• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    胺功能化的銅催化劑:氫鍵介導(dǎo)的電化學(xué)CO2還原為C2產(chǎn)物以及優(yōu)越的可充電Zn-CO2電池性能

    2024-08-26 00:00:00項(xiàng)東李坤振苗康華龍冉熊宇杰康雄武
    物理化學(xué)學(xué)報(bào) 2024年8期
    關(guān)鍵詞:功能化氫鍵選擇性

    摘要:有機(jī)分子功能化是一種有前景的策略,用于調(diào)控電化學(xué)CO2還原反應(yīng)(eCO2RR)的C2+產(chǎn)物選擇性和活性。然而,我們對(duì)于電化學(xué)CO2還原調(diào)控機(jī)制的分子水平理解仍然不夠清晰。在本文中,我們成功制備了銅納米顆粒,并使用一系列胺類衍生物(如十六胺(HAD)、N-甲基十六胺(N-MHDA)、十六烷基二甲胺(HDDMA)和十六酰胺(PMM))對(duì)其進(jìn)行功能化,以系統(tǒng)地研究胺表面活性劑分子結(jié)構(gòu)對(duì)eCO2RR選擇性和活性的影響。結(jié)果表明,HDA的功能化可以將C2產(chǎn)物和C2H4的法拉第效率(FE)提高至73.5%和46.4%,并且在?0.9 V vs. RHE (可逆氫電極)電位下,C2產(chǎn)物的分電流密度為131.4mA?cm?2。理論研究發(fā)現(xiàn),HDA通過與CO2和eCO2RR中間體之間的氫鍵相互作用,富集了*CO2、*CO和其他反應(yīng)中間體,降低了CO―CHO耦合反應(yīng)的動(dòng)力學(xué)能壘,從而促進(jìn)了eCO2RR向C2產(chǎn)物的轉(zhuǎn)化。當(dāng)胺基的H原子被甲基取代后,氫鍵相互作用減弱,競(jìng)爭(zhēng)的析氫反應(yīng)加劇。PMM通過Cu―O鍵與Cu表面發(fā)生鍵合,而不是通過Cu―N鍵,導(dǎo)致Cu-PMM更傾向于產(chǎn)乙醇。原位拉曼光譜顯示,在Cu-HDA表面,CO主要吸附在Cu的頂位吸附位點(diǎn)上,與在Cu表面上的橋式吸附不同,這可能是因?yàn)榍罢弑砻鎸?duì)CO的富集引發(fā)了CO的吸附構(gòu)型變化。HDA功能化還提高了Cu催化劑的表面pH?;贑u-HDA組裝的可充電Zn-CO2電池在放電電流密度為16 mA?cm–2時(shí),最大功率密度為6.48 mW?cm–2,并具有長(zhǎng)達(dá)60 h的良好充放電穩(wěn)定性。本研究的重點(diǎn)在于通過在分子水平上調(diào)節(jié)Cu基材料的CO2RR活性和選擇性,促進(jìn)CO2-C2的轉(zhuǎn)化,這可能為提高C2產(chǎn)物的產(chǎn)率提供新的見解。

    關(guān)鍵詞:二氧化碳還原;CO―CHO耦合;有機(jī)分子功能化;原位拉曼;C2產(chǎn)物;Zn-CO2電池

    中圖分類號(hào):O646

    Abstract: The electrochemical carbon dioxide reduction reaction(eCO2RR) can convert CO2 into valuable chemicals, achieving a carboncycle. Copper-based catalysts have demonstrated a unique ability toproduce C2+ products in eCO2RR, which is often limited by the scalingrelationship of the reaction intermediates, complex reaction mechanismand competitive H2 evolution. Organic functionalization is a promisingstrategy for regulating the activity and selectivity of eCO2RR toward C2+products. However, the mechanism behind such regulation of eCO2RR,especially at the molecular level, remains elusive. In this study, Cunanoparticles were prepared and functionalized with a set of aminederivatives, including hexadecylamine (HDA), N-methylhexadecylamine (N-MHDA), hexadecyldimethylamine (HDDMA),and palmitamide (PMM). The impact of the molecular structure of the amine surfactants on the selectivity and activitytoward eCO2RR was systematically explored through both experiments and theoretical calculations. X-ray photoelectronspectroscopy and density functional theory calculations revealed that HDA functionalization of the Cu catalyst surfaceresulted in negative charge transfer from amine molecules to Cu. ECO2RR was examined in a 1.0 mol?L?1 KOH aqueouselectrolyte. HDA functionalization of the Cu catalyst achieved the highest Faradaic efficiency (FE) of 73.5% for C2 productsand 46.4% for C2H4, respectively. It also provided the highest C2 partial current density of 131.4 mA?cm?2 at ?0.9 V vs.reversible hydrogen electrode (RHE) among these amine derivatives functionalized Cu catalysts. In contrast, the highestFE and partial current density for C2 products achieved with pristine Cu catalysts were only 27.0% and 50.5 mA?cm?2,respectively. Theoretical studies demonstrated that hydrogen bonding interactions of HDA with CO2 and eCO2RRintermediates enriched CO2, CO, and other intermediates, lowered the kinetic energy barrier of CO―CHO coupling andthereby promoted eCO2RR to C2 products. Replacing the H atoms of the amine group with methyl groups in N-MHDA andHDDMA resulted in dominant hydrogen evolution reaction (HER) in eCO2RR. PMM bonding with the Cu surface througha Cu―O bond, instead of Cu―N bonding as in HDA, N-MHDA and HDDMA, resulted in preferred ethanol production. Insitu Raman spectroscopy indicated CO adsorption on Cu at atop sites for HDA-capped Cu catalysts, instead of bridge siteCO adsorption on clean Cu surfaces, possibly due to the enriched CO in the former case. HDA also increased the localpH relative to pristine Cu catalysts. The Cu-HDA-based rechargeable Zn-CO2 battery exhibited a superior maximum powerdensity of 6.48 mW?cm–2 at a discharge current density of 16 mA?cm–2 and remarkable rechargeable durability for 60 h,outperforming most of the reported catalysts in the literature. This work enhances CO2-C2 conversion by tuning theeCO2RR activity and selectivity of Cu-based materials, unravels the reaction mechanism at the molecular level, andprovides new insights for promoting C2 products in eCO2RR through surface functionalization with organic molecules.

    Key Words: CO2 reduction; CO―CHO coupling; Organic functionalization; In situ Raman; C2 product;Zn-CO2 battery

    1 Introduction

    eCO2RR) offers an opportunity to convert CO2 into valuablechemicals and fuels using renewable energies, providing a costeffectiveand environmentally friendly approach to addressingclimate change induced by fossil fuel-based industries 1–3. It hasgarnered considerable attention for its potential in renewableenergy conversion and storage, contributing to a carbon-neutralcycle 4–7. However, the highly complex mechanism of eCO2RR,involving multiple electron and proton transfers, leads to slowreaction kinetics and diverse reaction products 8–10. Additionally,eCO2RR also faces competition from the hydrogen evolutionreaction (HER), which hinders CO2 conversion efficiency andproduct selectivity 11–14. Therefore, it is crucial to developefficient and selective catalysts for eCO2RR and understand thefundamental mechanisms to fully exploit the potential of CO2 asa renewable resource.

