding to S 2p3/2 and S 2p1/2, respectively 42. Notably, theS 2p peak in A-CrS/HC-CoS2 slightly shifted toward lowerbinding energy compared to that of CoS2 and CrS. This shift canbe attributed to the lower electronegativity of Cr, leading tocharge redistribution on the CoS2 and CrS interface through theCo―S―Cr bond.

    To illustrate the effect of different crystallinities on thecatalytic performance of CrS/CoS2 heterostructures, the aspreparedcatalysts was detected in 1.0 mol?L?1 KOH using atypical three-electrode setup. Fig. 3a,b present the HERpolarization curves and overpotential comparison of A-CrS/HCCoS2,CoS2, CrS, and commercial Pt/C catalysts in alkalinemedia. A-CrS/HC-CoS2 displayed excellent electrochemicalperformance for HER, with overpotentials of only 90.6 and176.1 mV at current densities of 10 and 100 mA?cm?2,respectively, compared with CoS2 (165.9 mV@10mA?cm?2/312.1 mV@100 mA?cm?2) and CrS (173.1 mV@10mA?cm?2/325.4 mV@100 mA?cm?2). The performance of ACrS/HC-CoS2 also surpassed that of A-CrS/A-CoS2 (173.2mV@10 mA?cm?2/341.1 mV@100 mA?cm?2), A-CrS/LC-CoS2(155.5 mV@10 mA?cm?2/278.1 mV@100 mA?cm?2) andCoCr2S4/CoS1.097 (167.3 mV@10 mA?cm?2/312.1 mV@100mA?cm?2) (Figs. 3c and S10a). Notably, the catalyticperformance of A-CrS/HC-CoS2 exceeded that of Pt/C at highcurrent density of ~70 mA?cm?2. The corresponding Tafel slopeof A-CrS/HC-CoS2 (76 mV?dec?1) was also smaller than those of CoCr2S4/CoS1.907 (114 mV?dec?1), CoS2 (106 mV?dec?1), CrS(117 mV?dec?1) and other CrS/CoS2 heterojunctions, such as ACrS/A-CoS2 (135 mV?dec?1) and A-CrS/LC-CoS2 (95mV?dec?1), indicating the faster HER rate of A-CrS/HC-CoS2(Fig. S10b). The A-CrS/HC-CoS2 catalyst also exhibitedsuperior HER activity compared to CoS2, CrS, A-CrS/A-CoS2,and A-CrS/LC-CoS2 catalysts, suggesting enhanced HERactivity through the synergistic effect between amorphous CrSand highly crystalline CoS2. The stability of the A-CrS/HC-CoS2catalyst was confirmed by long-term Chronoamperometry (CP)testing (Fig. 3d). The catalytic performance of A-CrS/HC-CoS2catalysts shows significant enhancement during the 20-h test atcurrent density of 50 and 100 mA?cm?2, respectively.Furthermore, the HER performance of A-CrS/HC-CoS2demonstrated competitiveness with most state-of-the-art HERcatalysts (Fig. 3e, Table S1).

    Inspired by the excellent HER activity of the A-CrS/HC-CoS2,its OER performance was further evaluated in alkalineelectrolytes. A-CrS/HC-CoS2 only requires a minimaloverpotential of 370.5 mV to achieve a current density of 50mA?cm?2. This overpotential is not only significantly lower thanthat needed for CoS2 (390.8 mV), CrS (450.5 mV) and RuO2(410.4 mV), respectively (Fig. 4a,b), but also much smaller than415.2, 397.5 and 399.5 mV required for the A-CrS/A-CoS2, ACrS/LC-CoS2 and CoCr2S4/CoS1.097 (Fig. S11a), respectively.The Tafel slopes, calculated from polarization curves, werefound to be 106 mV?dec?1 for CoS2, 137 mV?dec?1 for CrS, 112mV?dec?1 for RuO2, 80 mV?dec?1 for A-CrS/A-CoS2, 70mV?dec?1 for A-CrS/LC-CoS2, 66 mV?dec?1 for A-CrS/HCCoS2,and 74 mV?dec?1 for CoCr2S4/CoS1.907 (Figs. 4c andS11b). The lower Tafel slope of A-CrS/HC-CoS2 indicates fasterOER kinetics. The electrochemical stability of A-CrS/HC-CoS2was confirmed by CP curves recorded at a constant currentdensity of 50 and 100 mA?cm?2 (Fig. 4d), which showed nosignificant potential decay for at least 20 h. Additionally, theOER performance of A-CrS/HC-CoS2 was competitive withmost reported cobalt-based sulfide OER catalysts (Fig. 4e andTable S2).

    Electrochemical impedance spectroscopy (EIS) wasperformed to gain a better understanding of the improved HERand OER performance for A-CrS/HC-CoS2 (Fig. S12). The EISplots revealed that the charge-transfer resistance (Rct) ofCrS/CoS2 heterojunction, such as A-CrS/A-CoS2 (0.52 Ω), ACrS/LC-CoS2 (0.33 Ω) and CoCr2S4/CoS1.907 (0.43 Ω) weresmaller than that of CoS2 (0.58 Ω) and CrS (0.66 Ω). Notably,the Rct of A-CrS/HC-CoS2 (0.12 Ω) is much smaller than that of other CrS/CoS2 heterojunction. These results indicated thathybrid of CrS and CoS2 can significantly reduce impedanceduring electron transport, and optimization of crystallinity inCrS/CoS2 heterojunctions can efficiently minimize chargetransfer resistance 43.

    The electrochemical active surface area (ECSA) of theprepared catalysts was also calculated based on the double-layercapacitance obtained from cyclic voltammetry (CV) plots atvarious scan rates (Figs. S13 and S14). A-CrS/HC-CoS2exhibited a larger Cdl of 12.9 mF?cm?2 compared to CoS2 (7.7mF?cm?2), CrS (7.1 mF?cm?2), A-CrS/A-CoS2 (2.6 mF?cm?2), ACrS/LC-CoS2 (11.2 mF?cm?2) and CoCr2S4/CoS1.907 (10.8mF?cm?2). The higher Cdl of A-CrS/C-CoS2 can be attributed toits unique amorphous/crystalline few-layer nanosheet structure,which facilitates mass transfer and provides more active sitesduring the HER and OER processes, resulting in enhanced HERand OER activity. These findings suggest that the presence ofamorphous CrS and highly crystalline CoS2 in A-CrS/HC-CoS2not only increases the number of active sites but also improvesintrinsic catalytic ability, leading to enhanced HER and OERperformance.

