• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CoP修飾Ti3C2Tx MXene納米復(fù)合材料作為高效析氫反應(yīng)電催化劑

    2024-08-26 00:00:00孫巍王永靖項坤白賽帥王海濤鄒菁Arramel江吉周
    物理化學(xué)學(xué)報 2024年8期
    關(guān)鍵詞:密度泛函理論

    摘要:高效、經(jīng)濟(jì)和環(huán)保是電化學(xué)水分解制氫電催化劑的關(guān)鍵要素。二維(2D) MXene 材料因其獨(dú)特的物理化學(xué)性質(zhì)而受到廣泛關(guān)注。雖然有許多不同種類的MXene 材料,但只有少數(shù)具有本征析氫反應(yīng)(HER)催化活性。然而,MXene 材料具有很多優(yōu)點(diǎn),如較大的比表面積、高電導(dǎo)率和豐富的表面官能團(tuán),因此可以作為與其他物質(zhì)復(fù)合的理想平臺。本研究首先通過密度泛函理論(DFT)預(yù)測了CoP 與Ti3C2Tx MXene (其中Tx =―F 和―OH 官能團(tuán))具有低的氫吸附自由能(ΔGH*)。接著,我們合成了CoP-Ti3C2Tx MXene 納米復(fù)合材料,并在0.5 mol?L?1 H2SO4 中測試了其電催化HER 性能。該材料在電流密度為10mA?cm?2 時表現(xiàn)出了低的過電位(135 mV)和Tafel 斜率為48 mV?dec?1。理論計算表明,CoP-Ti3C2Tx MXene 納米復(fù)合材料的優(yōu)異電催化性能源于Ti3C2Tx 的高金屬導(dǎo)電性、良好的界面電荷轉(zhuǎn)移、快速的氫吸附/解吸過程以及優(yōu)化的電子結(jié)構(gòu)。

    關(guān)鍵詞:Ti3C2Tx MXene;析氫反應(yīng);CoP;密度泛函理論;界面電荷轉(zhuǎn)移

    中圖分類號:O646

    Abstract: Electrocatalysts play a pivotal role in theelectrochemical water splitting process to producehydrogen fuel. The advancement of this technologyrelies on the development of efficient, cost-effective,and readily available electrocatalysts. Twodimensional(2D) MXene materials have garneredsignificant attention due to their uniquephysicochemical properties, rendering them promisingcandidates for electrocatalytic applications. Whilethere are numerous types of MXene materialsavailable, only a few possess intrinsic hydrogen evolution reaction (HER) catalytic activity. However, MXene materials canserve as excellent platforms for enhancing catalytic HER activity by combining them with other substances, owing to theirlarge specific surface area, high conductivity, and abundant surface functional groups. In this study, we initially conducteda predictive analysis using density functional theory (DFT) to assess the potential of combining CoP with Ti3C2Tx MXenematerials (where Tx represents ―F and ―OH functional groups) in reducing the adsorption free energy of hydrogen (ΔGH*).The results indicated that the CoP-Ti3C2Tx nanocomposites exhibited a ΔGH* value approaching 0, suggesting promisingHER performance. Following this theoretical prediction, we synthesized the CoP-Ti3C2Tx MXene nanocomposites.Comprehensive characterization of the synthesized nanocomposites was performed using various techniques, includingscanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-rayphotoelectron spectroscopy (XPS). These analyses confirmed the successful decoration of CoP on the MXene nanosheetsand provided insights into the structural and compositional properties of the nanocomposites. Furthermore, we evaluatedthe electrochemical performance of the CoP-Ti3C2Tx nanocomposites through linear sweep voltammetry andchronoamperometry measurements. The results demonstrated superior catalytic activity and stability for the HERcompared to pure Ti3C2Tx and CoP catalysts. Specifically, the as-synthesized CoP-Ti3C2Tx MXene nanocompositesexhibited remarkable electrocatalytic HER kinetics, featuring a low overpotential of 135 mV at a current density of 10mA?cm?2 and a small Tafel slope of 48 mV?dec?1 in a 0.5 mol?L?1 H2SO4 solution, with the electrocatalyst maintaining stability for up to 50 h. Subsequent theoretical calculations were conducted to elucidate the factors contributing to theexceptional electrocatalytic performance of the CoP-Ti3C2Tx MXene nanocomposites. It was determined that the metallicconductivity of Ti3C2Tx MXene materials, well-structured interface charge transfer, and optimized electronic structure ofCoP played significant roles in enhancing catalytic activity. In conclusion, this study underscores the potential of CoPdecoratedTi3C2Tx MXene nanocomposites as promising electrocatalysts for efficient HER in various energy conversionand storage devices. These findings represent a significant contribution to the development of robust and efficient catalystsfor hydrogen generation, a critical component of renewable energy applications and sustainable development.

    Key Words: Ti3C2Tx MXene; Hydrogen evolution reaction; CoP; Density functional theory;Interface charge transfer

    1 Introduction

    Due to the increasing demand of energy, the consumption offossil fuels and the total amount of CO2 emissions are risingrapidly, the energy transformation of “clean, low-carbon, safeand efficient” has become as a general trend 1–3. The large-scaleuse of renewable energy source (such as solar energy, windenergy, hydropower, etc.) is limited by its inherent intermittency,volatility and randomness; while hydrogen could be an idealsecondary energy carrier with high calorific value, its energydensity (140 MJ?kg?1) is more than twice that of solid fuel (50MJ?kg?1) 4–6. Additionally, its combustion product is water,which makes it to be the most environmental friendly energysource 7. Using renewable energy to achieve large-scalehydrogen evolution reaction (HER), through the bridging effectof hydrogen can not only provide hydrogen source for fuel cells,but also, converting liquid hydrogen fuel in a green way. So that,it is possible to realize a sustainable cycle of smooth transitionfrom fossil energy to renewable energy, spawning a sustainablehydrogen economy 8,9. At present, more than 95% of thehydrogen production comes from the reforming of fossil fuels,and the production process needs to emit a large amount of CO2.In contrast, the condition for HER from water splitting is mild,and no CO2 discharge. However, due to cost constraints, onlyabout 4%–5% of hydrogen comes from the water electrolysisprocess 10–13. Therefore, in order to reduce the cost of waterelectrolysis for HER, efficient and inexpensive HER catalystdesign and preparation is receiving more and more extensiveattention.

    2D nanomaterials have unique sheet-like morphologies withlateral dimensions ranging from hundreds of nanometers to tensof micrometers, but only one or a few atomic layers thick.Therefore, they have the characteristics of large specific surfacearea, more exposed atoms, and short electron charge transportdistance, which make the materials have important applicationprospect in the field of HER electrocatalysis 14. Among the earthabundant2D electrocatalysts, MXene materials with the meritsof high conductivity, excellent thermo stability, tunable surfacefunctional groups, and superior support to interaction with other substance, have been paid more attentions for electrocatalyticHER 15–25. Ling et al. 15 have theoretically predicted the HERactivity of fully oxygen terminated surface V2C-MXenematerials by first-principles calculations for the first time. Theyfind that the activity of the V2C-MXene material alone is notideal, but after introducing transition metal promoter atoms onthe surface, the promoter atoms will provide electrons to thesurface O, resulting an optimal hydrogen adsorption free energyclose to 0 eV. Combining theory and experiments, Seh et al. 26have screened 2D Mo2CTx MXene materials among dozens ofM2XTx as HER electrocatalysts, which delivers the overpotentialof 283 mV at the current density of 10 mA?cm?2 in 0.5 mol?L?1H2SO4 solution. Although various compositions of MXene havebeen discovered, there are still very few MXene-basedelectrocatalysts with promising HER activity.