    Copper (Cu)-based catalysts have generated significantinterest due to their ability to convert CO2 into hydrocarbons andoxygenates, such as ethylene, ethanol, and propanol 13,15,16.Numerous strategies have been adopted to improve the selectivity of C2+ products for Cu-based catalysts, such assurface doping 17,18, defect engineering 19,20, crystal facetregulation 21,22, alloying with other metals 7,18, modulating fieldeffect 23,24 and organic functionalization 25,26. Among thesestrategies, functionalization of Cu catalysts with organics canmediate the adsorption of reaction intermediates by regulatingthe environment of the catalyst surface 27, offering a means tomodulate the selectivity of eCO2RR 26,28. Moreover, thehydrophobicity conferred by organic molecules, which can beregulated by the alkyl chain length, inhibits the HER competitionand benefits in the sealing and accumulation of gas-phasereactants, such as CO2 and CO, thus favoring the eCO2RR to C2products 29,30. Therefore, surface functionalization of metalcatalysts with organics holds significant prospects towardseCO2RR.

    Amino derivatives, which can interact with CO2 throughLewis acid-base pairs and bond with eCO2RR intermediatesthrough hydrogen bonding interactions, have been used for CO2capture 31,32 and regulation of activity and selectivity of eCO2RRtowards C2 products 33. In previous studies, thick polyanilinefilm was coated on copper surfaces, significantly improving the selectivity of C2+ products on polycrystalline copper 34. In suchcases, the impact of the bonding interaction between such aminesurfactants with Cu substrate on the activity and selectivity ofeCO2RR was largely ignored. Additionally, most of the aminefunctional groups are far away from the Cu surface and theeCO2RR intermediates on the Cu surface. Thus, the underlyingmechanism for selective production of C2 products at themolecular level remains elusive.

    Herein, copper nanoparticles (Cu NPs) were functionalizedwith hexadecylamine (HDA), N-methylhexadecylamine (NMHDA),hexadecyldimethylamine (HDDMA), and palmitamide(PMM), respectively, to systematically explore the impact of theperturbation of the molecular structure of the amine surfactantson the selectivity and activity of eCO2RR towards C2 products.DFT calculations and in situ Raman spectroscopy wereperformed to unravel the eCO2RR mechanism and the structureactivityrelationship at the molecular level.

    2 Results and discussion

    The synthetic process and surface functionalization of coppernanoparticles (Cu NPs) are depicted in Fig. 1a and elaborated inthe Experimental section (Supporting Information). Themolecular structures of HDA, PMM, N-MHDA, and HDMA canbe found in Fig. S1 (Supporting Information). The morphologyof Cu-HDA was characterized using transmission electronmicroscopy (TEM). As shown in Fig. 1b–d, Cu-HDA exhibitsclear nanoparticle morphology with a size of 61.1 ± 2.3 nm, and the lattice fringe with a lattice spacing of 0.208 nm can bedistinctly observed, corresponding to the (111) plane of metallicCu. Fig. S2 displays the X-ray diffraction (XRD) pattern withpeaks located at 43.3°, 50.4°, and 74.1°, clearly indicatingdiffraction from (111), (200), and (220) planes of Cu (PDF 04-0836). After functionalization with HDA, the diffraction peaksof Cu NPs remain unchanged.

    X-ray photoelectron spectroscopy (XPS) was employed toinvestigate the surface composition and chemical state of CuNPs before and after surface functionalization with HDA. In thehigh-resolution Cu 2p XPS spectrum of Cu NPs (Fig. 1e), thetwo peaks observed at 932.1 and 951.9 eV originate from Cu2p3/2 and Cu 2p1/2 of Cu0/+1 35, while the peaks at 933.9 and 953.7eV are assigned to Cu 2p3/2 and Cu 2p1/2 of Cu2+. The peaks ataround 941.5 and 943.5 eV represent satellites peaks of Cu2+.Following functionalization with HDA, a negative shift of 0.2eV is observed for Cu 2p peaks, indicating electron transfer fromHDA to Cu NPs. As illustrated in the Cu Auger LMM spectra(Fig. 1f), the peaks at 568.0 and 568.9 eV can be attributed toCu0 and Cu2+ as the main oxidation states, respectively. Both theXPS and Auger LMM spectra of Cu reveal that surfacefunctionalization with HDA leads to an increased content of Cu0relative to Cu2+. Furthermore, the presence of N is confirmed bythe N 1s peak (Fig. 1g), confirming the successfulimmobilization of HDA on Cu. The binding energy of N 1s is399.7 eV, slightly higher than that of pristine amine (398.8 eV)due to the bonding interaction with Cu 36. Similar results are observed for Cu-PMM (Fig. S3a–c).

    The electrochemical performance of eCO2RR on theprepared catalysts was assessed through constant potentialelectrolysis in a flow cell reactor employing a 1.0 mol?L?1 KOHelectrolyte, as illustrated in Fig. 2 and detailed in Tables S1–S3(Supporting Information). It is evident that HDAfunctionalization can effectively suppress the HER whilepromoting ethylene production in eCO2RR. The Faradaicefficiency (FE) of C2 products on Cu-HDA increases to 73.5%at ?0.9 V vs. reversible hydrogen electrode (RHE), with FEs of46.4% for C2H4, 21.0% for C2H5OH, and 6.1% for CH3COOH,respectively. Interestingly, the Cu-PMM electrode exhibits FEof 49.6% for C2 products, which is mainly C2H5OH, with FE of28.1% at ?1.0 V vs. RHE. Both HDA and PMMfunctionalization display a positive effect in promoting theformation of C2 products, resulting in increased total currentdensity, partial current density, and FE of C2 products (Fig. 2d–f). The total and partial current densities for C2 products reach179.5 and 131.4 mA?cm?2 at ?0.9 V vs. RHE. Tafel slopes forC2H4 and C2H5OH on Cu NPs, Cu-HDA, and Cu-PMM areshown in Fig. 2g,h. In C2H4 production, Cu-HDA exhibits aTafel slope of 743.7 mV?dec?1, significantly lower than that ofCu NPs and Cu-PMM, indicating a fast kinetic for C2H4formation in eCO2RR. Regarding ethanol production, Cu-PMMdemonstrates the lowest Tafel slope of 784.7 mV?dec?1,signifying a preference for ethanol production with PMMdecoration. Cu-HDA maintains stability for over 12 h at ?0.9 Vvs. RHE in 1.0 mol?L?1 KOH (Fig. 2i), and the originalmorphology of Cu-HDA remains well-preserved after eCO2RRelectrolysis, as shown in Fig. S4, indicating its high stabilityunder the harsh electrochemical condition during eCO2RR.