    DFT calculations were conducted to provide further insightsinto the mechanisms underlying the enhanced electrocatalyticactivity achieved by constructing the CrS-CoS2 heterojunction.Based on the XRD and HRTEM analyses, highly exposed CoS2(002) and CrS (012) crystal facets were selected to construct theheterojunction (Figs. S15 and S16), with a bridge formed by Co-S-Cr interface bonds at the interface (Fig. 5a). Due to theelectronegativity difference between Cr and Co elements (Co:1.88, Cr: 1.66), there was a noticeable redistribution of chargedensity at the interface region in the CrS-CoS2 heterojunction 44.Fig. 5b,e show charge density difference plots that illustrate theelectronic density variation at the CrS-CoS2 heterojunctioninterface. These plots reveal that there is stronger electronaccumulation inside the Co―S bond, indicating that electronswere injected into Co sites once the CrS-CoS2 interface wasformed. Conversely, electron depletion can be observed at theCr-S side, which gives Cr centers in CrS species a highervalence, making them more favorable for adsorption of H*,OOH*, and other adsorbed reaction intermediates. This isconsistent with previous experimental results based on XPSanalysis. In conclusion, the DFT calculations successfullydemonstrated that the CrS/CoS2 few-layer heterojunctioneffectively facilitates interface electron transport.

    The geometrical configurations and free energy of hydrogenadsorption (ΔGH*) on different reaction sites of CoS2, CrS andCrS/CoS2 heterostructure were shown in Figs. 5c and S17. TheΔGH* on the CrS/CoS2 surface was ?0.08 eV, which is closer tothe thermoneutral state compared to both CoS2 and CrS. Theresult indicates that both fast proton transfer and rapid hydrogenrelease processes occur on CrS/CoS2 heterostructure. Asdepicted in (Fig. 5d), the Gibbs free energy (ΔG) during the OERprocess with four-electrons pathway were calculated (theproposed reaction pathway of OER process were shown in Figs.S18–S20). Apparently, the third electron transfer step (*O +H2O → *OOH + H+ + e?) determines the potential determiningstep (PDS) for three catalysts. For pure CrS, the overpotential is2.48 eV, indicating that the nucleophilic attack of OH? is verydifficult in Cr centers. However, after introducing the Cr-S-Cointerface by combining it with CoS2, the overpotential is reducedto 0.43 eV, demonstrating the significant role of constructingCrS/CoS2 heterointerfaces in lowering the thermodynamicenergy barrier and optimizing reaction activity. The d bandcenter is a well-accepted descriptor, which has been widely usedto understand variations in chemisorption energies of variousadsorbates on catalyst surfaces. In general, a high d-band center implies a strong affinity to adsorbates due to less filling ofadsorbate-metal antibonding states. As shown in (Figs. 5f, S21and S22), Cr sites in CrS possess higher d-band center than Cosites in CoS2, indicating that stronger interaction with reactionintermediate, including OH*, H* and other adsorbates. In otherword, the desorption of H* is difficult in CrS catalyst surfaces.The results are consistent with the previous ΔGH* analysis. ForHER process, an appropriate ΔGH (≈ 0 eV) is vital for effectivecatalytic performance. As a result, when the CrS/CoS2heterojunction has formed, the charge redistribution in theinterface could improve the electronic structure by altering dband center value, which is in favor of water splitting processes.

    The performance of the A-CrS/HC-CoS2 catalyst wasevaluated in an overall water splitting and methanol-assisted H2production device consisted of two-electrode configurationswith A-CrS/HC-CoS2 both as cathode and anode were evaluatedin 1 mol?L?1 KOH solution. The bi-functional A-CrS/HC-CoS2demonstrated excellent performance, requiring a cell voltage of1.74 V to achieve a stable current density of 10 mA?cm?2 inoverall water splitting, which was very close to a commercialPt/C//RuO2 counterpart (1.73 V@10 mA?cm?2) (Fig. 6a,b). Moreimportantly, in methanol-assisted H2 production, the deviceequipped with A-CrS/HC-CoS2 as both cathode and anodeexhibited a low cell voltage of 1.51 V to achieve a currentdensity of 10 mA?cm?2, significantly outperforming thePt/C//RuO2 device (1.70 V@10 mA?cm?2). The water-splittingdevice equipped with bifunctional A-CrS/HC-CoS2 could beeasily powered by a small solar cell (Fig. 6c). Moreover, thelong-term stability of the A-CrS/HC-CoS2-based device (Fig.6d) was evaluated, and it exhibited superior stability after 20 h,while the counterpart device (Pt/C//RuO2) exhibited significantperformance degradation within just a few hours. These resultssuggest that A-CrS/HC-CoS2 has the potential to replaceprecious metal catalysts in achieving high-efficiency watersplitting and methanol-assisted H2 production devices. Theassembled A-CrS/HC-CoS2//A-CrS/HC-CoS2 electrolyzer also demonstrated competitiveness compared to other electrolyzersreported in previous studies (Fig. 6e and Table S3).

