[摘要]目的探究1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)慢性帕金森病(PD)模型小鼠步態(tài)改變。方法模型組8周齡雄性C57BL/6小鼠給予腹腔注射MPTP(30 mg/kg體質(zhì)量,每周2次,共4周),對照組注射等量的生理鹽水,每組10只。采用動物步態(tài)分析系統(tǒng)(CatWalk)分別檢測兩組注射后1、2、3和4周小鼠步態(tài)相關指標。結(jié)果步態(tài)分析結(jié)果顯示,與對照組小鼠相比,模型組的運動持續(xù)時間、站立時間、腳步周期顯著增加,平均速度、身體速度顯著降低,差異均有統(tǒng)計學意義(t=2.209~5.176,P<0.05)。提示小鼠的步態(tài)發(fā)生改變。結(jié)論MPTP慢性模型可以引起小鼠步態(tài)變化。
[關鍵詞]帕金森??;1-甲基-4-苯基-1,2,3,6-四氫吡啶;步態(tài)分析;模型,動物;小鼠,近交C57BL
[中圖分類號]R742.5;R442.9[文獻標志碼]A[文章編號]2096-5532(2024)03-0364-04
doi:10.11712/jms.2096-5532.2024.60.098[開放科學(資源服務)標識碼(OSID)]
[網(wǎng)絡出版]https://link.cnki.net/urlid/37.1517.R.20240729.1543.002;2024-07-3014:35:51
Gait changes in a mouse model of chronic Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridineXIU Min-xia, XIE Ruyi, XIE Junxia, SHI Limin (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate gait changes in a mouse model of chronic Parkinson’s disease (PD) induced by 1-met-hyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).MethodsMale C57BL/6 mice, aged 8 weeks, were intraperitoneally injec-ted with MPTP (30 mg/kg) twice a week for 4 weeks, and the mice in the control group were injected with an equal volumeof normal saline, with 10 mice in each group. The animal gait analysis system (CatWalk) was used to measure gait-related parameters at 1, 2, 3, and 4 weeks after injection.ResultsThe results of gait analysis showed that compared with the control group, the model group had significant increases in run duration, stance, and step cycle and significant reductions in average speed and body speed (t=2.209-5.176,Plt;0.05). These results suggested gait changes in mice. ConclusionGait changes are observed in a mouse model of chronic PD induced by MPTP.
[Key words]Parkinson disease; 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; gait analysis; models, animal; mice, inbred C57BL