    It is speculated that the hydrogen bonding interactionbetween eCO2RR intermediates and hydrogen atoms in aminegroups may stabilize the reaction intermediates andconsequently regulate products selectivity. Thus, replacinghydrogen atoms of the amine group in HDA may suppresseCO2RR towards C2 products. As shown in Fig. S5a,b anddetailed in Tables S4, S5, Cu NPs were coated with N-MHDAand HDDMA, where one and two hydrogen atoms in aminegroups were replaced by methyl groups, respectively. Theelimination of hydrogen bonding interaction between aminesurfactants and eCO2RR intermediates results in only HER,underscoring the significance of hydrogen bonding in mediatingeCO2RR. Carbon monoxide is considered a significant intermediate of C2 products in eCO2RR. As demonstrated in Fig.S6 and detailed in Tables S6, S7, the FE of C2 products ineCORR is slightly higher than that in eCO2RR, where COconcentration is much higher in CORR than in eCO2RR,indicating that CO coverage on Cu-HDA in eCO2RR is close tooptimal for C―C coupling already. Additionally, the increasedFE for C2H4 further corroborates that HDA functionalization isbeneficial for C2H4 formation.

    To investigate the interfacial hydrophilic characteristics,contact angle measurements were conducted on Cu and thesefunctionalized surfaces. Cu-HDA and Cu-PMM electrodesexhibits contact angles of 125.5° and 120.2°, respectively, whichare more hydrophobic than Cu NPs (102.5°). Thishydrophobicity can be beneficial in suppressing the HER ineCO2RR (Fig. S7).

    To assess the intrinsic eCO2RR performance of the aminefunctionalizedCu catalysts, the electrochemically active surfacearea (ECSA) was evaluated by underpotential deposition of Pb(Pb UPD) using cyclic voltammetry (Fig. S8 and Table S8).Compared to Cu NPs, the ECSA of Cu-HDA and Cu-PMMelectrodes decreased by 10% due to the coverage of organicligands. However, the current density of amine-coated Cucatalysts exhibits enhanced performance compared to pristineCu catalysts, indicating that the amine coating enhances thecatalytic activity of eCO2RR. As shown in Fig. S9 and detailedin Tables S9–S12, the FEC2 was significantly influenced by theHDA loading, achieving the maximum at a loading of 0.01mmol.

    DFT calculations were conducted to explore the modulatedeCO2RR mechanism by amine surfactants at the molecular level.Propylamine was employed to equivalently simulate the HDAmolecule on the Cu (111) surface to maintain high computationalefficiency without changing the main characteristics ofsurfactants (Figs. S10–S16 and Tables S13, S14). As shown inFig. 3a, the formation energy of *COOH from CO2 on Cu (111)-HDA is 1.10 eV, which is lower than that on the bare Cu (111)surface (1.25 eV). This suggests that the formation of *COOHon Cu (111)-HDA is thermodynamically favored due tohydrogen bonding with amine, which may improve CO coverageon the Cu surface. CO adsorption (Fig. 3b) on Cu is enhanced by HDA due to hydrogen bonding. Both the increased CO coverageand CO adsorption are conducive to the subsequent C ― Ccoupling reaction.

    The C―C coupling for the formation of C2 products canproceed through either the CO―CO or CO―CHO couplingpathway. The formation energy for the CO―CO intermediate onCu (111)-HDA is 1.43 eV, while it is 1.61 eV (Fig. S17a) on Cu(111). These values are much higher than that of CO―CHO(Fig. 3b), indicating a preference for the C ― C couplingmechanism via CO―CHO. To further explore the impact ofHDA on the coupling of CO―CHO, the transition states werealso investigated and are shown in Fig. 3b. The energy barrierfor CO―CHO coupling on Cu (111)-HDA (0.87 eV) is 0.23 eVlower than on Cu (111) (1.10 eV), suggesting that surfacefunctionalization with HDA kinetically promotes CO―CHOcoupling on Cu for the formation of C2 products.

    According to previous reports, ethylene and ethanol share acommon *CHCOH intermediate, which can be reduced to *CCHand *CHCHOH, the intermediates of C2H4 and C2H5OH,respectively 37. As shown in Fig. 3c, the lower free energy of theintermediates for C2H4 formation compared to Cu (111) suggeststhat C2H4 production is favorable on Cu (111)-HDA.Additionally, in Fig. S17b, the lower free energy of *CCH2 (0.12eV) compared to *CH3CHOH (0.17 eV), which are theintermediates of C2H4 and C2H5OH on Cu (111)-HDA,respectively, suggesting that C2H4 formation is energeticallyfavored on Cu (111)-HDA. The formation energy of*CH3CHOH is also lower than that on Cu (111) (0.39 eV), asshown in Fig. S17c, which enhances C2H5OH formation.Furthermore, the projected density of states (PDOS) for E ? Ef =?6.9 eV of *CO-adsorbed Cu (111)-HDA indicates stronger COadsorption compared to Cu (111) (E ? Ef = ?7.1 eV) and furtherbenefits the CO―CHO coupling reaction (Fig. S17d–e) 38. Thed-bands of metal hybridize with the σ-orbital of intermediates toform d―σ bonds. The shift of PDOS towards the Fermi levelindicates decreased electron occupation of the anti-bondingorbitals, thus strengthening the adsorption of CO on metalcatalysts 15.

    The interaction between HDA and Cu occurs through N―Cubonds, and the hydrogen atoms of ―NH2 in HDA interact with*CO2 and key oxygenated intermediates (*COOH, *CO, *CHO,and *OCCHO), contributing to enhanced CO coverage andCO―CHO coupling to improve C2 production (Fig. 3d–m). Incontrast, PMM adsorbs on Cu through Cu―O bonds, and nohydrogen bonding between the hydrogen atom in the aminegroup and eCO2RR intermediates was observed in DFTcalculations. Only the nitrogen of ―NH2 forms hydrogen bondswith the key intermediate of ethanol (*CHCHOH), thusstabilizing the ethanol intermediates and improving ethanolselectivity. This is consistent with the electrochemicalcharacterization results (Fig. S18a–f). Furthermore, Badercharge analysis (Fig. S18a,b) indicates electron transfer fromHDA to Cu. At the same time, charge transfer from the Cusurface to *CO and *CHO also facilitates CO―CHO couplingon Cu (111)-HDA (Fig. S19c,d) 39,40. Theoretical calculationresults reveal that HDA on the Cu surface exhibits enhancedinteraction with CO2 and eCO2RR intermediates throughhydrogen bonding, improving CO coverage and CO―CHOcoupling, thus promoting the formation of C2 products.Additionally, the electron-donating property of HDA withintermediates also plays a vital role in regulating the selectivityof eCO2RR products.

    In situ Raman spectroscopy was employed to further identifythe reaction intermediates and explore the reaction mechanismof HDA-mediated eCO2RR. Fig. 4a–c presents the potentialdependentin situ Raman spectra of eCO2RR on Cu NPs, Cu-PMM, and Cu-HDA acquired at the potential window between?0.8 and ?1.2 V (vs. RHE) and open circuit potential (OCP). ForCu NPs (Fig. 4a), there is a weak vibration of CO adsorption onthe bridge sites (COb) and the characteristic vibration of*COCHO (2660 cm?1), which is generally regarded as a keyintermediate involved in the dimerization process and starts toappear at ?1.1 V (vs. RHE) 19. As shown in Fig. 4b, PMMfunctionalizedCu exhibits a more intense signal of *COCHOand COb, and the characteristic vibration appears at a morepositive potential (?0.9 V vs. RHE), suggesting acceleratedCO?CHO coupling and enhanced C2 production. For the Cu-HDA electrode, the signal at 2080 cm?1 is attributed to adsorbedCO at atop sites (COa) (Fig. 4c). According to a previous report,COa dominates when CO coverage is high, which is beneficialfor C―C coupling 41 and enhances the selectivity of C2 productson Cu-HDA. The directly observed broad vibration peak at 2890 cm?1 can be attributed to the CHx group of C2H4, which isconsistent with the C2 products distribution in theelectrochemical characterization of eCO2RR 42,43.