    To gain a deeper understanding of the electrocatalyticbehaviors, ex situ analyses of structure robustness and surfacecomposition changes of A-CrS/HC-CoS2 after long-termstability tests for both HER and OER were conducted. The XRDpatterns of A-CrS/HC-CoS2 after electrolysis showed that themain peaks of CoS2 and CrS were still present, indicating thatthe crystal structure of the catalyst remained intact duringelectrolysis (Fig. S23). In the survey spectrum (Fig. S24), thesignal of Cr in A-CrS/HC-CoS2 after HER decreased comparedto that of fresh A-CrS/HC-CoS2, suggesting partial dissolutionof Cr during the HER process. Interestingly, the fine spectrumof Co in A-CrS/HC-CoS2 after HER and OER exhibited only aslight negative shift compared to fresh A-CrS/HC-CoS2 (Fig.7a), indicating that the low oxidation state of Co induced by thepotential has high activity, which corresponds to the enhancedactivity observed during HER and OER stability. The highresolutionXPS spectrum of Cr slightly shifts after OER,indicating that the high valence state of Cr was maintainedduring the OER process, while the signal of Cr in A-CrS/HCCoS2after HER was too low to be detected (Fig. 7b). Partialdissolution of Cr from A-CrS/HC-CoS2 during the HER processwould produce a large number of Cr vacancies, which likelycontributed to the significant enhancement of catalyticperformance during HER. In addition, the S―S bond in ACrS/HC-CoS2 after HER and OER fully transformed into S―Obonds on the surface of A-CrS/HC-CoS2 (Fig. 7c). The TEMimages showed that the A-CrS/HC-CoS2 nanosheet structurewas well-maintained after HER (Fig. 7d) and OER (Fig. 7h), andthe STEM images and corresponding mappings of A-CrS/HCCoS2after HER (Fig. 7g) and OER (Fig. 7k) confirmed theelemental distribution of Co, Cr, and S in the A-CrS/HC-CoS2.After the HER process, A-CrS/HC-CoS2 exhibited themorphology of amorphous nanosheets with some CoS2 dotsanchored (Fig. 7e,f), while after the OER process, A-CrS/HCCoS2underwent restructuring, with amorphous regions formingat the surface edges of the nanosheets (Fig. 7i,j). This indicatedthe formation of a Co/Cr oxyhydroxides layer. It’s worthemphasizing that the well-maintained amorphous/crystallineheterointerfaces in A-CrS/HC-CoS2 and favorable changes insurface composition contributed to the robust HER and OERstability.

    3 Conclusions

    In summary, we have prepared CrS/CoS2 heterojunction withvarying degrees of crystallinity and systematically investigatedthe relationship between their microstructure, electronicproperties, electrocatalytic HER/OER performance anddurability. Thanks to the synergistic effect of theamorphous/highly crystalline structure and heterojunction,electronic coupling at the interfaces via the Cr―S―Co bond has been significantly strengthened, and the d-band center has beenfinely tuned. It optimizes H*/OOH* intermediate adsorption andreduces the kinetic barriers of the HER and OER processes,resulting in outstanding HER and OER activity. Theheterojunction interface, coupling amorphous and highlycrystalline morphologies, fully exposes the active sites, therebysignificantly enhancing the HER and OER performance, whichalso facilitates the structural and composition evolution of ACrS/HC-CoS2 during water electrolysis, enabling excellentstability. The HER and OER overpotential of A-CrS/HC-CoS2surpasses that of most other related Co-based compoundcatalysts. As a bifunctional catalyst in a methanol-assistedenergy-saving hydrogen production device, it achieves a currentdensity of 10 mA?cm?2 at a low cell voltage of 1.51 V, making itan excellent candidate among metal-based catalysts. This workprovides a strategy for finely tuning the catalytic activity ofamorphous-crystalline heterojunction electrocatalysts, whichcan be applied to enhance the activity and durability of otherrelated electrocatalysts.

    Author Contributions: Conceptualization, S. Lu and M. Jin;Methodology, W. Dou, J. Zhang, L. Wang, C. Wu and H. Yi;Software, R. Wang; Investigation, W. Dou, J. Zhang, L. Wang C.Wu and H. Yi; Writing-Original Draft Preparation, S. Lu, W. Dou,R. Wang, M. Jin; Writing-Review amp; Editing, S. Lu, W. Dou, R.Wang, M. Jin; Supervision, S. Lu and M. Jin; FundingAcquisition, S. Lu, R. Wang and M. Jin. The manuscript waswritten through contributions of all authors. All authors havegiven approval to the final version of the manuscript.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.;Jin, S. J. Am. Chem. Soc. 2014, 136 (28), 10053.doi: 10.1021/ja504099w

    (2) Huang, G.; Xiao, Z.; Chen, R.; Wang, S. ACS Sustain. Chem. Eng.2018, 6 (12), 15954. doi: 10.1021/acssuschemeng.8b04397

    (3) Liu, Z.; Zhao, L.; Liu, Y.; Gao, Z.; Yuan, S.; Li, X.; Li, N.; Miao, S.Appl. Catal. B-Environ. 2019, 246, 296.doi: 10.1016/j.apcatb.2019.01.062

    (4) Lu, S.-Y.; Jin, M.; Zhang, Y.; Niu, Y.-B.; Gao, J.-C.; Li, C. M. Adv.Energ. Mater. 2018, 8 (11), 1702545. doi: 10.1002/aenm.201702545

    (5) Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang,Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39 (8), 2210039.[于彥會, 饒鵬, 封蘇陽, 陳民, 鄧培林, 李靜, 苗政培, 康振燁,沈義俊, 田新龍. 物理化學(xué)學(xué)報, 2023, 39 (8), 2210039.]doi: 10.3866/PKU.WHXB202210039

    (6) Yu, L.; Huang, X.; Zhang, Q.; Zhang, Z. Acta Phys. -Chim. Sin. 2022,38 (6), 2109020. [于樂, 黃小清, 張橋保, 張志成. 物理化學(xué)學(xué)報,2022, 38 (6), 2109020.] doi: 10.3866/PKU.WHXB202109020

    (7) Tang, S.; Wang, C.; Pu, X.; Gu, X.; Chen, Z. Acta Phys. -Chim. Sin.2023, 39 (8), 2212037. [唐生龍, 王春蕾, 蒲想俊, 顧向奎,陳重學(xué). 物理化學(xué)學(xué)報, 2023, 39 (8), 2212037.]doi: 10.3866/PKU.WHXB202212037