帕金森病(PD)是僅次于阿爾茨海默病的第二大神經(jīng)退行性疾病,60歲以上老年人口的發(fā)病率為1.5%~2.0%[1]。PD的主要病理特征是黑質(zhì)中多巴胺能神經(jīng)元的進行性丟失,伴隨著路易小體的聚集、小膠質(zhì)細胞和星形膠質(zhì)細胞增生等[2-3]。臨床上,PD的主要癥狀包括靜止性震顫、僵硬、運動遲緩、姿勢不穩(wěn)和步態(tài)障礙等表現(xiàn)[1]。多種動物模型的建立,有助于探索PD的發(fā)病機制和開發(fā)有效的治療藥物[4-6]。神經(jīng)毒素1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導的小鼠模型是目前最常用的PD動物模型之一[7-8]。根據(jù)給藥方案的不同,可將MPTP誘導的PD小鼠模型大致分為急性、亞急性和慢性模型[9]。3種模型均可造成黑質(zhì)多巴胺能神經(jīng)元損傷及紋狀體多巴胺含量的降低,然而,小鼠是否會出現(xiàn)運動功能障礙仍存在爭議[10]。因此,本實驗在C57BL/6小鼠腹腔注射MPTP制備慢性PD模型,采用更加直觀、精確、有效的動物步態(tài)分析系統(tǒng)CatWalk,分別觀察小鼠在給藥1、2、3和4周后隨著疾病的進展其步態(tài)的改變,為明確MPTP慢性PD模型小鼠運動功能的改變提供實驗證據(jù)。
1材料與方法
1.1動物及主要試劑
本實驗選用的SPF級、7周齡、體質(zhì)量(22±2)g的雄性C57BL/6小鼠,購于北京維通利華實驗動物技術有限公司。將小鼠飼養(yǎng)于可自由攝食和飲水、12 h-12 h晝夜循環(huán)光照的SPF級清潔環(huán)境中1周后用于實驗。動物實驗符合青島大學動物倫理學要求。MPTP購于美國Sigma公司,酪氨酸羥化酶(TH)抗體購于美國Millipore公司,驢抗兔綠色熒光二抗購于美國 Thermo Fisher 公司,其他試劑均為國產(chǎn)分析純。
1.2動物分組及處理
動物適應環(huán)境1周后,選取體質(zhì)量、大小大致相同的小鼠隨機分為8組(模型組和對照組各4組),每組10只,分別制備1、2、3和4周模型。模型組每周腹腔注射MPTP(30 mg/kg體質(zhì)量)2次,對照組注射等量的生理鹽水。分別在完成給藥或注射生理鹽水1、2、3和4周后的第2天進行實驗。
1.3步態(tài)分析
采用步態(tài)分析系統(tǒng)(CatWalk XT,Noldus,荷蘭)進行檢測,實驗前1 d對小鼠進行訓練,使小鼠能夠主動且自由穿過設定長度的檢測通道。實驗前,應將小鼠置于實驗環(huán)境中適應0.5 h以上。實驗時,保持環(huán)境處于黑暗狀態(tài),每只小鼠最少接受5次檢測,取其中3次(步幅、頻率較為均一)進行分析。統(tǒng)計其運動持續(xù)時間(該Run采集持續(xù)時間)、站立時間(每一個爪子每一次與玻璃跑臺接觸的持續(xù)時間)、腳步周期(同一個爪子在初次與跑臺接觸到下一次與跑臺接觸的持續(xù)時間)、平均速度(該Run采集下小鼠身體跑過的平均速度)和身體速度(某一只特定爪子的一個腳步周期的身體速度)等。
1.4免疫熒光實驗
根據(jù)本實驗室前期的研究方法[11],在步態(tài)分析實驗結(jié)束后,將小鼠進行灌注取腦處理。將取出的鼠腦,放在盛有40 g/L多聚甲醛(PFA)的EP管中,4 ℃固定至少6 h。固定后,將鼠腦分別放置在200和300 g/L蔗糖溶液(用0.1 mol/L PBS 配制)中進行梯度脫水,直至鼠腦沉到管底。梯度脫水結(jié)束后,進行鼠腦冠狀切片。參照小鼠腦圖譜(第2版)確定黑質(zhì)所在區(qū)域,切成20 μm厚的連續(xù)冠狀組織切片,共收集4套(兩組每套各10張)腦片,存放于0.01 mol/L PBS溶液中,用于免疫熒光染色。取上述1套黑質(zhì)腦片進行TH免疫熒光染色,經(jīng)過固定、封閉后置于TH一抗稀釋液(1∶3 000)中,4 ℃搖床過夜。次日,將腦片置于驢抗兔綠色熒光二抗稀釋液(1∶500)中,避光孵育2 h后漂洗。漂洗結(jié)束后,將腦片平鋪在防脫載玻片上,甘油封片。所有腦片均在Olympus數(shù)字病理切片掃描系統(tǒng)熒光顯微鏡下進行觀察并計數(shù)TH陽性細胞。
1.5統(tǒng)計學分析