    Additionally, the peaks at 1060 and 1350 cm?1 at open-circuitpotential (OCP) and the peak at 1600 cm?1 at the appliedpotentials were clearly observed, which are associated with thestretching of CO3 2?, HCO3? and H2O on the catalyst surface 26,44,45.The vibration intensity of HCO3? was barely observed, and onlyan intense vibration peak from CO3 2? was observed on Cu-HDA.In contrast, only an intense peak of HCO3? was observed for Cuand Cu-PMM, indicating a much increased local pH for Cu-HDA, thus promoting the production of C2 products 46,47.Moreover, the intensity of the Cu―OH vibration peak at 530cm?1 is basically stable for Cu-HDA and Cu-PMM, which alsoshows the effect of amino groups on stabilizing surface pH 48.These in situ Raman spectroscopy results reveal that HDAfunctionalizationleads to higher COa coverage and the increasedstable local pH, which accelerates the formation of C2 productsvia CO―CHO dimerization.

    The schematic of the aqueous rechargeable Zn-CO2electrochemical cell was carried out employing 1.0 mol?L?1 KOH and 6.0 mol?L?1 KOH with 0.2 mol?L?1 Zn (CH3COO)2 asthe cathodic and anodic electrolyte, respectively (Fig. 5a). Thedischarge polarization curve and corresponding power density ofCu-HDA exhibit a maximum power density of 6.48 mW?cm?2 ata discharge current density of 16.0 mA?cm?2, as shown in Fig.5b, which is much superior to most reported rechargeable Zn-CO2 batteries (Fig. 5c 49–57 and Table S15). The correspondinghigh C2H4 and C2H5OH production displayed in Fig. 5d suggestthe dominance of CO2-to-C2 products conversion during thebattery discharge. Furthermore, the discharge-charge cyclabilitycan continuously operate for 60 h under 5 mA?cm?2, identifyinga remarkable rechargeable durability of the Cu-HDA-based Zn-CO2 battery, as displayed in Fig. 5e. The superior performanceto Cu NPs (Fig. S20) for rechargeable Zn-CO2 batterieshighlights the significance of HDA-functionalization foreCO2RR.

    3 Conclusions

    In this study, Cu NPs were successfully prepared and surfacefunctionalized.Cu-HDA exhibited an FEC2 of 73.5% andprovided a high C2 partial current density of 131.4 mA?cm?2 at ?0.9 V vs. RHE. Theoretical investigations revealed that HDAfunctionalization not only improved surface CO coverage andreduced the reaction energy barrier for CO―CHO coupling, butalso promoted C2H4 production. Additionally, the interfacialelectronic effect benefited the CO―CHO coupling mechanism,and hydrogen bonds between key intermediates and ―NH2were identified at the molecular level by precisely tuning of themolecular structure of the surface-functionalized amino groups,thus improving the selectivity for C2 products. In situ Ramanspectroscopy provided evidence of the increased COa coverageand higher local pH on Cu-HDA, which enhances the C2products production. The Cu-HDA-based rechargeable Zn-CO2battery exhibited superior maximum power density andremarkable rechargeable durability.

    Author Contributions: Conceptualization, Dong Xiang andXiongwu Kang; Methodology, Dong Xiang; Software, KunzhenLi; Validation, Kanghua Miao, Kunzhen Li and Dong Xiang;Formal Analysis, Dong Xiang and Xiongwu Kang;Investigation, Dong Xiang; Resources, Xiongwu Kang, RanLong and Yujie Xiong; Data Curation, Dong Xiang; Writing –Original Draft Preparation, Dong Xiang; Writing – Review amp;Editing, Xiongwu Kang; Visualization, Dong Xiang;Supervision, Xiongwu Kang; Project Administration, XiongwuKang; Funding Acquisition, Xiongwu Kang.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; MacDowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575,87. doi: 10.1038/s41586-019-1681-6

    (2) McGinnis, R. Joule 2020, 4, 509. doi: 10.1016/j.joule.2020.01.002

    (3) Wang, J.; Zou, J.; Hu, X.; Ning, S.; Wang, X.; Kang, X.; Chen, S.J. Mater. Chem. A 2019, 7, 27514. doi: 10.1039/c9ta11140a

    (4) Chen, K.; Cao, M.; Ni, G.; Chen, S.; Liao, H.; Zhu, L.; Li, H.; Fu, J.;Hu, J.; Cortés, E.; et al. Appl. Catal. B 2022, 306, 121093.doi: 10.1016/j.apcatb.2022.121093

    (5) Chen, K.; Cao, M.; Lin, Y.; Fu, J.; Liao, H.; Zhou, Y.; Li, H.; Qiu, X.;Hu, J.; Zheng, X.; et al. Adv. Funct. Mater. 2021, 32, 2111322.doi: 10.1002/adfm.202111322

    (6) Peng, C.; Yang, S.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J.; Chen,Y.; Li, W.; Wang, Z.; Sham, T K.; et al. Adv. Mater. 2022, 34,e2204476. Doi: 10.1002/adma.202204476

    (7) Xiang, D.; Li, K.; Li, M.; Long, R.; Xiong, Y.; Yakhvarov, D.; Kang,X. Mater. Today Phys. 2023, 33, 101045.doi: 10.1016/j.mtphys.2023.101045

    (8) Wang, H. Nano Res. 2021, 15, 2834. doi: 10.1007/s12274-021-3984-9

    (9) Zang, D.; Gao, X. J.; Li, L.; Wei, Y.; Wang, H. Nano Res. 2022, 15,8872. doi: 10.1007/s12274-022-4698-3

    (10) Wang, Q.; Liu, K.; Hu, K.; Cai, C.; Li, H.; Li, H.; Herran, M.; Lu, Y.-R.; Chan, T.-S.; Ma, C.; et al. Nat. Commun. 2022, 13, 6082.doi: 10.1038/s41467-022-33692-0

    (11) Chen, S.; Li, X.; Kao, C. W.; Luo, T.; Chen, K.; Fu, J.; Ma, C.; Li, H.;Li, M.; Chan, T. S.; et al. Angew. Chem. Int. Ed. 2022, 61,e202206233. doi: 10.1002/anie.202206233

    (12) Wang, J.; Ning, S.; Luo, M.; Xiang, D.; Chen, W.; Kang, X.; Jiang,Z.; Chen, S. Appl. Catal. B 2021, 288, 119979.doi: 10.1016/j.apcatb.2021.119979

    (13) Han, L.; Tian, B.; Gao, X.; Zhong, Y.; Wang, S.; Song, S.; Wang, Z.;Zhang, Y.; Kuang, Y.; Sun, X. SmartMat 2022, 3, 142.doi: 10.1002/smm2.1082

    (14) Wang, Q.; Liu, K.; Fu, J.; Cai, C.; Li, H.; Long, Y.; Chen, S.; Liu, B.;Li, H.; Li, W.; et al. Angew. Chem. Int. Ed. 2021, 60, 25241.doi: 10.1002/anie.202109329