    (8) Sun, K.; Zhao, Y.; Yin, J.; Jin, J.; Liu, H.; Xi, P. Acta Phys. -Chim.Sin. 2022, 38 (6), 2107005. [孫軻, 趙永青, 殷杰, 靳晶, 劉翰文,席聘賢. 物理化學(xué)學(xué)報, 2022, 38 (6), 2107005.]doi: 10.3866/PKU.WHXB202107005

    (9) Feng, L. L.; Yu, G.; Wu, Y.; Li, G. D.; Li, H.; Sun, Y.; Asefa, T.;Chen, W.; Zou, X. J. Am. Chem. Soc. 2015, 137 (44), 14023.doi: 10.1021/jacs.5b08186

    (10) Gao, Z.; Li, M.; Wang, J.; Zhu, J.; Zhao, X.; Huang, H.; Zhang, J.;Wu, Y.; Fu, Y.; Wang, X. Carbon 2018, 139, 369.doi: 10.1016/j.carbon.2018.07.006

    (11) Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.;Guo, S. Adv. Energy Mater. 2020, 10 (11), 1903120.doi: 10.1002/aenm.201903120

    (12) Zhang, L.; Zhang, J.; Fang, J.; Wang, X. Y.; Yin, L.; Zhu, W.; Zhuang,Z. Small 2021, 17 (28), 2100832. doi: 10.1002/smll.202100832

    (13) Wang, S. Acta Phys. -Chim. Sin. 2021, 37 (7), 2011013. [王雙印.物理化學(xué)學(xué)報, 2021, 37 (7), 2011013.]doi: 10.3866/PKU.WHXB202011013

    (14) Guo, Y.; Gan, L.; Shang, C.; Wang, E.; Wang, J. Advan. Funct. Mater.2017, 27 (5), 1602699. doi: 10.1002/adfm.201602699

    (15) Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. ACS Sustain.Chem. Eng. 2019, 7 (3), 2899. doi: 10.1021/acssuschemeng.8b05462

    (16) Chen, B.; Wang, J.; He, S.; Shen, Y.; Huang, S.; Zhou, H. J. Alloy.Compd. 2023, 948, 169655. doi: 10.1016/j.jallcom.2023.169655

    (17) Lu, S.-Y.; Li, S.; Jin, M.; Gao, J.; Zhang, Y. Appl. Catal. B-Environ.2020, 267, 118675. doi: 10.1016/j.apcatb.2020.118675

    (18) Peng, W.; Wang, Z.; Lu, R.; Li, Q.; Wang, Z.; Zhao, Y.; Xu, L.; Mai,L. Chem. Eng. J. 2023, 457, 141173. doi: 10.1016/j.cej.2022.141173

    (19) Han, L.; Wu, Y.; Zhao, B.; Meng, W.; Zhang, D.; Li, M.; Pang, R.;Zhang, Y.; Cao, A.; Shang, Y. ACS Appl. Mater. Interfaces 2022, 14(27), 30847. doi: 10.1021/acsami.2c06122

    (20) Xu, H.; Zhang, W. D.; Yao, Y.; Yang, J.; Liu, J.; Gu, Z. G.; Yan, X.J. Colloid Interface Sci. 2022, 629, 501.doi: 10.1016/j.jcis.2022.09.072

    (21) Jin, M.; Lu, S.-Y.; Ma, L.; Gan, M.-Y.; Lei, Y.; Zhang, X.-L.; Fu, G.;Yang, P.-S.; Yan, M.-F. J. Power Sources 2017, 341, 294.doi: 10.1016/j.jpowsour.2016.12.013

    (22) Zhang, J.; Xiao, B.; Liu, X.; Liu, P.; Xi, P.; Xiao, W.; Ding, J.; Gao,D.; Xue, D. J. Mater. Chem. A 2017, 5 (33), 17601.doi: 10.1039/c7ta05433e

    (23) Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. ACSEnergy Lett. 2018, 3 (4), 779. doi: 10.1021/acsenergylett.8b00066

    (24) Xie, M.; Li, C.; Zhang, S.; Zhang, Z.; Li, Y.; Chen, X. B.; Shi, Z.;Feng, S. Small 2023, 2301436. doi: 10.1002/smll.202301436

    (25) Yang, L.; Huang, L.; Yao, Y.; Jiao, L. Appl. Catal. B-Environ. 2021,282, 119584. doi: 10.1016/j.apcatb.2020.119584

    (26) Han, K. H.; Seok, J. Y.; Kim, I. H.; Woo, K.; Kim, J. H.; Yang, G. G.;Choi, H. J.; Kwon, S.; Jung, E. I.; Kim, S. O. Adv. Mater. 2022, 34(34), 2203992. doi: 10.1002/adma.202203992

    (27) Shifa, T. A.; Gradone, A.; Yusupov, K.; Ibrahim, K. B.; Jugovac, M.;Sheverdyaeva, P. M.; Rosen, J.; Morandi, V.; Moras, P.; Vomiero, A.Chem. Eng. J. 2023, 453, 139781. doi: 10.1016/j.cej.2022.139781

    (28) Sun, F.; Hong, A.; Zhou, W.; Yuan, C.; Zhang, W. Mater. Today 2020,25, 101707. doi: 10.1016/j.mtcomm.2020.101707

    (29) Fang, B.; He, N.; Li, Y.; Lu, T.; He, P.; Chen, X.; Zhao, Z.; Pan, L.Electrochim. Acta 2023, 448, 142187.doi: 10.1016/j.electacta.2023.142187

    (30) Wu, Q.; Liu, L.; Guo, H.; Li, L.; Tai, X. J. Alloy. Compd. 2020, 821,153219. doi: 10.1016/j.jallcom.2019.153219

    (31) Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.;Sun, X. New J. Chem. 2017, 41 (12), 4754. doi: 10.1039/c7nj00326a

    (32) Hao, J.; Yang, W.; Peng, Z.; Zhang, C.; Huang, Z.; Shi, W. ACSCatal. 2017, 7, 4214. doi: 10.1021/acscatal.7b00792