采用Graph Pad Prism 6軟件進行統(tǒng)計學分析。實驗所得計量資料數(shù)據(jù)以±s形式表示,兩組均數(shù)比較采用t檢驗。以Plt;0.05表示差異有統(tǒng)計學意義。
2結(jié)果
2.1兩組黑質(zhì)多巴胺能神經(jīng)元免疫熒光染色比較
免疫熒光染色結(jié)果顯示,與對照組相比較,模型組小鼠黑質(zhì)區(qū)TH陽性神經(jīng)元數(shù)目在注射1周后下降50%左右,并在第4周下降達80%~90%,差異具有統(tǒng)計學意義(t=10.97~33.62,P<0.001)。提示小鼠出現(xiàn)黑質(zhì)區(qū)多巴胺能神經(jīng)元損傷,建模成功。見圖1。
2.2MPTP對小鼠步態(tài)的影響
CatWalk系統(tǒng)檢測小鼠步態(tài)變化的結(jié)果顯示,對照組小鼠腳步步幅大小均一、步數(shù)穩(wěn)定;模型組小鼠腳步模式混亂、步態(tài)紊亂異常、步幅大小不一。與對照組相比,模型組出現(xiàn)步態(tài)參數(shù)改變,差異均有統(tǒng)計學意義(t=2.209~5.176,P<0.05)。見表1。
3討論
MPTP及其作用機制的確定對PD的病理特性研究及新藥開發(fā)產(chǎn)生了重大影響[12-13]。迄今為止,MPTP小鼠模型已成為最常用的PD動物模型之一,并被廣泛用于研究多巴胺能神經(jīng)元變性的潛在分子機制。MPTP是一種親脂性很強的化合物,很容易穿過血-腦脊液屏障進入中樞神經(jīng)系統(tǒng)。在全身用藥后,MPTP 會在星形膠質(zhì)細胞中被單胺氧化酶B(MAO-B)轉(zhuǎn)化為1-甲基-4-苯基-2,3-二氫吡啶(MPDP+)。MPDP+是一種不穩(wěn)定的中間體,會發(fā)生自發(fā)氧化,生成1-甲基-4-苯基吡啶(MPP+)[14]。細胞外的MPP+隨后通過多巴胺能神經(jīng)元膜上的多巴胺轉(zhuǎn)運體(DAT)轉(zhuǎn)移到細胞質(zhì)中,然后在線粒體中積聚,擾亂呼吸鏈復合物-Ⅰ,導致氧化應激、ATP 生成減少,最終導致神經(jīng)元死亡[14-15]。MPTP制備的PD模型根據(jù)給藥時間的長短主要分為3種:急性、亞急性和慢性。其中急性模型為MPTP每2 h腹腔注射1次,共注射4次[9];亞急性模型為每天注射1次,共注射5 d[16];慢性模型時間較長,每周注射2次,共計4周。雖然不同實驗室所采用的MPTP濃度略有不同[13],但以上3種給藥方式均能造成黑質(zhì)區(qū)多巴胺能神經(jīng)元損傷。在本實驗中,我們也首先通過免疫熒光染色計數(shù)黑質(zhì)區(qū)TH陽性神經(jīng)元數(shù)目,觀察隨著給藥時間的延長,多巴胺能神經(jīng)元的受損程度,以評估模型的建立是否成功。TH是多巴胺合成的限速酶,其功能缺失或表達不足直接影響多巴胺的合成與分泌。因此,檢測模型動物TH陽性細胞的數(shù)目不僅可以反映多巴胺能神經(jīng)元的功能狀態(tài),同時還可評估模型小鼠多巴胺水平[13]。本文研究結(jié)果表明,在注射MPTP后1周黑質(zhì)區(qū)的多巴胺能神經(jīng)元已有受損,3、4周后損傷程度可達到80%~90%。因此,慢性模型的建立可導致多巴胺能神經(jīng)元在黑質(zhì)紋狀體通路中的進行性和穩(wěn)定性退變,更類似于PD緩慢的和進行性的神經(jīng)退行性變過程。
盡管MPTP可以造成明確的黑質(zhì)區(qū)多巴胺能神經(jīng)元損傷,然而動物是否出現(xiàn)運動功能障礙目前還存在較多爭議[17]。有研究顯示,在轉(zhuǎn)棒和爬桿實驗中,急性、亞急性和慢性模型與生理鹽水組相比沒有任何差異[18]。但也有文獻報道,在亞急性模型小鼠的轉(zhuǎn)棒實驗中,小鼠的平衡力和協(xié)調(diào)能力均受損害[19],在爬桿實驗中也表現(xiàn)出明顯的運動遲緩[19]。在平衡木實驗中發(fā)現(xiàn),急性模型小鼠與生理鹽水組相比沒有任何差異,慢性模型小鼠通過平衡木的時間增加,而亞急性模型小鼠所需時間減少[18]。為了對MPTP誘導的PD模型小鼠進行更為直觀且準確的檢測,本實驗采用了CatWalk動物行為分析技術,該技術不僅包括了傳統(tǒng)步態(tài)分析所需的運動速度和時間的檢測,也細化了動態(tài)參數(shù)和靜態(tài)參數(shù)的指標[20]。與傳統(tǒng)的曠場、爬桿、轉(zhuǎn)棒和平衡木等實驗相比,CatWalk動物行為分析技術的指標更加全面、完善。本文實驗結(jié)果顯示,與生理鹽水組相比,模型組小鼠運動持續(xù)時間、站立時間、腳步周期等均隨給藥時間的增長顯著增加,平均速度、身體速度均隨給藥時間增長顯著降低,這表明模型小鼠的步態(tài)發(fā)生改變。除上述指標外,我們還觀察了小鼠的擺動時間和擺動速度,結(jié)果顯示在給藥第3周和第4周,小鼠前爪擺動時間增加,4個爪的擺動速度均降低,出現(xiàn)進行性加重的現(xiàn)象。