    Typically, MXene materials are regarded as the versatile andfavorable electrocatalytic construction platforms due to itsabundant surface functional groups and ultrathin sheet-likemorphology 27–33. Benefiting from the unique 2D structure andexcellent metallic conductivity, the MXene supports canstabilize severe aggregation of nanocomposites, and enhance theinterface electron/charge transfer between the electrode surfaceand electrolyte 34–36. Besides, the surface terminations of MXenematerials also could couple with other electrocatalysts byinterface engineering, resulting tunable electronic structures andelectrochemical activities for HER performance 37. Based on theconsideration of synergistic effect, it is of great significance todevelop MXene-based nanocomposites with strong interfacialinteraction for electrocatalytic HER.

    Herein, CoP-Ti3C2Tx MXene nanocomposites weresuccessfully designed and fabricated through hydrothermalreaction and in situ phosphating process, in which CoP grow onthe surface of Ti3C2Tx MXene nanosheets and formed a layeredstructure with large surface area and high electrical conductivity.The theoretical calculation results show that the electricalconductivity of CoP-Ti3C2Tx MXene nanocomposites isenhanced and the electronic structure of Co species areoptimized. In addition, compared with CoP, the d-band center ofCoP in CoP-Ti3C2Tx MXene nanocomposites moves furtherdownward relative to Fermi level and has lower anti-bondingenergy, which leads to weaker hydrogen adsorption capacity ofCoP and makes the Gibbs free energy of hydrogen adsorption ofthe composite closer to 0. Consequently, the nanocompositesgive full play to the synergistic advantages of CoP and Ti3C2TxMXene nanosheets, provide abundant active sites, promote thecontact between catalyst and electrolyte, and improve thecharge/electron transfer and hydrogen rapid release during theelectrocatalytic HER process.

    2 Experimental

    2.1 Synthesis of Ti3C2Tx MXene

    First, 1.6 g of LiF was dissolved in 20 mL of 9 mol?L?1hydrochloric acid at 40 °C with stirring to form a homogeneous solution. 1 g of Ti3AlC2 precursor was added to the abovesolution, and the metal aluminum layer was removed bycontinuous etching for 48 h. After etching, the obtainedsuspension was centrifuged at a speed of 3500 r?min?1 for 1 min,and 2 mol?L?1 HCl was added to the obtained precipitate to washaway the unreacted LiF, and the process was repeated 3 times.Then deionized water was added and continued to centrifuge andwash until the pH of the supernatant was neutral. Finally, theprecipitate was vacuum-dried at 60 °C for 6 h to obtain Ti3C2TxMXene materials.

    2.2 Synthesis of CoP-Ti3C2Tx MXene nanocomposites

    CoP-Ti3C2Tx MXene nanocomposites were successfullyprepared by hydrothermal method and in situ phosphatingprocess. Specifically, 1.5 mmol of cobalt acetate tetrahydrate(Co(OAc)2?4H2O) and 1.5 mmol of hexamethylenetetramine(HMT) were dissolved in 70 mL of water, then a certain amountof Ti3C2Tx MXene materials were added for ultrasonicdispersion. The suspension was then placed into a 100 mL PTFElinedautoclave and reacted at 180 °C for 12 h. After the reaction,it was naturally cooled to room temperature, the precipitate waswashed three times with deionized water, then dried in a vacuumoven at 60 °C. 100 mg of the above sample and 1.5 g of sodiumhypophosphite (NaH2PO2) were mixed uniformly, placed in aclosed porcelain boat, and reacted at 300 °C for 2 h undernitrogen atmosphere. After the phosphating reaction wascompleted, it was naturally cooled to room temperature, and thesamples were washed with water and ethanol three timesrespectively, and then dried in a vacuum drying oven at 60 °Cfor 12 h to obtain CoP-Ti3C2Tx MXene nanocomposites.

    2.3 Characterization

    The crystal structure analysis of the samples was carried outby a powder X-ray diffractometer (AXS D8 ADVANCE, BrukerGermany). The morphology and structure of the samples werecharacterized by field emission scanning electron microscopy(FESEM, Gemini SEM 300, Germany Zeiss), energy dispersiveX-ray spectroscopy (EDX), transmission electron microscopy(TEM, JEM-2100), and selective electron diffraction (SAED)analyzers. The elemental state of the catalyst surface wasanalyzed using X-ray photoelectron spectroscopy (XPS,ESCALAB XI+-600W X).

    2.4 Computational method

    We have employed the Vienna Ab Initio Package (VASP) 38,39to perform all the density functional theory (DFT) calculationswithin the generalized gradient approximation (GGA) using thePBE 40 formulation. We have chosen the projected augmentedwave (PAW) potentials 41,42 to describe the ionic cores and takevalence electrons into account using a plane wave basis set witha kinetic energy cutoff of 400 eV. Partial occupancies of theKohn-Sham orbitals were allowed using the Gaussian smearingmethod and a width of 0.05 eV. The electronic energy wasconsidered self-consistent when the energy change was smallerthan 10?5 eV. A geometry optimization was considered convergent when the force change was smaller than 0.2 eV?nm?1.Grimme’s DFT-D3 methodology 43 was used to describe thedispersion interactions.

    The equilibrium lattice constants of orthorhombic CoP unitcell were optimized to be a = 0.5017 nm, b = 0.3222 nm, c =0.5499 nm. We then use it to construct a CoP (110) surface model(model 1) with p(1 × 1) periodicity in the x and y directions andone stoichiometric layer in the z direction separated by a vacuumlayer in the depth of 1.5 nm in order to separate the surface slabfrom its periodic duplicates. During structural optimizations, a 5 ×5 × 1 k-point grid in the Brillouin zone was used for k-pointsampling, and the bottom half stoichiometric layer was fixedwhile the top half was allowed to relax.

    The equilibrium lattice constants of hexagonal O-Ti-C-Ti-CTi-O MXene monolayer unit cell in a vacuum layer of 1.5 nmwas optimized to be a = 0.3018 nm. We then use it to constructa MXene (001) surface model (model 2) with p(1 × √3)periodicity. Half of the O atoms were replaced by F atoms.During structural optimizations, a 5 × 5 × 1 k-point grid in theBrillouin zone was used for k-point sampling, and all atoms wereallowed to relax.

    The free energy of a gas phase molecule or an adsorbate onthe surface was calculated by the equation G = E + ZPE ? TS,where E is the total energy, ZPE is the zero-point energy, T is thetemperature in kelvin (298.15 K is set here), and S is the entropy.The reported standard hydrogen electrode (SHE) model 44 wasadopted in the calculations of Gibbs free energy changes (ΔG)of all reaction steps, which was used to evaluate the reactionbarrier. The chemical potential of a proton-electron pair, μ(H+) +μ(e?), is equal to the half of the chemical potential of one gaseoushydrogen molecule, 1/2μ(H2), at U = 0 V vs. SHE at pH = 0.

    2.5 Electrochemical measurements

    4 mg of the catalyst was dispersed in 1 mL of 0.1% Nafionsolution and then sonicated for 60 min to form a homogeneousink. Then, 20 μL of the ink solution was dropped onto a glassycarbon electrode with a diameter of 5 mm, and the catalystloading was about 0.408 mg?cm?2. All electrochemical measurements were performed at room temperature on theCHI660E electrochemical workstation using a conventionalthree-electrode system and RDE type rotating disk electrodes.The electrolyte was 0.5 mol?L?1 H2SO4 solution. Beforemeasurement, the electrolyte was purged with nitrogen for 30min to remove dissolved oxygen from the solution. Thereference electrode used in the electrochemical experiments wasa saturated silver/silver chloride electrode (Ag/AgCl), thecounter electrode was a graphite rod, and the working electrodewas a glassy carbon electrode loaded with a catalyst. Linearsweep voltammetry (LSV) polarization curve was measured atscanning rate of 5 mV?s?1. All the potentials mentioned in thispaper were converted to reversible hydrogen electrode (RHE)potentials by ERHE = EAg/AgCl + 0.059 × pH + 0.198. Allelectrochemical measurements conducted with 95% iRcompensation.