    (33) Jin, M.; Wang, R.; Jia, B.; Zhang, J.; Liu, H.; Lu, S.-Y. Appl. Surf.Sci. 2022, 591, 153201. doi: 10.1016/j.apsusc.2022.153201

    (34) Wang, P.; Bai, P.; Mu, J.; Jing, J.; Wang, L.; Su, Y. J. ColloidInterface Sci. 2023, 642, 1. doi: 10.1016/j.jcis.2023.03.133

    (35) Cao, X.; Wang, T.; Qin, H.; Lin, G.; Zhao, L.; Jiao, L. Nano Res.2022, 16 (3), 3665. doi: 10.1007/s12274-022-4635-5

    (36) Cao, F.; Li, M.; Hu, Y.; Wu, X.; Li, X.; Meng, X.; Zhang, P.; Li, S.;Qin, G. Chem. Eng. J. 2023, 472, 144970.doi: 10.1016/j.cej.2023.144970

    (37) Zhang, S.-H.; Wu, M.-F.; Tang, T.-T.; Xing, Q.-J.; Peng, C.-Q.; Li, F.;Liu, H.; Luo, X.-B.; Zou, J.-P.; Min, X.-B.; et al. Chem. Eng. J. 2018,335, 945. doi: 10.1016/j.cej.2017.10.182

    (38) Wu, Y.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C.; Liu, M.;Lu, X. Adv. Mater. 2019, 31 (15), 1900178.doi: 10.1002/adma.201900178

    (39) Dong, C.; Yuan, X.; Wang, X.; Liu, X.; Dong, W.; Wang, R.; Duan,Y.; Huang, F. J. Mater. Chem. A 2016, 4 (29), 11292.doi: 10.1039/c6ta04052g

    (40) Liu, D.; Tong, R.; Qu, Y.; Zhu, Q.; Zhong, X.; Fang, M.; Ho Lo, K.;Zhang, F.; Ye, Y.; Tang, Y.; et al. Appl. Catal. B-Environ. 2020, 267,118721. doi: 10.1016/j.apcatb.2020.118721

    (41) Zhu, L.; Susac, D.; Teo, M.; Wong, K.; Wong, P.; Parsons, R.;Bizzotto, D.; Mitchell, K.; Campbell, S. J. Catal. 2008, 258 (1), 235.doi: 10.1016/j.jcat.2008.06.016

    (42) Jin, M.; Lu, S.-Y.; Zhong, X.; Liu, H.; Liu, H.; Gan, M.; Ma, L. ACSSustain. Chem. Eng. 2020, 8 (4), 1933.doi: 10.1021/acssuschemeng.9b06329

    (43) Lu, S. Y.; Wang, J.; Wang, X.; Yang, W.; Jin, M.; Xu, L.; Yang, H.;Ge, X.; Shang, C.; Chao, Y.; et al. Small Methods 2022, 6 (6),2101551. doi: 10.1002/smtd.202101551

    (44) Fu, T.; Li, Z. Chem. Eng. Sci. 2015, 135, 3.doi: 10.1016/j.ces.2015.03.007

    中國科協(xié)青年人才托舉工程(2021QNRC001), 重慶市自然科學(xué)基金(CSTB2022NSCQ-MSX0557, cstc2020jcyj-msxmX0670, 2023NSCQ-MSX3724), 重慶科技學(xué)院人才引進項目(ckrc2021050, ckrc20230401, ckrc2021053), 重慶市教委科學(xué)技術(shù)研究計劃項目(KJQN202001525, KJQN202201532,KJQN202301542),國家自然科學(xué)基金(22109016)及中國材料基因工程高通量計算平臺開放研究基金(CNMGE2023016)資助