    (15) Wang, Y.; Liu, J.; Zheng, G. Adv. Mater. 2021, 33, e2005798.doi: 10.1002/adma.202005798

    (16) Yang, D.; Wang, X. SmartMat 2022, 3, 54. doi: 10.1002/smm2.1102

    (17) Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.;Li, J.; Wang, Z.; Xie, H.; et al. Nat. Chem. 2018, 10, 974.doi: 10.1038/s41557-018-0092-x

    (18) Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen,B.; Li, J.; Li, F.; de Arquer, F. P. G.; et al. J. Am. Chem. Soc. 2019,141, 8584. doi: 10.1021/jacs.9b02945

    (19) He, C.; Duan, D.; Low, J.; Bai, Y.; Jiang, Y.; Wang, X.; Chen, S.;Long, R.; Song, L.; Xiong, Y. Nano Res. 2023, 16, 4494.doi: 10.1007/s12274-021-3532-7

    (20) Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Joule 2018, 2, 2551.doi: 10.1016/j.joule.2018.09.021

    (21) Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.;Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Proc.Natl. Acad. Sci. 2017, 114, 5918. doi: 10.1073/pnas.1618935114

    (22) Zhu, C.; Zhang, Z.; Zhong, L.; Zhao, S.; Shi, G.; Wu, B.; Gu, H.;Wu, J.; Gao, X.; Liu, K.; et al. J. Energy Chem. 2022, 70, 382.doi: 10.1016/j.jechem.2022.02.027

    (23) Zhou, Y.; Liang, Y.; Fu, J.; Liu, K.; Chen, Q.; Wang, X.; Li, H.;Zhu, L.; Hu, J.; Pan, H.; et al. Nano Lett. 2022, 22, 1963.doi: 10.1021/acs.nanolett.1c04653

    (24) Yang, B.; Liu, K.; Li, H.; Liu, C.; Fu, J.; Li, H.; Huang, J. E.; Ou, P.;Alkayyali, T.; Cai, C.; et al. J. Am. Chem. Soc. 2022, 144, 3039.doi: 10.1021/jacs.1c11253

    (25) Li, F.; Thevenon, A.; Rosas-Hernandez, A.; Wang, Z.; Li, Y.;Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al.Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2

    (26) Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.;Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.;Gewirth, A. A. Nat. Catal. 2020, 4, 20.doi: 10.1038/s41929-020-00547-0

    (27) Lin, J.; Zhou, Y.; Wen, J.; Si, W.; Gao, H.; Wang, G.; Kang, X.J. Energy Chem. 2022, 75, 164. doi: 10.1016/j.jechem.2022.08.014

    (28) Li, F.; Li, Y. C.; Wang, Z.; Li, J.; Nam, D.-H.; Lum, Y.; Luo, M.;Wang, X.; Ozden, A.; Hung, S.-F.; et al. Nat. Catal. 2019, 3, 75.doi: 10.1038/s41929-019-0383-7

    (29) Checco, A.; Hofmann, T.; DiMasi, E.; Black, C. T.; Ocko, B. M.Nano Lett. 2010, 10, 1354. doi: 10.1021/nl9042246

    (30) Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.;Marcus, P.; Fontecave, M.; Mougel, V. Nat. Mater. 2019, 18, 1222.doi: 10.1038/s41563-019-0445-x

    (31) Xie, M. S.; Xia, B. Y.; Li, Y.; Yan, Y.; Yang, Y.; Sun, Q.; Chan, S. H.;Fisher, A.; Wang, X. Energy Environ. Sci. 2016, 9, 1687.doi: 10.1039/c5ee03694a

    (32) Zhao, H.; Hu, J.; Wang, J.; Zhou, L.; Liu, H. Acta Phys. -Chim. Sin.2007, 23, 801. [趙會(huì)玲, 胡軍, 汪建軍, 周麗繪, 劉洪來(lái). 物理化學(xué)學(xué)報(bào), 2007, 23, 801.] doi: 10.1016/S1872-1508(07)60046-1

    (33) Zhao, Y.; Wang, C.; Liu, Y.; MacFarlane, D. R.; Wallace, G. G. Adv.Energy Mater. 2018, 8, 1801400. doi: 10.1002/aenm.201801400

    (34) Wei, X.; Yin, Z.; Lyu, K.; Li, Z.; Gong, J.; Wang, G.; Xiao, L.; Lu, J.;Zhuang, L. ACS Catal. 2020, 10, 4103.doi: 10.1021/acscatal.0c00049

    (35) Lyu, Z.; Zhu, S.; Xie, M.; Zhang, Y.; Chen, Z.; Chen, R.; Tian, M.;Chi, M.; Shao, M.; Xia, Y. Angew. Chem. Int. Ed. 2021, 60, 1909. doi:10.1002/anie.202011956

    (36) Xie, Y.; Chen, Y. J. Mater. Sci. 2021, 56, 10135.doi: 10.1007/s10853-021-05920-3

    (37) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.;Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al.Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705

    (38) Kim, J.-Y.; Hong, D.; Lee, J.-C.; Kim, H. G.; Lee, S.; Shin, S.; Kim,B.; Lee, H.; Kim, M.; Oh, J.; et al. Nat. Commun. 2021, 12, 3765.doi: 10.1038/s41467-021-24105-9

    (39) Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019,10, 1754. doi: 10.1021/acscatal.9b04746

    (40) Li, H.; Li, Y.; Koper, M. T. M.; Calle-Vallejo, F. J. Am. Chem. Soc.2014, 136, 15694. doi: 10.1021/ja508649p

    (41) Kong, X.; Zhao, J.; Ke, J.; Wang, C.; Li, S.; Si, R.; Liu, B.; Zeng, J.;Geng, Z. Nano Lett. 2022, 22, 3801. doi: 10.1021/acs.nanolett.2c00945

    (42) Gao, J.; Zhang, H.; Guo, X.; Luo, J.; Zakeeruddin, S. M.; Ren, D.;Gratzel, M. J. Am. Chem. Soc. 2019, 141, 18704.doi: 10.1021/jacs.9b07415

    (43) Pan, Z.; Wang, K.; Ye, K.; Wang, Y.; Su, H.-Y.; Hu, B.; Xiao, J.;Yu, T.; Wang, Y.; Song, S. ACS Catal. 2020, 10, 3871.doi: 10.1021/acscatal.9b05115

    (44) Moradzaman, M.; Mul, G. ChemElectroChem 2021, 8, 1478.doi: 10.1002/celc.202001598

    (45) Zhang, G.; Zhao, Z. J.; Cheng, D.; Li, H.; Yu, J.; Wang, Q.; Gao, H.;Guo, J.; Wang, H.; Ozin, G. A.; et al. Nat. Commun. 2021, 12, 5745.doi: 10.1038/s41467-021-26053-w

    (46) Zhang, Z.; Melo, L.; Jansonius, R. P.; Habibzadeh, F.; Grant, E. R.;Berlinguette, C. P. ACS Energy Lett. 2020, 5, 3101.doi: 10.1021/acsenergylett.0c01606