    3 Results and discussion

    The DFT calculations have been applied to predict thesuperior performance of the CoP-Ti3C2Tx MXenenanocomposites. The hydrogen adsorption sites andconfigurations on CoP, Ti3C2Tx MXene, and CoP-Ti3C2TxMXene nanocomposites have been calculated in Fig. S1 andTable S1 (Supporting Information) by the first principlescalculations. Apparently, the optimized structures of CoP,Ti3C2Tx MXene and CoP-Ti3C2Tx MXene nanocomposites havebeen constructed as shown in Fig. 1a–c. As a reasonabledescriptor, the adsorption free energy of hydrogen (ΔGH*) iswidely used to evaluate the performance of electrocatalytichydrogen evolution 45. In general, when the |ΔGH*| value is zero,there is a rapid proton/electron transfer process and hydrogenrelease process in the electrocatalytic hydrogen evolutionreaction. As can be seen from Fig. 1d, the |ΔGH*| value of CoPTi3C2TxMXene nanocomposites is 0.03 eV, which is much lowerthan that of CoP (0.12 eV) and Ti3C2Tx MXene (0.18 eV),suggesting the positive synergistic effect between CoP andTi3C2Tx MXene materials for favorable HER catalytic activity.

    Based on the results of theoretical calculation, the CoPTi3C2TxMXene nanocomposites were constructed throughetching, hydrothermal and subsequent phosphating processes(see “Experimental” for detailed steps), which was expected tobe a promising HER electrocatalyst. The morphology andcomposition of CoP-Ti3C2Tx MXene nanocomposites werecharacterized by SEM (Fig. S2) and TEM (Fig. 2a). After peelingoff the Ti3AlC2 precursor, the 2D Ti3C2Tx MXene nanosheetswith a clean surface was obtained. The insets in Fig. 2a are theHRTEM and selected area electron diffraction (SAED) patternof Ti3C2Tx MXene, which exhibit the distinct lattice fringe of0.457 nm for (004) crystal plane 46. As can be seen in Fig. 2b,CoP nanoparticles are exhibiting homogeneous spherical shapewith a diameter of about 20 nm. Similarly, the inset in Fig. 2bshow the HRTEM image and corresponding SAED pattern,which suggest that the lattice fringe is 0.221 nm, correspondingto the (210) crystal plane of the CoP 47. The SEM images of CoPTi3C2TxMXene nanocomposites have been presented in Fig. 2cand Fig. S3. It can be seen that CoP nanoparticles tightly adhereto the surrounding Ti3C2Tx MXene surface and form stablenanocomposites. This finding not only highlights thecompatibility between the two materials but also hints at thepossibility of synergistic effects that may arise due to theirinteraction. The nanosheet structure of Ti3C2Tx MXene offers alarge surface area, making it an ideal candidate for applicationsthat require high surface reactivity. Fig. 2d–f show the presenceof Co, P, and Ti elements, Ti element in the center of thenanostructure, while, Co and P elements in the periphery of thenanostructure, which proves the successful growth of CoP on thesurface of Ti3C2Tx MXene nanosheets. The surface of thenanocomposites is rough, which is beneficial to theelectrocatalyst and electrolyte contact as well as the rapid releaseof gas.

    The crystal and phase structures of these samples wereanalyzed by XRD measurements, and the results are shown inFig. 3a. For Ti3C2Tx MXene materials, the phase ofdiffraction peak at 2θ = 39° almost disappeared relative toTi3AlC2 MAX phase, indicating that the Al layer is successfullyremoved. After conducting a thorough comparison, we haveobserved that the XRD diffraction peaks of Ti3C2Tx MXenealign remarkably well with the simulated pattern 48. This findingindicates that our Ti3C2Tx MXene materials have beensuccessfully prepared and are of high quality. According to theXRD spectrum of CoP, a detailed analysis reveals that the maincharacteristic diffraction peaks are located at 31.6°, 36.3°, 48.1°,and 56.0°. These peaks correspond remarkably well with thediffraction planes (011), (111), (211), and (020) of orthorhombicCoP (JCPDS No. 29-0497) respectively. In the XRD of thenanocomposites, the diffraction peaks of CoP are obvious, butpart of the diffraction peaks of MXene materials are weakenedor even disappeared, which means the CoP nanoparticles grownon the surface of Ti3C2Tx MXene materials can effectivelyinhibit the repacking of MXene nanosheets. The detailedchemical composition and electronic structure of CoP-Ti3C2TxMXene nanocomposites had been investigated by XPS. Thesurvey XPS spectrum in Fig. 3b shows that CoP-Ti3C2Tx MXene nanocomposites contain Co, O, Ti, C, F, and P elements. Asshown in Fig. 3c and Table S2, there are two distinct peaks canbe identified from the Co 2p core level spectra. The peak at780.5–781.5 eV is attributed to Co 2p3/2 and the other bindingenergy located at 796.7–797.6 eV is assigned to Co 2p1/2.Obviously, compared with CoP, the peaks of Co 2p in CoPTi3C2TxMXene nanocomposites move towards the direction oflow binding energy, which means the electron transfer from CoPto Ti3C2Tx MXene materials. The modulated electronic structureof Co is beneficial for the HER activity. In addition, the highresolutionXPS spectra of P 2p can be deconvoluted into threepeaks (Fig. 3d and Table S3), the peaks at 128.1 and 128.8 eVare assigned to P 2p3/2 and P 2p1/2, respectively, and the peaks at132.4 eV are assigned to peak of P oxide species. Compared withthe P 2p peak in CoP, the area of the P 2p peak in CoP-Ti3C2TxMXene increases, exhibiting the strong chemical bindingbetween CoP and Ti3C2Tx MXene materials. In the case of Ti 2pspectra of these samples, there are four peaks can bedeconvoluted (Fig. 3e and Table S4). Specifically, the bindingenergies centered at 458.3 and 463.1 eV are attributed to the 2p3/2and 2p1/2 characteristic peaks of Ti―C bonds, while the peakpositions located at 459.3 and 464.6 eV are corresponded to the2p3/2 and 2p1/2 characteristic peaks of Ti―O bonds 48,49.Compared with Ti3C2Tx MXene materials, the slight shift of Ti2p peaks of CoP-Ti3C2Tx MXene nanocomposites to higherbinding energy demonstrates that the interaction betweenTi3C2Tx MXene materials and CoP. Meanwhile, the two majorpeaks located at the binding energy of 283.4 and 284.9 eV areassigned to Ti―C and C―C bond, respectively (Fig. 3f andTable S5). After decorating CoP, the XPS peaks of thenanocomposites deconvolate four distinct peaks of Ti―C,C―C, C=O, and C―O around at the binding energies of 283.2,284.1, 287.4, and 290.9 eV.