    猜你喜歡
    非晶態(tài)
    Mg基非晶態(tài)儲氫合金的研究進展
    植物補光用非晶態(tài)La2Ti2O7∶Eu3+熒光粉的燃燒合成及性能
    具有近室溫磁熱效應(yīng)的Fe71Mo9P13C7塊體非晶態(tài)合金*
    功能材料(2022年3期)2022-04-11 12:36:52
    科學(xué)家合成次晶態(tài)金剛石
    賀利氏攜手通快研究非晶態(tài)金屬三維打印
    機械制造(2020年5期)2020-02-20 03:41:19
    新材料應(yīng)用探索之非晶態(tài)合金
    鐘表(2019年1期)2019-02-25 08:40:58
    納米非晶態(tài)水化硅酸鈣接觸硬化膠凝性能研究
    非晶態(tài)合金與氫相互作用的研究進展?
    非晶態(tài)物質(zhì)的本質(zhì)和特性
    推廣使用非晶態(tài)變壓器的效益分析和前景
    亚洲人成77777在线视频| 美国免费a级毛片| 制服诱惑二区| 精品国产一区二区久久| 纵有疾风起免费观看全集完整版| 青草久久国产| 狂野欧美激情性xxxx| 超色免费av| 这个男人来自地球电影免费观看| 狠狠婷婷综合久久久久久88av| 男女免费视频国产| 欧美精品一区二区免费开放| 久久久久视频综合| 看免费av毛片| 高清在线国产一区| 在线av久久热| 黄色成人免费大全| 久久久国产一区二区| 18在线观看网站| 久久人妻福利社区极品人妻图片| 国产成人一区二区三区免费视频网站| 国产片内射在线| 日本av手机在线免费观看| 亚洲专区字幕在线| 777久久人妻少妇嫩草av网站| 久久久久久久大尺度免费视频| 欧美+亚洲+日韩+国产| 久热这里只有精品99| 18禁国产床啪视频网站| 国产免费现黄频在线看| 国产成人影院久久av| 色婷婷av一区二区三区视频| 中文字幕高清在线视频| 国产高清视频在线播放一区| 午夜福利乱码中文字幕| 国产成人精品久久二区二区91| 久久香蕉激情| 久久久久精品国产欧美久久久| 黄色a级毛片大全视频| 搡老熟女国产l中国老女人| 久热爱精品视频在线9| 欧美日韩精品网址| 男女午夜视频在线观看| 国产免费av片在线观看野外av| 免费在线观看完整版高清| 香蕉丝袜av| 久久天躁狠狠躁夜夜2o2o| 亚洲人成伊人成综合网2020| 91精品国产国语对白视频| 一区二区三区乱码不卡18| 婷婷成人精品国产| 91麻豆精品激情在线观看国产 | 国产成人精品无人区| 精品国产乱码久久久久久小说| 成人18禁在线播放| 欧美日韩精品网址| 在线观看一区二区三区激情| 免费观看人在逋| 久久香蕉激情| 国产一区二区 视频在线| 一本综合久久免费| 日本五十路高清| 亚洲熟妇熟女久久| 亚洲五月婷婷丁香| 2018国产大陆天天弄谢| 热99国产精品久久久久久7| 黑人巨大精品欧美一区二区蜜桃| 岛国毛片在线播放| 亚洲人成电影免费在线| √禁漫天堂资源中文www| 我要看黄色一级片免费的| 亚洲 国产 在线| 亚洲男人天堂网一区| 久久人妻福利社区极品人妻图片| 国产区一区二久久| 国产精品欧美亚洲77777| 午夜福利在线观看吧| 国产亚洲欧美精品永久| 精品卡一卡二卡四卡免费| 一级片'在线观看视频| 国产成人影院久久av| 老熟女久久久| 女同久久另类99精品国产91| 久久久精品区二区三区| 国产高清视频在线播放一区| 国产精品熟女久久久久浪| 一二三四社区在线视频社区8| 午夜激情av网站| 老司机深夜福利视频在线观看| 亚洲精品av麻豆狂野| 亚洲欧洲日产国产| 99热网站在线观看| 1024视频免费在线观看| 国产亚洲欧美在线一区二区| 深夜精品福利| 亚洲av国产av综合av卡| 最近最新中文字幕大全电影3 | 免费高清在线观看日韩| 99热网站在线观看| 成人18禁在线播放| 91九色精品人成在线观看| 免费在线观看影片大全网站| 天堂动漫精品| 最新的欧美精品一区二区| av又黄又爽大尺度在线免费看| 99精品在免费线老司机午夜| 一级a爱视频在线免费观看| 99re在线观看精品视频| 大香蕉久久网| 欧美日韩一级在线毛片| 免费在线观看黄色视频的| 黑人操中国人逼视频| www.自偷自拍.com| 亚洲性夜色夜夜综合| 欧美日韩视频精品一区| 黄色a级毛片大全视频| 建设人人有责人人尽责人人享有的| 老司机深夜福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费看片子| 国产免费福利视频在线观看| 99久久精品国产亚洲精品| 精品高清国产在线一区| videos熟女内射| 视频区欧美日本亚洲| 中文欧美无线码| 国产精品一区二区免费欧美| 超碰97精品在线观看| 亚洲少妇的诱惑av| 亚洲av日韩精品久久久久久密| 视频区图区小说| 成人精品一区二区免费| 黑人操中国人逼视频| 亚洲午夜精品一区,二区,三区| 少妇猛男粗大的猛烈进出视频| 国产日韩一区二区三区精品不卡| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 免费在线观看日本一区| 黄色丝袜av网址大全| 9色porny在线观看| 无限看片的www在线观看| 亚洲专区字幕在线| 日韩欧美一区视频在线观看| 叶爱在线成人免费视频播放| 欧美黄色淫秽网站| 我要看黄色一级片免费的| 日韩成人在线观看一区二区三区| 国产欧美日韩精品亚洲av| 超色免费av| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 精品久久久久久久毛片微露脸| 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品古装| 亚洲视频免费观看视频| 如日韩欧美国产精品一区二区三区| 久久久精品94久久精品| 国产成人精品久久二区二区免费| 9191精品国产免费久久| www.