    (47) Zhu, S.; Jiang, B.; Cai, W. B.; Shao, M. J. Am. Chem. Soc. 2017, 139,15664. doi: 10.1021/jacs.7b10462

    (48) Jiang, S.; Klingan, K.; Pasquini, C.; Dau, H. J. Chem. Phys. 2019,150, 041718. doi: 10.1063/1.5054109

    (49) Kaur, S.; Kumar, M.; Gupta, D.; Mohanty, P. P.; Das, T.; Chakraborty,S.; Ahuja, R.; Nagaiah, T. C. Nano Energy 2023, 109, 108242.doi: 10.1016/j.nanoen.2023.108242

    (50) Gong, S.; Wang, W.; Zhang, C.; Zhu, M.; Lu, R.; Ye, J.; Yang, H.;Wu, C.; Liu, J.; Rao, D.; et al. Adv. Funct. Mater. 2022, 32, 2110649.doi: 10.1002/adfm.202110649

    (51) Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, S.Adv. Mater. 2021, 33, e2003238. doi: 10.1002/adma.202003238

    (52) Wang, F.; Wang, G.; Deng, P.; Chen, Y.; Li, J.; Wu, D.; Wang, Z.;Wang, C.; Hua, Y.; Tian, X. Small 2023, 19, e2301128.doi: 10.1002/smll.202301128

    (53) Zeng, Z.; Gan, L. Y.; Bin Yang, H.; Su, X.; Gao, J.; Liu, W.;Matsumoto, H.; Gong, J.; Zhang, J.; Cai, W.; et al. Nat. Commun.2021, 12, 4088. doi: 10.1038/s41467-021-24052-5

    (54) Zheng, W.; Wang, Y.; Shuai, L.; Wang, X.; He, F.; Lei, C.; Li, Z.;Yang, B.; Lei, L.; Yuan, C.; et al. Adv. Funct. Mater. 2021, 31,2008146. doi: 10.1002/adfm.202008146

    (55) Li, J.; Chen, L.-W.; Hao, Y.-C.; Yuan, M.; Lv, J.; Dong, A.; Li, S.; Gu,H.; Yin, A.-X.; Chen, W.; et al. Chem. Eng. J. 2023, 461, 141865.doi: 10.1016/j.cej.2023.141865

    (56) Xu, A.; Chen, X.; Wei, D.; Chu, B.; Yu, M.; Yin, X.; Xu, J. Small2023, 19, 2302253. doi: 10.1002/smll.202302253

    (57) Gao, S.; Jin, M.; Sun, J.; Liu, X.; Zhang, S.; Li, H.; Luo, J.; Sun, X.J. Mater. Chem. A 2021, 9, 21024. doi: 10.1039/D1TA04360A