    The LSV polarization curves of these electrocatalysts are presented in Fig. 5a. It is noted that CoP-Ti3C2Tx MXeneelectrocatalysts only need overpotential of 135 mV to achievethe current density of 10 mA cm?2. In contrast, the potentials ofTi3C2Tx materials and CoP reaching the same current density areas high as 449 and 199 mV, respectively. The promising HERperformance with low overpotential of CoP-Ti3C2Tx MXeneelectrocatalysts result from the synergistic effect betweenTi3C2Tx MXene and CoP. Pt/C electrode has a minimumoverpotential of 69 mV at a current density of 10 mA cm–2.Although it has the best HER performance, the scarcity and highcost of precious metals seriously restrict its large-scale practicalapplication. In addition, the corresponding Tafel plots of theseelectrocatalysts are also calculated to investigate the underlyingcatalytic kinetics (Fig. 5b). The calculated Tafel slopes ofTi3C2Tx MXene, CoP, and CoP-Ti3C2Tx MXene nanocompositesare 350, 107, and 48 mV?dec?1, respectively. As predicted, thesmallest value for CoP-Ti3C2Tx MXene electrode indicates thesuperior HER kinetics. Furthermore, the dominated ratedeterminingstep of electrocatalytic HER is the Volmer–Heyrovsky mechanism 50. The TOF values of Ti3C2Tx MXene,CoP, and CoP-Ti3C2Tx MXene nanocomposites have beenestimated to understand the activity of each site in theseelectrocatalysts. The potential dependent TOF curves arepresented in Fig. 5c. Obviously, the TOF values of CoP-Ti3C2TxMXene nanocomposites are higher than those of the Ti3C2TxMXene and CoP catalyst at different potentials, indicating theimproved intrinsic catalytic activity of single active site for CoPTi3C2TxMXene nanocomposites 51. EIS measurement has alsobeen carried out to assess the electrochemical behaviors of theseelectrodes, and the results are shown in Fig. 5d. It is noted thatthe CoP-Ti3C2Tx MXene electrode exhibits the lowest chargetransfer resistance, demonstrating the appropriate charge/ionmobility at the interface between the CoP-Ti3C2Tx MXenesurface and electrolyte, which is consistent with the Tafel plot.The fast charge transfer ability can attribute to the enhancedconductivity and electron coupling between Ti3C2Tx MXene andCoP. The long-term stability of electrocatalysts is an importantfactor for practical application. The durability of CoP-Ti3C2TxMXene nanocomposites is evaluated by chronoamperometry atthe potential of 0.135 V (vs. RHE). It is worth noting that thecurrent density of this electrode can be maintained for 50 hwithout significant attenuation (Fig. 5e). Moverover, the doublelayercapacitances (Cdl) of Ti3C2Tx MXene, CoP, CoP-Ti3C2TxMXene nanocomposites have been estimated to calculated theelectrochemical active surface area, which is the indication ofthe number of catalytic sites. The values of Cdl are calculated byCV measurements in the potential of 0.2–0.4 V (vs. RHE) withthe scan rates of 20-200 mV?s?1 (Fig. S4). As shown in Fig. S3d,the Cdl value of CoP-Ti3C2Tx MXene nanocomposites isconfirmed at 7.41 mF?cm?2, which is 1.4 times of CoP and 1.9times of Ti3C2Tx MXene materials. The large double layercapacitance of CoP-Ti3C2Tx MXene nanocomposites meansincreasing available exposed active sites due to the synergisticeffect between Ti3C2Tx MXene and CoP, which is beneficial forboosting the electrocatalytic HER 52,53.

    To evaluate the stability of the CoP-Ti3C2Tx MXene samples,we employed SEM and TEM techniques. The results, as depictedin Fig. S5a–c, clearly indicate that even after undergoing longtermstability tests, the CoP-Ti3C2Tx MXene nanocompositeshave managed to maintain their initial coating structure withoutsuffering significant damage. While it is unfortunate that a smallfraction of the particles detached from the surface. Given therigorous nature of the stability tests, it is natural for someparticles to become dislodged. However, it is crucial toemphasize that the overall coating structure remained largely unaffected, indicating the reliability and durability of thematerial. As shown in Fig. S5d, HRTEM image showed that alattic e spacing of 0.19 nm corresponds to the (211) crystal faceof CoP, indicating that CoP did not undergo structural changesafter stability testing. These results demonstrate the robustnessof the coating structure, which has proven to be highly resistantto deterioration. The fact that the majority of the particlesremained intact after the stability tests is a testament to theeffectiveness of the coating in preserving the integrity of thesamples.

    In order to explore the reasons for the HER performances ofthese electrocatalysts, the total density of states (TDOS) forTi3C2Tx MXene, CoP, CoP-Ti3C2Tx MXene nanocompositeshave been depicted in Fig. S6. It can be seen from TDOS, thestate density at the Fermi level of the CoP-Ti3C2Tx MXenenanocomposites increases, indicating that its electricalconductivity is enhanced, which is conducive to theelectrochemical reaction. In order to study the influence ofTi3C2Tx MXene for the electronic structure of CoP, the chargedensity difference (CDD) of CoP-Ti3C2Tx MXenenanocomposites has been calculated. As shown in Fig. 6a, theyellow area around the P atom shows charge accumulation andthe blue area near the O atom shows charge depletion. Thisindicates that the electrons of the Ti3C2Tx MXene are transferredto the P of the CoP through the interface between CoP andTi3C2Tx MXene materials. Additionally, the electron localizationfunction (ELF) mapping is also presented to investigate thedegree of electron localization. As shown in Fig. 6b, the ELFdiagram shows the obvious interaction between CoP and Ti3C2TxMXene surface. According to the Bader charges analysis (TableS6), prior to the formation of the heterojunction, the CoP (110)portion contains 168 electrons. On the other hand, MXene (001)exhibits a different electron configuration. However, upon theformation of the heterojunction, the combined system exhibits atotal of 166.86 electrons. This observation suggests that the CoP(110) portion has lost approximately 1.14 electrons. This is also consistent with the XPS results of the Co element. In addition,the partial densities of states (DOS) for 3d orbital of Co in CoPand C oP-Ti3C2Tx MXene nanocomposites have been plotted inFig. 6c. Compared with CoP (?1.552 eV), the d-band center ofCoP in MXene-CoP moves further downward (?1.741 eV) withrespect to Fermi level (0 eV) and has lower anti-bonding energy,which results in weaker hydrogen adsorption capacity andstronger hydrogen desorption energy of CoP.

    4 Conclusions

    The CoP-Ti3C2Tx MXene nanocomposites have beenrationally predicted and successfully prepared as robustelectrocatalysts for HER. A facile lift-off etch process followedby hydrothermal method is used to decorate CoP nanoparticleson Ti3C2Tx MXene nanosheets. For HER, CoP-Ti3C2Tx MXenenanocomposites exhibit the low overpotential of 135 mV at thecurrent density of 10 mA?cm?2 in 0.5 mol?L?1 H2SO4 solution.Due to the high metal conductivity and large surface area ofTi3C2Tx MXene materials, the CoP-Ti3C2Tx MXenenanocomposites owns well-structured nanoparticle-sheetinterface synergistic effect and numerous exposed active sites.This work has laid a solid foundation for expanding theapplication of MXene materials in energy conversion.

    Author Contributions: Conceptualization, W. S. and Y.W.; Methodology, S. B.; H. W. and J. Z.; Writing – originaldraft, K. X.; Visualization, Arramel and K. X.; Writing – Reviewamp; Editing, J. J; Project administration, K. X. and J. J.;Supervision, J. J.