自偷自拍.com| 精品国产超薄肉色丝袜足j| 欧美+亚洲+日韩+国产| 国产伦理片在线播放av一区| 黄频高清免费视频| 亚洲精品国产一区二区精华液| 在线 av 中文字幕| av在线播放免费不卡| 狠狠婷婷综合久久久久久88av| 成人国语在线视频| 亚洲精品av麻豆狂野| 国产精品电影一区二区三区 | 久久精品国产亚洲av高清一级| 久久久久精品人妻al黑| 成人亚洲精品一区在线观看| 精品少妇黑人巨大在线播放| 久久久欧美国产精品| 老熟妇仑乱视频hdxx| 久久精品亚洲精品国产色婷小说| 岛国在线观看网站| 亚洲欧美精品综合一区二区三区| 亚洲一区中文字幕在线| 久久精品亚洲熟妇少妇任你| 欧美精品啪啪一区二区三区| 精品高清国产在线一区| 又紧又爽又黄一区二区| 亚洲精品粉嫩美女一区| 在线av久久热| 变态另类成人亚洲欧美熟女 | 成人国产av品久久久| 又黄又粗又硬又大视频| av欧美777| 亚洲一区二区三区欧美精品| 国产aⅴ精品一区二区三区波| 午夜两性在线视频| 亚洲熟妇熟女久久| 老司机福利观看| 精品久久久精品久久久| 欧美在线黄色| 久久精品人人爽人人爽视色| 亚洲国产欧美在线一区| 国产日韩欧美视频二区| 国产精品九九99| 精品久久久久久久毛片微露脸| 99热网站在线观看| 美女国产高潮福利片在线看| kizo精华| 精品久久蜜臀av无| 激情视频va一区二区三区| 另类精品久久| 亚洲成人免费av在线播放| 精品免费久久久久久久清纯 | 日本vs欧美在线观看视频| 精品高清国产在线一区| 在线观看一区二区三区激情| 国产精品成人在线| 黄色a级毛片大全视频| 在线亚洲精品国产二区图片欧美| 日韩视频一区二区在线观看| 法律面前人人平等表现在哪些方面| 丁香六月欧美| 在线永久观看黄色视频| 女警被强在线播放| 我要看黄色一级片免费的| 人妻一区二区av| 别揉我奶头~嗯~啊~动态视频| 50天的宝宝边吃奶边哭怎么回事| 纯流量卡能插随身wifi吗| 亚洲人成77777在线视频| 可以免费在线观看a视频的电影网站| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 51午夜福利影视在线观看| 精品一区二区三区四区五区乱码| 手机成人av网站| 人妻一区二区av| 亚洲成av片中文字幕在线观看| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 亚洲精品一二三| 午夜精品久久久久久毛片777| 久久久久精品国产欧美久久久| 色综合婷婷激情| 在线观看66精品国产| 精品人妻1区二区| 51午夜福利影视在线观看| 国产人伦9x9x在线观看| 真人做人爱边吃奶动态| 波多野结衣av一区二区av| 人成视频在线观看免费观看| 久久久久久亚洲精品国产蜜桃av| 国产亚洲午夜精品一区二区久久| 男女之事视频高清在线观看| 亚洲欧美一区二区三区黑人| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 人人妻人人澡人人看| 午夜老司机福利片| 99精品久久久久人妻精品| 亚洲av第一区精品v没综合| 亚洲精品中文字幕一二三四区 | 交换朋友夫妻互换小说| 后天国语完整版免费观看| 桃红色精品国产亚洲av| 国产一区二区在线观看av| bbb黄色大片| 18禁黄网站禁片午夜丰满| 国产精品一区二区免费欧美| 在线观看一区二区三区激情| 青草久久国产| av电影中文网址| 免费少妇av软件| 国产黄色免费在线视频| 免费一级毛片在线播放高清视频 | 99九九在线精品视频| 日韩视频在线欧美| 无人区码免费观看不卡 | 亚洲欧美色中文字幕在线| 久久亚洲真实| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 在线看a的网站| 一区二区三区精品91| 久久精品国产a三级三级三级| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 一个人免费看片子| 波多野结衣一区麻豆| 丰满少妇做爰视频| 高清视频免费观看一区二区| 亚洲精品乱久久久久久| 欧美精品啪啪一区二区三区| 免费观看av网站的网址| 国产一区二区 视频在线| 男女午夜视频在线观看| 久9热在线精品视频| 午夜日韩欧美国产| 十八禁网站网址无遮挡| 亚洲精品国产一区二区精华液| 欧美 日韩 精品 国产| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 亚洲精品国产精品久久久不卡| 老司机福利观看| 悠悠久久av| 18禁美女被吸乳视频| 欧美国产精品一级二级三级| 高潮久久久久久久久久久不卡| 精品亚洲成a人片在线观看| 亚洲精品中文字幕一二三四区 | 一本久久精品| 在线观看66精品国产| 午夜精品国产一区二区电影| 欧美精品高潮呻吟av久久| 国产成人系列免费观看| 丝袜美腿诱惑在线| 欧美变态另类bdsm刘玥| 国产精品免费一区二区三区在线 | 国产精品二区激情视频| 91九色精品人成在线观看| 老司机亚洲免费影院| 中文亚洲av片在线观看爽 | 国产视频一区二区在线看| 亚洲三区欧美一区| 亚洲专区中文字幕在线| 久久精品熟女亚洲av麻豆精品| www.999成人在线观看| 久久天堂一区二区三区四区| 国产一卡二卡三卡精品| 日韩欧美免费精品| 精品人妻熟女毛片av久久网站| 999精品在线视频| 老熟妇仑乱视频hdxx| 日韩欧美一区二区三区在线观看 | 国产男女内射视频| 免费在线观看影片大全网站| 高清毛片免费观看视频网站 | 欧美精品人与动牲交sv欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产精品一区二区三区| 日本精品一区二区三区蜜桃| www.精华液| 日韩一区二区三区影片| 性高湖久久久久久久久免费观看| 国产aⅴ精品一区二区三区波| 久久精品国产a三级三级三级| 人人妻人人澡人人爽人人夜夜| 成人18禁高潮啪啪吃奶动态图| 女同久久另类99精品国产91| 国产免费现黄频在线看| 两个人看的免费小视频| 亚洲va日本ⅴa欧美va伊人久久| 久热这里只有精品99| 最新在线观看一区二区三区| 亚洲精品在线美女| 国产精品 国内视频| 在线观看舔阴道视频| 在线观看人妻少妇| 飞空精品影院首页| 国产精品98久久久久久宅男小说| 色综合欧美亚洲国产小说| 老司机亚洲免费影院| 国产淫语在线视频| 男女下面插进去视频免费观看| 精品欧美一区二区三区在线| 亚洲色图av天堂| 黄片小视频在线播放| 亚洲精华国产精华精| 免费不卡黄色视频| 老司机深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲av日韩在线播放| 99久久国产精品久久久| 亚洲午夜理论影院| 精品少妇黑人巨大在线播放| 国产男女内射视频| 成年人午夜在线观看视频| 女性生殖器流出的白浆| 精品第一国产精品| 美女视频免费永久观看网站| 久久天躁狠狠躁夜夜2o2o| netflix在线观看网站| 午夜福利在线观看吧| 午夜老司机福利片| 亚洲av片天天在线观看| 麻豆乱淫一区二区| 国产免费av片在线观看野外av| 久久久久久久久久久久大奶| 国精品久久久久久国模美| 免费黄频网站在线观看国产| 99热网站在线观看| 久久人人97超碰香蕉20202| 欧美精品一区二区大全| 欧美性长视频在线观看| 天天添夜夜摸| 两个人看的免费小视频| 91成人精品电影| 免费在线观看黄色视频的| av免费在线观看网站| 