    國(guó)家自然科學(xué)基金(U2032151, 21725102, 91961106)資助項(xiàng)目

    猜你喜歡
    功能化氫鍵選擇性
    教材和高考中的氫鍵
    Keys
    選擇性聽力
    石墨烯及其功能化復(fù)合材料制備研究
    選擇性應(yīng)用固定物治療浮膝損傷的療效分析
    選擇性執(zhí)法的成因及對(duì)策
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    功能化三聯(lián)吡啶衍生物的合成及其對(duì)Fe2+識(shí)別研究
    銥(Ⅲ)卟啉β-羥乙與基醛的碳?xì)滏I活化
    石墨烯的制備、功能化及在化學(xué)中的應(yīng)用
    河南科技(2014年11期)2014-02-27 14:09:49
    中文字幕另类日韩欧美亚洲嫩草| 91久久精品国产一区二区三区| 亚洲三级黄色毛片| 亚洲 欧美一区二区三区| 又粗又硬又长又爽又黄的视频| 国产精品成人在线| 天堂中文最新版在线下载| 国产淫语在线视频| 精品一品国产午夜福利视频| 热99久久久久精品小说推荐| 国产午夜精品一二区理论片| 国产又爽黄色视频| 精品亚洲成a人片在线观看| 亚洲少妇的诱惑av| 国产精品麻豆人妻色哟哟久久| 国产色婷婷99| 18+在线观看网站| 欧美人与善性xxx| 女人久久www免费人成看片| 久久国产精品大桥未久av| 最近最新中文字幕大全免费视频 | 美女xxoo啪啪120秒动态图| 亚洲四区av| 国产亚洲精品第一综合不卡| 一级毛片黄色毛片免费观看视频| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 黄色 视频免费看| 人妻一区二区av| 2022亚洲国产成人精品| 日韩av免费高清视频| 欧美日韩亚洲国产一区二区在线观看 | 国产精品偷伦视频观看了| 久久精品久久久久久噜噜老黄| 综合色丁香网| 亚洲精品国产av蜜桃| 伦精品一区二区三区| 2022亚洲国产成人精品| 久久97久久精品| 国产精品蜜桃在线观看| 亚洲人成77777在线视频| 欧美日韩一级在线毛片| 99九九在线精品视频| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 色婷婷av一区二区三区视频| 超碰成人久久| 少妇的逼水好多| 男女边摸边吃奶| 欧美中文综合在线视频| 人妻系列 视频| 18+在线观看网站| 丝袜人妻中文字幕| 久久99热这里只频精品6学生| 性色av一级| 免费看不卡的av| 午夜日本视频在线| 久久久久久久精品精品| 乱人伦中国视频| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 99久国产av精品国产电影| 亚洲国产毛片av蜜桃av| 男女边摸边吃奶| 国产人伦9x9x在线观看 | 久久精品国产自在天天线| 久久久久久久精品精品| 欧美成人精品欧美一级黄| 91精品三级在线观看| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 国产在线一区二区三区精| 亚洲成色77777| 菩萨蛮人人尽说江南好唐韦庄| 好男人视频免费观看在线| 亚洲图色成人| 国产成人精品无人区| 2018国产大陆天天弄谢| 一区二区三区激情视频| 亚洲中文av在线| 亚洲熟女精品中文字幕| 99久久综合免费| 国产乱人偷精品视频| 国产精品av久久久久免费| 亚洲综合色惰| 99久国产av精品国产电影| 美女中出高潮动态图| 边亲边吃奶的免费视频| 国产精品女同一区二区软件| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久男人| 亚洲一级一片aⅴ在线观看| 婷婷色综合www| 国产又爽黄色视频| 亚洲美女黄色视频免费看| 我的亚洲天堂| 久久久久久人妻| 国产高清不卡午夜福利| www.精华液| 在线免费观看不下载黄p国产| 久久久欧美国产精品| 中文欧美无线码| 久久精品久久精品一区二区三区| 新久久久久国产一级毛片| 中文字幕人妻丝袜制服| 国产片内射在线| 免费观看性生交大片5| 黄网站色视频无遮挡免费观看| 人妻一区二区av| 欧美日韩一级在线毛片| 在线 av 中文字幕| 国产毛片在线视频| 日韩不卡一区二区三区视频在线| 久久久久网色| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄| 99九九在线精品视频| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 久久精品久久精品一区二区三区| 亚洲伊人色综图| 国产在线视频一区二区| 汤姆久久久久久久影院中文字幕| 在线观看免费日韩欧美大片| 欧美日韩成人在线一区二区| av免费观看日本| av一本久久久久| 最近手机中文字幕大全| 国产无遮挡羞羞视频在线观看| 亚洲三级黄色毛片| 日本-黄色视频高清免费观看| 免费观看a级毛片全部| 国产一区亚洲一区在线观看| 亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区 | 国产精品av久久久久免费| 国产熟女午夜一区二区三区| 免费av中文字幕在线| 少妇 在线观看| 亚洲男人天堂网一区| 26uuu在线亚洲综合色| 精品国产国语对白av| 国产又爽黄色视频| 99香蕉大伊视频| 99九九在线精品视频| 美女中出高潮动态图| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 精品亚洲成国产av| 亚洲激情五月婷婷啪啪| 国产成人a∨麻豆精品| 一级爰片在线观看| 美女主播在线视频| 女性被躁到高潮视频| 1024香蕉在线观看| 色吧在线观看| 在线观看www视频免费| av有码第一页| √禁漫天堂资源中文www| 韩国高清视频一区二区三区| 国产有黄有色有爽视频| 美女xxoo啪啪120秒动态图| 乱人伦中国视频| 中文天堂在线官网| 亚洲国产欧美网| 亚洲三级黄色毛片| 69精品国产乱码久久久| av女优亚洲男人天堂| 一区二区日韩欧美中文字幕| 国产福利在线免费观看视频| 日韩三级伦理在线观看| 色视频在线一区二区三区| 亚洲欧美一区二区三区国产| h视频一区二区三区| av在线观看视频网站免费| 一二三四中文在线观看免费高清| 欧美97在线视频| 亚洲精品aⅴ在线观看| 在线观看美女被高潮喷水网站| 极品少妇高潮喷水抽搐| 黄片无遮挡物在线观看| 日韩免费高清中文字幕av| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 老司机亚洲免费影院| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 香蕉精品网在线| videosex国产| av天堂久久9| 丝瓜视频免费看黄片| 中文天堂在线官网| 咕卡用的链子| 99国产精品免费福利视频| 少妇人妻 视频| 亚洲国产色片| 久久女婷五月综合色啪小说| 国产精品女同一区二区软件| 久久婷婷青草| 亚洲av.av天堂| 欧美成人午夜精品| 熟女电影av网| 午夜免费鲁丝| 日本欧美视频一区| 视频区图区小说| 午夜激情av网站| 成年人免费黄色播放视频| 久久久久国产一级毛片高清牌| 亚洲三区欧美一区| 国产成人精品无人区| 亚洲 欧美一区二区三区| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| 久久人妻熟女aⅴ| 久久久久久久精品精品| 精品亚洲乱码少妇综合久久| 成人手机av| 亚洲综合精品二区| 国产一区二区激情短视频 | 考比视频在线观看| 爱豆传媒免费全集在线观看| 日韩制服丝袜自拍偷拍| 91国产中文字幕| videossex国产| 国产成人午夜福利电影在线观看| 久久久久精品久久久久真实原创| 精品久久久精品久久久| 亚洲成av片中文字幕在线观看 | 日日爽夜夜爽网站| 免费在线观看完整版高清| 七月丁香在线播放| 欧美日韩亚洲高清精品| 母亲3免费完整高清在线观看 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品成人av观看孕妇| 国产成人精品在线电影| 久久99热这里只频精品6学生| 日韩视频在线欧美| 日日撸夜夜添| 在线亚洲精品国产二区图片欧美| 男女啪啪激烈高潮av片| 超碰成人久久| 精品国产一区二区三区久久久樱花| 在线观看国产h片| 老女人水多毛片| 成人手机av| 女性被躁到高潮视频| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久 | 久久久欧美国产精品| 日日撸夜夜添| 婷婷成人精品国产| 日产精品乱码卡一卡2卡三| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av涩爱| 亚洲av福利一区| 亚洲精品国产av蜜桃| 最新的欧美精品一区二区| 超碰成人久久| 日本免费在线观看一区| 热re99久久国产66热| 久久亚洲国产成人精品v| 国产精品亚洲av一区麻豆 | 亚洲精品美女久久av网站| xxx大片免费视频| 精品少妇一区二区三区视频日本电影 | 日本vs欧美在线观看视频| videossex国产| 久久久a久久爽久久v久久| 交换朋友夫妻互换小说| 欧美人与性动交α欧美软件| 色网站视频免费| 观看美女的网站| 日韩精品免费视频一区二区三区| 日韩中文字幕视频在线看片| 老女人水多毛片| 看非洲黑人一级黄片| 99热全是精品| 久久免费观看电影| av女优亚洲男人天堂| 国产av码专区亚洲av| 我的亚洲天堂| 欧美人与善性xxx| 免费av中文字幕在线| 一个人免费看片子| av片东京热男人的天堂| 久久久久久人妻| 香蕉国产在线看| 久久精品夜色国产| 母亲3免费完整高清在线观看 | 看十八女毛片水多多多| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| av网站在线播放免费| 亚洲少妇的诱惑av| 