    References

    (1) Kittner, N.; Lill, F.; Kammen, D. M. Nat. Energy 2017, 2, 17125.doi: 10.1038/nenergy.2017.125

    (2) Yang, Y.; Wu, X.; Ahmad, M.; Si, F.; Chen, S.; Liu, C.; Zhang, Y.;Wang, L.; Zhang, J.; Luo, J.-L.; Fu, X.-Z. Angew. Chem. Int. Ed.2023, 62, e202302950, doi: 10.1002/anie.202302950

    (3) Fan, Z.; Zhang, W.; Li, L.; Wang, Y.; Zou, Y.; Wang, S.; Chen, Z.Green Chem. 2022, 24, 7818. doi: 10.1039/D2GC02956A

    (4) Tang, S.; Liu, Z.; Qiu, F.; Liu, Q.; Mao, Y.; Zhang, L. Green Chem.2022, 24, 9668. doi: 10.1039/D2GC03351H

    (5) Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang,K.; Liu, S.; Zhai, T. Nano Res. 2022, 15, 5977.doi: 10.1007/s12274-022-4276-8

    (6) Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo,J.-L.; Fu, X.-Z. Adv. Funct. Mater. 2020, 30, 1909610.doi: 10.1002/adfm.201909610

    (7) Ling, C.-Y.; Wang, J.-L. Acta Phys. -Chim. Sin. 2017, 33, 869. [凌崇益, 王金蘭. 物理化學(xué)學(xué)報, 2017, 33, 869.]doi: 10.3866/PKU.WHXB201702088

    (8) Shuai, T.-Y.; Zhan, Q.-N.; Xu, H.-M.; Zhang, Z.-J.; Li, G.-R. GreenChem. 2023, 25, 1749. doi: 10.1039/D2GC04205C

    (9) Xiang, K.; Guo, J.; Xu, J.; Qu, T.; Zhang, Y.; Chen, S.; Hao, P.;Li, M.; Xie, M.; Guo, X.; Ding, W. ACS Appl. Energy Mater. 2018, 1,4040. doi: 10.1021/acsaem.8b00723

    (10) Xiang, K.; Song, Z.; Wu, D.; Deng, X.; Wang, X.; You, W.; Peng, Z.;Wang, L.; Luo, J.-L.; Fu, X.-Z. J. Mater. Chem. A 2021, 9, 6316.doi: 10.1039/D0TA10501E

    (11) Yan, D.; Zhang, L.; Chen, Z.; Xiao, W.; Yang, X. Acta Phys. -Chim.Sin. 2021, 37, 2009054. [閆大強(qiáng), 張林, 陳祖鵬, 肖衛(wèi)平, 楊小飛.物理化學(xué)學(xué)報, 2021, 37, 2009054.]doi: 10.3866/PKU.WHXB202009054

    (12) Liao, L.; Cheng C.; Zhou, H.; Qi, Y.; Li, D.; Cai, F.; Yu, B.; Long, R.;Yu, F. Mater. Today Phys. 2022, 22, 100589.doi: 10.1016/j.mtphys.2021.100589

    (13) Hansen, J. N.; Prats, H.; Toudahl, K. K.; Secher, N. M.; Chan, K.;Kibsgaard, J.; Chorkendorff, I. ACS Energy Lett. 2021, 6, 1175.doi: 10.1021/acsenergylett.1c00246

    (14) Chen, Q.; Du, C.; Yang, Y.; Shen, Q.; Qin, J.; Hong, M.; Zhang, X.;Chen, J. Mater. Today Phys. 2023, 30, 100931.doi: 10.1016/j.mtphys.2022.100931

    (15) Ling, C.; Shi, L.; Ouyang, Y.; Chen, Q.; Wang, J. Adv. Sci. 2016, 3,1600180. doi: 10.1002/advs.201600180

    (16) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv.Mater. 2014, 26, 992. doi: 10.1002/adma.201304138

    (17) Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater.Chem. A 2021, 9, 24195. doi: 10.1039/D1TA07332J

    (18) Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu,S. npj 2D Mater. Appl. 2021, 5, 78. doi: 10.1038/s41699-021-00259-4

    (19) Jiang, J.; Bai, S.; Zou, J.; Liu, S.; Hsu, J.-P.; Li, N.; Zhu, G.;Zhuang, Z.; Kang, Q.; Zhang Y. Nano Res. 2022, 15, 6551.doi: 10.1007/s12274-022-4312-8

    (20) Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.;Wu, P.; Hsu, J.-P. Nano Res. 2023, 16, 127.doi: 10.1007/s12274-022-4799-z

    (21) Jiang, J.; Li, F.; Zou, J.; Liu, S.; Wang, J.; Zou, Y.; Xiang, K.; Zhang,H.; Zhu, G.; Zhang, Y.; et al. Sci. China Mater. 2022, 65, 2895.doi: 10.1007/s40843-022-2186-0

    (22) Li, N.; Peng, J.; Ong, W.-J.; Ma, T.; Arramel, Zhang, P.; Jiang, J.;Yuan, X.; Zhang, C. Matter 2021, 4, 377.doi: 10.1016/j.matt.2020.10.024

    (23) Zeng, Z.; Chen, X.; Weng, K.; Wu, Y.; Zhang, P.; Jiang, J.; Li, N. npjComput. Mater. 2021, 7, 80. doi: 10.1038/s41524-021-00550-4

    (24) Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.;Palisaitis, J.; Persson, P. O. ?.; Eklund, P.; et al. Science 2023, 379,1130. doi: 10.1126/science.add5901

    (25) Wang, D.; Zhou, C.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M.;Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Science 2023,379, 1242. doi: 10.1126/science.add9204

    (26) Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler,A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A.ACS Energy Lett. 2016, 1, 589. doi: 10.1021/acsenergylett.6b00247

    (27) Shinde, P. V.; Mane, P.; Chakraborty, B.; Rout, C. S. J. ColloidInterface Sci. 2021, 602, 232. doi: 10.1016/j.jcis.2021.06.007

    (28) Li, S.; Que, X.; Chen, X.; Lin, T.; Sheng, L.; Peng, J.; Li, J.; Zhai, M.ACS Appl. Energy Mater. 2020, 3, 10882.doi: 10.1021/acsaem.0c01900

    (29) Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li,N.; Zhang, H.; Yu, J.; et al. Chem. Soc. Rev. 2022, 51, 2972.doi: 10.1039/D0CS01487G

    (30) Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.;Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; She, Z.W. ACS Nano 2020, 14, 16140. doi: 10.1021/acsnano.0c08671

    (31) Huang, H.; Xue, Y.; Xie, Y.; Yang, Y.; Yang, L.; He, H.; Jiang, Q.;Ying, G. Inorg. Chem. Front. 2022, 9, 1171.doi: 10.1039/D1QI01528A

    (32) Li, G.; Sun, T.; Niu, H.-J.; Yan, Y.; Liu, T.; Jiang, S.; Yang, Q.; Zhou,W.; Guo, L. Adv. Funct. Mater. 2023, 33, 2212514.doi: 10.1002/adfm.202212514

    (33) Gong, S.; Liu, H.; Zhao, F.; Zhang, Y.; Xu, H.; Li, M.; Qi, J.; Wang,H.; Li, C.; Peng, W.; et al ACS Nano 2023, 17, 4843.doi: 10.1021/acsnano.2c11430

    (34) Huang, K.; Lv, C.; Li, C.; Bai, H.; Meng, X. J. Colloid Interface Sci.2023, 636, 21. doi: 10.1016/j.jcis.2022.12.169

    (35) Guo, Y.; Du, Z.; Cao, Z.; Li, B.; Yang, S. Small Methods 2023, 7,2201559. doi: 10.1002/smtd.202201559

    (36) Zheng, X.; Yuan, M.; Huang, X.; Li, H.; Sun, G. Chin. Chem. Lett.2023, 34, 107152. doi: 10.1016/j.cclet.2022.01.045

    (37) Zhao, J.; Luo, S.; Chen, Y.; Zhu, R.; Liang, J.; Wang, F.; Fu, X.; Wu,C. ChemistrySelect 2022, 7, e202200254.doi: 10.1002/slct.202200254

    (38) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.doi: 10.1016/0927-0256(96)00008-0

    (39) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.doi: 10.1103/PhysRevB.54.11169

    (40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,3865. doi: 10.1103/PhysRevLett.77.3865

    (41) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.doi: 10.1103/PhysRevB.59.1758