热99久久久久精品小说推荐| 国产极品粉嫩免费观看在线| 国产成人av激情在线播放| 日韩欧美一区二区三区在线观看 | 女性被躁到高潮视频| 999久久久国产精品视频| 精品一品国产午夜福利视频| 女警被强在线播放| 美国免费a级毛片| 巨乳人妻的诱惑在线观看| 天堂中文最新版在线下载| 免费久久久久久久精品成人欧美视频| 国产视频一区二区在线看| 一二三四社区在线视频社区8| 免费不卡黄色视频| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久大尺度免费视频| 欧美黑人欧美精品刺激| 51午夜福利影视在线观看| 精品久久蜜臀av无| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月 | av片东京热男人的天堂| 黄片播放在线免费| 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | 久久精品aⅴ一区二区三区四区| 国产精品久久久久久人妻精品电影 | 男人操女人黄网站| 少妇猛男粗大的猛烈进出视频| 亚洲av成人不卡在线观看播放网| 国产精品av久久久久免费| 老司机午夜福利在线观看视频 | 国产亚洲av高清不卡| 18在线观看网站| 成年女人毛片免费观看观看9 | 91精品国产国语对白视频| 欧美变态另类bdsm刘玥| 日韩中文字幕视频在线看片| 国产日韩欧美亚洲二区| 久久这里只有精品19| 岛国在线观看网站| 精品亚洲成国产av| 久久天堂一区二区三区四区| 无人区码免费观看不卡 | 亚洲va日本ⅴa欧美va伊人久久| 欧美黑人欧美精品刺激| 久久天堂一区二区三区四区| 天天操日日干夜夜撸| 美国免费a级毛片| 久久久久精品人妻al黑| 国产成人啪精品午夜网站| 亚洲欧美激情在线| 免费人妻精品一区二区三区视频| 亚洲欧美精品综合一区二区三区| 亚洲精品自拍成人| 国产精品免费视频内射| 波多野结衣一区麻豆| 国产一区二区三区视频了| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 日韩有码中文字幕| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 成人手机av| 中文亚洲av片在线观看爽 | 又黄又粗又硬又大视频| 亚洲成人免费av在线播放| 性色av乱码一区二区三区2| 午夜成年电影在线免费观看| 亚洲熟女毛片儿| 99在线人妻在线中文字幕 | 欧美日韩亚洲综合一区二区三区_| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| 黑人操中国人逼视频| 日韩视频在线欧美| 一级片'在线观看视频| 女人高潮潮喷娇喘18禁视频| 欧美黄色淫秽网站| 免费一级毛片在线播放高清视频 | a级毛片黄视频| 久久天躁狠狠躁夜夜2o2o| 麻豆成人av在线观看| 欧美日韩成人在线一区二区| 欧美亚洲日本最大视频资源| 久久这里只有精品19| 999精品在线视频| 汤姆久久久久久久影院中文字幕| 国产精品免费视频内射| 亚洲精品中文字幕一二三四区 | 亚洲精品国产精品久久久不卡| 欧美大码av| 嫩草影视91久久| 精品国产乱码久久久久久小说| 中文亚洲av片在线观看爽 | 一二三四社区在线视频社区8| 搡老乐熟女国产| 在线永久观看黄色视频| 国产精品欧美亚洲77777| 18禁国产床啪视频网站| 男女高潮啪啪啪动态图| 美女午夜性视频免费| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 一级片'在线观看视频| 嫩草影视91久久| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产极品粉嫩在线观看| 性少妇av在线| 国产深夜福利视频在线观看| 这个男人来自地球电影免费观看| 欧美亚洲日本最大视频资源| 国产av又大| 国产精品免费视频内射| 高清毛片免费观看视频网站 | 手机成人av网站| 亚洲欧美一区二区三区黑人| 国产成+人综合+亚洲专区| 捣出白浆h1v1| 精品久久久精品久久久| 久久中文字幕人妻熟女| 国精品久久久久久国模美| 免费高清在线观看日韩| 天天躁日日躁夜夜躁夜夜| 亚洲人成77777在线视频| 成人影院久久| 99国产精品免费福利视频| 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 多毛熟女@视频| 久久中文看片网| 91老司机精品| 国产欧美日韩精品亚洲av| 色播在线永久视频| 亚洲av电影在线进入| 色在线成人网| 操出白浆在线播放| 乱人伦中国视频| 亚洲人成电影观看| 在线亚洲精品国产二区图片欧美| 热99re8久久精品国产| 成人国产一区最新在线观看| 欧美日韩视频精品一区| 大型黄色视频在线免费观看| 亚洲国产av新网站| 亚洲一区中文字幕在线| 国产一区二区三区综合在线观看| 一本色道久久久久久精品综合| 精品一区二区三区视频在线观看免费 | 一区二区三区精品91| www日本在线高清视频| 99re6热这里在线精品视频| 久久久久国产一级毛片高清牌| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 脱女人内裤的视频| 日韩 欧美 亚洲 中文字幕| av福利片在线| 亚洲欧美日韩另类电影网站| 国产亚洲精品久久久久5区| 91精品国产国语对白视频| 一二三四社区在线视频社区8| 一级片'在线观看视频| 国产成人欧美| a在线观看视频网站| 水蜜桃什么品种好| 亚洲国产精品一区二区三区在线| 亚洲av片天天在线观看| 午夜福利免费观看在线| 色播在线永久视频| 免费观看人在逋| 精品少妇内射三级| 十八禁网站免费在线| 国产一区二区 视频在线| 国产免费av片在线观看野外av| 亚洲成a人片在线一区二区| 亚洲全国av大片| 99精品久久久久人妻精品| 在线观看www视频免费| 久久中文字幕一级| 国产在线精品亚洲第一网站| h视频一区二区三区| 老司机福利观看| 国产精品久久久av美女十八| 视频区图区小说| 蜜桃国产av成人99| av网站免费在线观看视频| 99国产精品99久久久久| 日韩欧美三级三区| 多毛熟女@视频| 成年动漫av网址| 精品国产乱码久久久久久男人| 亚洲综合色网址| 色在线成人网| 日本vs欧美在线观看视频| 一级a爱视频在线免费观看| 国产三级黄色录像| 亚洲国产中文字幕在线视频| 午夜福利视频在线观看免费| 欧美日韩一级在线毛片| 在线 av 中文字幕| 久久久国产精品麻豆| 伦理电影免费视频| 国产免费av片在线观看野外av| 国产亚洲午夜精品一区二区久久| 国产成人系列免费观看| 99久久精品国产亚洲精品|