亚洲综合色惰| 极品少妇高潮喷水抽搐| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 午夜av观看不卡| 亚洲五月色婷婷综合| 国产免费福利视频在线观看| 2021少妇久久久久久久久久久| 久久久久久久久久久免费av| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 国产亚洲午夜精品一区二区久久| 欧美97在线视频| 十分钟在线观看高清视频www| 如何舔出高潮| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 午夜福利在线观看免费完整高清在| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 综合色丁香网| 日本黄色日本黄色录像| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 天美传媒精品一区二区| 中文字幕人妻丝袜一区二区 | 麻豆精品久久久久久蜜桃| 伊人亚洲综合成人网| 亚洲四区av| 国产有黄有色有爽视频| 午夜福利影视在线免费观看| 日本免费在线观看一区| 亚洲四区av| 熟女电影av网| 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 叶爱在线成人免费视频播放| 亚洲欧美清纯卡通| 国产av码专区亚洲av| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| 亚洲在久久综合| 丰满迷人的少妇在线观看| 欧美变态另类bdsm刘玥| av一本久久久久| 成人午夜精彩视频在线观看| 欧美精品av麻豆av| 欧美黄色片欧美黄色片| 天美传媒精品一区二区| 国产在线免费精品| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀 | 熟女少妇亚洲综合色aaa.| 国产一区有黄有色的免费视频| 亚洲av男天堂| 免费黄频网站在线观看国产| 久久久久国产一级毛片高清牌| 丝袜喷水一区| 亚洲成国产人片在线观看| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| 国产成人精品一,二区| 成人国产av品久久久| 国产精品二区激情视频| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 青青草视频在线视频观看| 高清视频免费观看一区二区| av国产精品久久久久影院| 亚洲精品美女久久久久99蜜臀 | 亚洲欧洲精品一区二区精品久久久 | 国产亚洲精品第一综合不卡| 成年女人毛片免费观看观看9 | 欧美日韩av久久| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 国产精品 国内视频| 欧美日韩av久久| 母亲3免费完整高清在线观看 | 天堂中文最新版在线下载| av不卡在线播放| 久久人妻熟女aⅴ| 日本欧美国产在线视频| 国产精品 国内视频| 狂野欧美激情性bbbbbb| 91国产中文字幕| 亚洲精品中文字幕在线视频| 欧美bdsm另类| 亚洲伊人色综图| 国产成人免费观看mmmm| 精品一区二区三卡| 色哟哟·www| 国产午夜精品一二区理论片| 久久久久久久久免费视频了| 久久鲁丝午夜福利片| 啦啦啦在线免费观看视频4| 岛国毛片在线播放| 好男人视频免费观看在线| 国产精品av久久久久免费| 高清欧美精品videossex| 日本免费在线观看一区| 国产 精品1| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影 | 欧美日韩一区二区视频在线观看视频在线| 在线 av 中文字幕| 亚洲精品久久久久久婷婷小说| 99热全是精品| 99香蕉大伊视频| 国产深夜福利视频在线观看| 可以免费在线观看a视频的电影网站 | 国产成人一区二区在线| 91精品国产国语对白视频| 免费高清在线观看日韩| 五月天丁香电影| 纵有疾风起免费观看全集完整版| 国产精品免费视频内射| 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 精品人妻偷拍中文字幕| 久久精品久久久久久久性| 亚洲色图 男人天堂 中文字幕| 国产欧美日韩一区二区三区在线| 女人精品久久久久毛片| 久久这里有精品视频免费| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版| 一区二区三区激情视频| 成人国产麻豆网| 久久久a久久爽久久v久久| 一边亲一边摸免费视频| 亚洲第一青青草原| 国产成人a∨麻豆精品| 精品国产乱码久久久久久男人| 国产片特级美女逼逼视频| 亚洲精品视频女| 亚洲av综合色区一区| 又大又黄又爽视频免费| 婷婷色av中文字幕| 18在线观看网站| 亚洲国产精品成人久久小说| 欧美激情 高清一区二区三区| 性少妇av在线| 热re99久久精品国产66热6| 亚洲熟女精品中文字幕| 新久久久久国产一级毛片| 啦啦啦在线观看免费高清www| 国产午夜精品一二区理论片| 久久97久久精品| 精品国产露脸久久av麻豆| 亚洲精品日本国产第一区| 18在线观看网站| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 久久精品熟女亚洲av麻豆精品| 99九九在线精品视频| 欧美激情高清一区二区三区 | 久久婷婷青草| 亚洲情色 制服丝袜| 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 午夜日本视频在线| 香蕉精品网在线| 桃花免费在线播放| 日韩一区二区视频免费看| 国产成人av激情在线播放| 亚洲av电影在线进入| 国产老妇伦熟女老妇高清| 亚洲一区二区三区欧美精品| 午夜精品国产一区二区电影| 一本—道久久a久久精品蜜桃钙片| 两个人免费观看高清视频| 精品少妇久久久久久888优播| 黑丝袜美女国产一区| 亚洲欧美中文字幕日韩二区| 一区在线观看完整版| 丁香六月天网| 男女国产视频网站| 日韩熟女老妇一区二区性免费视频| 午夜福利影视在线免费观看| 老鸭窝网址在线观看| 亚洲精品在线美女| 女人精品久久久久毛片| 亚洲人成网站在线观看播放| 高清不卡的av网站| 免费观看在线日韩| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 天天影视国产精品| 欧美日韩视频高清一区二区三区二| 免费高清在线观看日韩| 久久久久国产精品人妻一区二区| 免费观看a级毛片全部| 久久久国产欧美日韩av| 中文字幕最新亚洲高清| 久久国产精品大桥未久av| 国产精品99久久99久久久不卡 | 日日爽夜夜爽网站| 国产成人精品无人区| 婷婷色av中文字幕| 日韩三级伦理在线观看| 国产精品二区激情视频| 高清欧美精品videossex| 欧美日韩成人在线一区二区| 精品人妻一区二区三区麻豆| 成人影院久久| 亚洲人成77777在线视频| 国产精品99久久99久久久不卡 | 热re99久久国产66热| 欧美精品一区二区大全| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 国产精品二区激情视频| 2021少妇久久久久久久久久久| 国产精品偷伦视频观看了| 精品人妻一区二区三区麻豆| 在线观看国产h片| 久久国产精品大桥未久av| 一二三四在线观看免费中文在| 最黄视频免费看| 亚洲国产毛片av蜜桃av| 色视频在线一区二区三区| 免费观看av网站的网址| 建设人人有责人人尽责人人享有的| 少妇人妻久久综合中文| 1024香蕉在线观看| 精品久久久精品久久久| 亚洲精品,欧美精品| 女人高潮潮喷娇喘18禁视频| 中国国产av一级| 国产白丝娇喘喷水9色精品| 777久久人妻少妇嫩草av网站| 日本午夜av视频| 欧美精品高潮呻吟av久久| 国产一区二区 视频在线| 色网站视频免费| 麻豆精品久久久久久蜜桃| av免费在线看不卡| 高清视频免费观看一区二区| 超碰成人久久| 美女主播在线视频| 亚洲精品久久成人aⅴ小说| 卡戴珊不雅视频在线播放| 久久免费观看电影| 熟妇人妻不卡中文字幕| 国产精品 欧美亚洲| 伦理电影大哥的女人| 最近2019中文字幕mv第一页| 菩萨蛮人人尽说江南好唐韦庄| 少妇被粗大的猛进出69影院| 午夜91福利影院| 这个男人来自地球电影免费观看 | 久久人妻熟女aⅴ| 美女视频免费永久观看网站| 在线观看三级黄色| 岛国毛片在线播放| 久久精品夜色国产| 国产97色在线日韩免费| 99re6热这里在线精品视频| 女性被躁到高潮视频| 看非洲黑人一级黄片| 精品人妻在线不人妻| 9191精品国产免费久久| 91国产中文字幕| 免费少妇av软件| 亚洲精品av麻豆狂野| 男女啪啪激烈高潮av片| 精品亚洲成a人片在线观看| 人人澡人人妻人| 亚洲一码二码三码区别大吗| 狠狠精品人妻久久久久久综合| 男女边吃奶边做爰视频| 久久女婷五月综合色啪小说| 天堂俺去俺来也www色官网| av又黄又爽大尺度在线免费看| 久久久久国产网址| 97人妻天天添夜夜摸| 搡女人真爽免费视频火全软件| 另类亚洲欧美激情| 又黄又粗又硬又大视频| av福利片在线| 久久久欧美国产精品| 中文字幕精品免费在线观看视频| 在线观看免费日韩欧美大片| 日韩视频在线欧美| 丝袜美足系列| 国产精品无大码| h视频一区二区三区| 久久精品国产综合久久久| 日本av免费视频播放| 国产色婷婷99| 午夜日韩欧美国产| 国产精品偷伦视频观看了| 青春草视频在线免费观看| 色播在线永久视频| 香蕉国产在线看| 一区二区日韩欧美中文字幕| 精品久久久精品久久久| 国产熟女午夜一区二区三区| 考比视频在线观看| 欧美人与性动交α欧美软件| 婷婷色综合大香蕉| 国产av一区二区精品久久| 亚洲国产最新在线播放| 如日韩欧美国产精品一区二区三区| 午夜福利乱码中文字幕| 美国免费a级毛片| 看非洲黑人一级黄片| 宅男免费午夜| 在现免费观看毛片| 搡女人真爽免费视频火全软件| 高清视频免费观看一区二区| 97人妻天天添夜夜摸|