    (42) Bl?chl, P. E. Phys. Rev. B 1994, 50, 17953.doi: 10.1103/PhysRevB.50.17953

    (43) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010,132, 154104. doi: 10.1063/1.3382344

    (44) N?rskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886.doi: 10.1021/jp047349j

    (45) Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.;Tang, D.; Cao, X.; Liu, C.; et al. Nat. Commun. 2018, 9, 2120.doi: 10.1038/s41467-018-04501-4

    (46) Ma, X.; Tu, X.; Gao, F.; Xie, Y.; Huang, X.; Fernandez, C.; Qu, F.;Liu, G.; Lu, L.; Yu, Y. Sens. Actuators B: Chem. 2020, 309, 127815.doi: 10.1016/j.snb.2020.127815

    (47) Yang, D.; Zhu, J.; Rui, X.; Tan, H.; Cai, R.; Hoster, H. E.; Yu, D. Y.W.; Hng, H. H.; Yan, Q. ACS Appl. Mater. Interfaces 2013, 5, 1093.doi: 10.1021/am302877q

    (48) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.;Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23,4248. doi: 10.1002/adma.201102306

    (49) Du, C.-F.; Dinh, K. N.; Liang, Q.; Zheng, Y.; Luo, Y.; Zhang, J.; Yan,Q. Adv. Energy Mater. 2018, 8, 1801127.doi: 10.1002/aenm.201801127

    (50) Li, X.; Lv, X.; Sun, X.; Yang, C.; Zheng, Y.-Z.; Yang, L.; Li, S.; Tao,X. Appl. Catal. B: Environ. 2021, 284, 119708.doi: 10.1016/j.apcatb.2020.119708

    (51) Han, M.; Yang, J.; Jiang, J.; Jing, R.; Ren, S.; Yan, C. J. Colloid.Interface Sci. 2021, 582, 1099. doi: 10.1016/j.jcis.2020.09.001

    (52) Li, H.; Han, Y.; Zhao, H.; Qi, W.; Zhang, D.; Yu, Y.; Cai, W.; Li, S.;Lai, J.; Huang, B.; Wang, L. Nat. Commun. 2020, 11, 5437.doi: 10.1038/s41467-020-19277-9

    (53) Peng, S.; Gong, F.; Li, L.; Yu, D.; Ji, D.; Zhang, T.; Hu, Z.; Zhang, Z.;Chou, S.; Du, Y.; Ramakrishna, S. J. Am. Chem. Soc. 2018, 140,13644. doi: 10.1021/jacs.8b05134

    國家自然科學(xué)基金(62004143, 22174033), 湖北省重點(diǎn)研發(fā)計劃(2022BAA084), 光電化學(xué)材料與器件教育部重點(diǎn)實驗室(江漢大學(xué))開放基金(JDGD-202227), 武漢市知識創(chuàng)新專項項目-曙光計劃(2022010801020355)資助

    猜你喜歡
    密度泛函理論
    理論計算Mn3Ga合金的電子結(jié)構(gòu)
    第一性原理研究鐵銅合金催化氨硼烷水解脫氫
    Cu/FePt/MgO多層體系的結(jié)構(gòu)和磁性研究
    氣相中Ni+活化環(huán)己烷C—H和C—C鍵的理論研究
    苯環(huán)間的扭轉(zhuǎn)角對分子器件整流特性的影響
    一種鐵配合物催化的烯烴氫化反應(yīng)機(jī)理的研究
    電子理論在材料科學(xué)中的應(yīng)用
    科技傳播(2016年8期)2016-07-13 23:46:24
    InnN (n=1~13) 團(tuán)簇的幾何結(jié)構(gòu)和電子性質(zhì)
    科技視界(2015年35期)2016-01-04 09:39:10
    重金屬離子對致癌性NDMA形成影響的實驗與理論研究
    金屬離子的配位作用影響芳胺抗氧化性能的理論研究
    潤滑油(2014年5期)2015-01-27 10:02:16
    狂野欧美激情性bbbbbb| 精品一品国产午夜福利视频| 亚洲欧美中文字幕日韩二区| 啦啦啦中文免费视频观看日本| 一本—道久久a久久精品蜜桃钙片| 少妇被粗大猛烈的视频| 国产熟女午夜一区二区三区 | a级片在线免费高清观看视频| 国产深夜福利视频在线观看| 乱码一卡2卡4卡精品| 中文字幕免费在线视频6| 国产精品一二三区在线看| 午夜激情福利司机影院| 人妻一区二区av| 一区二区三区乱码不卡18| 午夜老司机福利剧场| 成人无遮挡网站| 婷婷色综合www| 成年人午夜在线观看视频| 欧美 亚洲 国产 日韩一| 成年人午夜在线观看视频| 免费日韩欧美在线观看| 日本欧美国产在线视频| 国产精品嫩草影院av在线观看| 大香蕉97超碰在线| 一本一本综合久久| 人妻少妇偷人精品九色| 久久精品国产亚洲网站| 超碰97精品在线观看| 国产精品久久久久久精品古装| 99热这里只有是精品在线观看| 热re99久久精品国产66热6| 中文字幕免费在线视频6| 精品人妻一区二区三区麻豆| av在线app专区| 老女人水多毛片| 欧美97在线视频| 久热这里只有精品99| 免费看不卡的av| 色5月婷婷丁香| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区三区久久久樱花| 全区人妻精品视频| 永久免费av网站大全| av网站免费在线观看视频| 汤姆久久久久久久影院中文字幕| 只有这里有精品99| 欧美bdsm另类| 少妇人妻久久综合中文| 国产一区亚洲一区在线观看| 国产亚洲午夜精品一区二区久久| 国产亚洲最大av| 国产亚洲最大av| 国产成人免费无遮挡视频| 啦啦啦视频在线资源免费观看| 91精品伊人久久大香线蕉| 少妇猛男粗大的猛烈进出视频| 性色avwww在线观看| 成年人午夜在线观看视频| 久久人人爽人人片av| 亚洲精品国产av蜜桃| 精品人妻一区二区三区麻豆| 久久精品熟女亚洲av麻豆精品| 人妻一区二区av| 成人亚洲欧美一区二区av| 最近中文字幕2019免费版| 亚洲欧美一区二区三区黑人 | 丰满迷人的少妇在线观看| 久久ye,这里只有精品| av在线播放精品| 最后的刺客免费高清国语| 2021少妇久久久久久久久久久| 久久久久国产精品人妻一区二区| 国产精品久久久久久精品古装| 国产欧美日韩一区二区三区在线 | 26uuu在线亚洲综合色| 国产熟女午夜一区二区三区 | 香蕉精品网在线| 午夜精品国产一区二区电影| 99久久人妻综合| 少妇精品久久久久久久| 少妇的逼水好多| 看十八女毛片水多多多| 国产精品一区二区在线观看99| 久久国产精品大桥未久av| 夜夜看夜夜爽夜夜摸| 这个男人来自地球电影免费观看 | 中文欧美无线码| 日韩中字成人| 亚洲av男天堂| 亚洲国产欧美在线一区| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲成a人片在线观看| 老女人水多毛片| 久久久精品免费免费高清| 中国美白少妇内射xxxbb| 欧美精品一区二区免费开放| 国产精品偷伦视频观看了| 欧美日韩在线观看h| 菩萨蛮人人尽说江南好唐韦庄| 国产男女内射视频| 久久精品久久精品一区二区三区| 高清欧美精品videossex| 久久久久国产精品人妻一区二区| 成人国语在线视频| 一区二区av电影网| 欧美日韩精品成人综合77777| 在线观看三级黄色| 日韩大片免费观看网站| 精品一区在线观看国产| 91在线精品国自产拍蜜月| 日本欧美国产在线视频| 99热这里只有是精品在线观看| 欧美 日韩 精品 国产| 天天影视国产精品| 十八禁网站网址无遮挡| 熟女电影av网| 这个男人来自地球电影免费观看 | 欧美精品一区二区免费开放| 美女国产视频在线观看| 青春草亚洲视频在线观看| 精品少妇内射三级| 在线 av 中文字幕| 丰满饥渴人妻一区二区三| 99久久人妻综合| 亚洲欧美成人精品一区二区| 国产白丝娇喘喷水9色精品| 三级国产精品欧美在线观看| 制服诱惑二区| 午夜激情久久久久久久| 日本爱情动作片www.在线观看| 中文字幕精品免费在线观看视频 | 在现免费观看毛片| 国产无遮挡羞羞视频在线观看| 国产一区有黄有色的免费视频| 人妻 亚洲 视频| 国产在线免费精品| 纵有疾风起免费观看全集完整版| 街头女战士在线观看网站| 成人国产av品久久久| 亚洲三级黄色毛片| 国产精品不卡视频一区二区| 人人妻人人澡人人爽人人夜夜| 我的老师免费观看完整版| 久久久久精品久久久久真实原创| av又黄又爽大尺度在线免费看| 天堂8中文在线网| 热99国产精品久久久久久7| 国产精品一二三区在线看| 免费少妇av软件| 久久鲁丝午夜福利片| 成人毛片60女人毛片免费| 日韩伦理黄色片| 男女边吃奶边做爰视频| 热re99久久国产66热| 黄色视频在线播放观看不卡| 美女视频免费永久观看网站| 亚洲第一av免费看| 伊人久久精品亚洲午夜| 亚洲国产精品一区二区三区在线| 五月伊人婷婷丁香| 国产精品欧美亚洲77777| 能在线免费看毛片的网站| 免费黄色在线免费观看| 老熟女久久久| 欧美人与善性xxx| 在线看a的网站| 观看av在线不卡| 亚洲欧洲日产国产| 欧美日韩国产mv在线观看视频| 亚洲人与动物交配视频| 亚洲av不卡在线观看| 欧美激情 高清一区二区三区| 免费观看av网站的网址| 草草在线视频免费看| 国产黄片视频在线免费观看| 久久人人爽人人片av| 美女中出高潮动态图| 五月开心婷婷网| 国产极品天堂在线| 日韩中文字幕视频在线看片| 免费观看无遮挡的男女| 国产精品国产三级国产专区5o| 亚洲av成人精品一区久久| 国产在线免费精品| 天天操日日干夜夜撸| 美女国产视频在线观看| 久久久久久久精品精品| 日韩 亚洲 欧美在线| 亚洲国产精品国产精品| 一个人看视频在线观看www免费| 婷婷色麻豆天堂久久| 亚洲av福利一区| 99九九在线精品视频| 人妻少妇偷人精品九色| 少妇精品久久久久久久| 国产午夜精品一二区理论片| 五月开心婷婷网| 在线观看免费日韩欧美大片 | 中文字幕免费在线视频6| 亚洲精华国产精华液的使用体验| 亚洲av日韩在线播放| 99久久中文字幕三级久久日本| 国产高清有码在线观看视频| 久久精品国产亚洲网站| 一级毛片aaaaaa免费看小| 国产成人精品久久久久久| 日韩不卡一区二区三区视频在线| 天堂8中文在线网| 狂野欧美激情性bbbbbb| 美女中出高潮动态图| 五月天丁香电影| 欧美成人午夜免费资源| 国产毛片在线视频| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| 美女xxoo啪啪120秒动态图| 一级黄片播放器| 99re6热这里在线精品视频| 一区二区av电影网| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品| 插逼视频在线观看| 国产伦精品一区二区三区视频9| 亚洲,一卡二卡三卡| 久热久热在线精品观看| 久久亚洲国产成人精品v| 一级,二级,三级黄色视频| 各种免费的搞黄视频| 美女福利国产在线| 晚上一个人看的免费电影| 精品一品国产午夜福利视频| 在线天堂最新版资源| 少妇人妻 视频| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 两个人的视频大全免费| 亚州av有码| av电影中文网址| 99热这里只有精品一区| 黄色配什么色好看| 观看av在线不卡| 校园人妻丝袜中文字幕| 日本黄色片子视频| 欧美老熟妇乱子伦牲交| 亚洲精品视频女| 日韩强制内射视频| 日韩 亚洲 欧美在线| 秋霞伦理黄片| 国产精品 国内视频| 一级片'在线观看视频| 国产精品久久久久成人av| 精品亚洲成国产av| 久久久久久久久久久免费av| 日韩中字成人| 亚洲,一卡二卡三卡| 欧美 日韩 精品 国产| 午夜免费男女啪啪视频观看| 伊人亚洲综合成人网| 一边亲一边摸免费视频| 国产老妇伦熟女老妇高清| 少妇精品久久久久久久| 欧美三级亚洲精品| 亚洲综合色惰| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| 久久久久国产网址| 免费观看a级毛片全部| 成人影院久久| 在线免费观看不下载黄p国产| 热99久久久久精品小说推荐| 亚洲精品视频女| 青青草视频在线视频观看| 欧美亚洲日本最大视频资源| 99国产精品免费福利视频| 欧美精品一区二区免费开放| 人人澡人人妻人| 如何舔出高潮| 五月开心婷婷网| 一区二区av电影网| 国产在视频线精品| 在线观看一区二区三区激情| 日本免费在线观看一区| 国产精品人妻久久久影院| 一本一本综合久久| 久久国产精品男人的天堂亚洲 | 国产白丝娇喘喷水9色精品| 九九久久精品国产亚洲av麻豆| 成人无遮挡网站| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 国产精品嫩草影院av在线观看| 精品一区二区三卡| 亚洲精品aⅴ在线观看| 亚洲欧洲日产国产| 国产日韩欧美视频二区| 亚洲性久久影院| 成人国产麻豆网| 大香蕉97超碰在线| 人妻 亚洲 视频| 国产 一区精品| 18禁在线无遮挡免费观看视频| 91成人精品电影| 制服丝袜香蕉在线| 国产精品免费大片| 久久人人爽人人片av| 不卡视频在线观看欧美| 国产一区二区在线观看av| 亚洲av免费高清在线观看| 日韩精品免费视频一区二区三区 | 国产在线视频一区二区| 日韩制服骚丝袜av| 99九九线精品视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 男女无遮挡免费网站观看| 国产在线免费精品| 亚洲精品乱久久久久久| 最近的中文字幕免费完整| 久久久久久久久久成人| 日韩制服骚丝袜av| 女性被躁到高潮视频| 国产午夜精品一二区理论片| 成人黄色视频免费在线看| 亚洲婷婷狠狠爱综合网| 成人综合一区亚洲| 亚洲av中文av极速乱| 91在线精品国自产拍蜜月| 日本91视频免费播放| 成人毛片a级毛片在线播放| 久久人人爽av亚洲精品天堂| 欧美日韩亚洲高清精品| 一级毛片黄色毛片免费观看视频| 日本猛色少妇xxxxx猛交久久| 丰满饥渴人妻一区二区三| 久久久久久久久久久免费av| 亚洲精品色激情综合| 亚洲人与动物交配视频| 欧美日本中文国产一区发布| 久久久久久伊人网av| 国产精品99久久99久久久不卡 | 在线精品无人区一区二区三| 少妇人妻 视频| 男人爽女人下面视频在线观看| 人妻一区二区av| 日韩制服骚丝袜av| av女优亚洲男人天堂| 欧美激情国产日韩精品一区| 日本wwww免费看| 国产精品99久久99久久久不卡 | 全区人妻精品视频| 男女边吃奶边做爰视频| 婷婷成人精品国产| 黑丝袜美女国产一区| 啦啦啦在线观看免费高清www| 中文字幕制服av| 亚洲精品亚洲一区二区| 91精品伊人久久大香线蕉| 午夜免费观看性视频| 成人黄色视频免费在线看| 免费观看的影片在线观看| 麻豆成人av视频| 天天躁夜夜躁狠狠久久av| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲精品视频女| 欧美97在线视频| 老司机亚洲免费影院| 天堂俺去俺来也www色官网| 精品国产露脸久久av麻豆| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 久久毛片免费看一区二区三区| 国产熟女午夜一区二区三区 | 九草在线视频观看| 97超视频在线观看视频| 麻豆乱淫一区二区| 熟女电影av网| 久久人人爽av亚洲精品天堂| 久久久a久久爽久久v久久| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 精品一区二区三卡| 日本av免费视频播放| 人妻人人澡人人爽人人| 久久这里有精品视频免费| 亚洲色图 男人天堂 中文字幕 | 男女高潮啪啪啪动态图| 国产爽快片一区二区三区| 在线看a的网站| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 亚洲精品乱码久久久久久按摩| 丰满少妇做爰视频| 91精品一卡2卡3卡4卡| 欧美精品国产亚洲| 伊人久久国产一区二区| 国产精品 国内视频| 少妇猛男粗大的猛烈进出视频| 夜夜爽夜夜爽视频| 国产黄频视频在线观看| 夜夜骑夜夜射夜夜干| 欧美人与善性xxx| 成人国语在线视频| 亚洲精品成人av观看孕妇| 国产高清不卡午夜福利| 男女高潮啪啪啪动态图| 亚洲国产欧美日韩在线播放| 亚洲第一区二区三区不卡| 人人妻人人添人人爽欧美一区卜| 国产亚洲av片在线观看秒播厂| 国产精品国产三级专区第一集| 王馨瑶露胸无遮挡在线观看| 赤兔流量卡办理| 日韩不卡一区二区三区视频在线| 精品人妻熟女av久视频| 国产精品一区二区在线观看99| av天堂久久9| 亚洲国产精品国产精品| 久久99精品国语久久久| 最近手机中文字幕大全| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 欧美亚洲日本最大视频资源| 我的老师免费观看完整版| 亚洲高清免费不卡视频| 一区二区日韩欧美中文字幕 | 老司机影院毛片| 久久综合国产亚洲精品| 日韩视频在线欧美| 国产国语露脸激情在线看| 国产精品99久久99久久久不卡 | 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 99re6热这里在线精品视频| 大片电影免费在线观看免费| 有码 亚洲区| 精品一区二区三区视频在线| videosex国产| 国产精品女同一区二区软件| 日韩视频在线欧美| 国产国语露脸激情在线看| 久久精品国产亚洲网站| 午夜福利在线观看免费完整高清在| 亚洲精品av麻豆狂野| 免费看不卡的av| 大片电影免费在线观看免费| 蜜桃久久精品国产亚洲av| 午夜日本视频在线| 99久久精品国产国产毛片| 亚洲中文av在线| 国产综合精华液| av专区在线播放| 菩萨蛮人人尽说江南好唐韦庄| 日本黄色片子视频| 久久久久久久久久久久大奶| 最近手机中文字幕大全| 大香蕉久久网| 黑人欧美特级aaaaaa片| 亚洲丝袜综合中文字幕| 成人国语在线视频| 99久久人妻综合| 制服诱惑二区| 最近的中文字幕免费完整| 国产成人精品久久久久久| 好男人视频免费观看在线| 日本黄色日本黄色录像| 91久久精品国产一区二区三区| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 国产亚洲一区二区精品| 国产女主播在线喷水免费视频网站| 国模一区二区三区四区视频| 久久久久国产网址| 在线观看国产h片| 亚洲美女黄色视频免费看| 在线免费观看不下载黄p国产| 欧美xxⅹ黑人| 久久午夜福利片| 精品酒店卫生间| av天堂久久9| 午夜免费观看性视频| 777米奇影视久久| 一个人免费看片子| 九九久久精品国产亚洲av麻豆| 丝袜在线中文字幕| 亚洲精品亚洲一区二区| 热99国产精品久久久久久7| 99视频精品全部免费 在线| 久久国产亚洲av麻豆专区| 免费看光身美女| 成人漫画全彩无遮挡| 国产av一区二区精品久久| 啦啦啦在线观看免费高清www| 乱码一卡2卡4卡精品| 日韩不卡一区二区三区视频在线| 欧美亚洲日本最大视频资源| 2022亚洲国产成人精品| 热99国产精品久久久久久7| 插逼视频在线观看| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| 多毛熟女@视频| 成年女人在线观看亚洲视频| 国产男人的电影天堂91| 免费黄频网站在线观看国产| 美女国产视频在线观看| 久久久久久久久久久丰满| 日韩不卡一区二区三区视频在线| 国产精品99久久久久久久久| 青春草亚洲视频在线观看| 热99久久久久精品小说推荐| 欧美国产精品一级二级三级| 国产色婷婷99| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 色吧在线观看| 国产高清三级在线| 久久久久视频综合| 一级爰片在线观看| xxx大片免费视频| 国产色婷婷99| 一边亲一边摸免费视频| 美女中出高潮动态图| 精品久久蜜臀av无| 欧美一级a爱片免费观看看| 免费不卡的大黄色大毛片视频在线观看| av黄色大香蕉| 亚洲av男天堂| 中文字幕人妻熟人妻熟丝袜美| 亚洲综合色惰| av黄色大香蕉| 七月丁香在线播放| 97在线人人人人妻| 99久久中文字幕三级久久日本| 日本91视频免费播放| 亚洲精品乱久久久久久| 久久国产精品男人的天堂亚洲 | av免费在线看不卡| 精品人妻一区二区三区麻豆| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 日韩伦理黄色片| 黑人巨大精品欧美一区二区蜜桃 | 18禁裸乳无遮挡动漫免费视频| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| 国产一区有黄有色的免费视频| 国产男人的电影天堂91| 秋霞伦理黄片| 国产精品欧美亚洲77777| 欧美老熟妇乱子伦牲交| 国产成人av激情在线播放 | 精品国产乱码久久久久久小说| 亚洲图色成人| 七月丁香在线播放| 日韩视频在线欧美| av一本久久久久| 亚洲性久久影院| 国产av国产精品国产| 夫妻性生交免费视频一级片| 午夜91福利影院| 精品熟女少妇av免费看| a级毛片黄视频| 天天躁夜夜躁狠狠久久av| 少妇人妻精品综合一区二区| 欧美亚洲 丝袜 人妻 在线| 婷婷色av中文字幕| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 国产综合精华液| 九草在线视频观看| av国产久精品久网站免费入址| 国产熟女欧美一区二区| 国产精品嫩草影院av在线观看| 美女大奶头黄色视频| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 国产一级毛片在线| 国产精品秋霞免费鲁丝片| 十八禁高潮呻吟视频| 桃花免费在线播放| 美女中出高潮动态图| 国产亚洲最大av| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| 欧美最新免费一区二区三区| 春色校园在线视频观看| 国产成人精品无人区| 一边摸一边做爽爽视频免费| 成人黄色视频免费在线看| 九九爱精品视频在线观看| 日韩大片免费观看网站| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂| 久久久久久久久久久免费av| 我要看黄色一级片免费的| 男女边摸边吃奶| 欧美成人精品欧美一级黄| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 欧美精品国产亚洲| 亚洲性久久影院| 91精品伊人久久大香线蕉| 成人午夜精彩视频在线观看| 成人漫画全彩无遮挡| 伦理电影大哥的女人| 男男h啪啪无遮挡|