此前研究聚焦于亞急性模型,對于慢性模型研究較少,且對于MPTP模型行為學上的研究存在許多爭議。本實驗用CatWalk對小鼠不同給藥時間步態(tài)進行分析,更加直觀、準確地揭示了MPTP誘導的PD小鼠模型步態(tài)的變化,為研究PD的運動障礙提供了依據(jù)。通過TH染色我們觀察到多巴胺能神經(jīng)元在MPTP注射1周后損傷在50%左右,到第4周損傷約90%,但其他病理特征尚不明確,仍需要后續(xù)實驗探究。
[參考文獻]
[1]MARINO B L B, DE SOUZA L R, SOUSA K P A, et al. Parkinson’s disease: a review from pathophysiology to treatment[J]. Mini Reviews in Medicinal Chemistry, 2020,20(9):754-767.
[2]CAI P T, YE J J, ZHU J J, et al. Erratum to “inhibition of endoplasmic reticulum stress is involved in the neuroprotective effect of bFGF in the 6-OHDA-induced Parkinson’s disease model”[J]. Aging and Disease, 2023,14(2):260.
[3]DAUER W, PRZEDBORSKI S. Parkinson’s disease: mechanisms and models[J]. Neuron, 2003,39(6):889-909.
[4]SIDAWAY B, ANDERSON J, DANIELSON G, et al. Effects of long-term gait training using visual cues in an individual with Parkinson disease[J]. Physical Therapy, 2006,86(2):186-194.
[5]SCHAPIRA A H V, CHAUDHURI K R, JENNER P. Non-motor features of Parkinson disease[J]. Nature Reviews Neuro-science, 2017,18(7):435-450.
[6]ARBUTHNOTT G W. An introspective approach: a lifetime of Parkinson’s disease research and not much to show for it yet?[J]. Cells, 2021,10(3):513.
[7]KIN K, YASUHARA T, KAMEDA M, et al. Animal models for Parkinson’s disease research: trends in the 2000s[J]. International Journal of Molecular Sciences, 2019,20(21):5402.
[8]MUSTAPHA M, MAT TAIB C N. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies[J]. Bosnian Journal of Basic Medical Sciences, 2021,21(4):422-433.
[9]JACKSON-LEWIS V, PRZEDBORSKI S. Protocol for the MPTP mouse model of Parkinson’s disease[J]. Nature Protocols, 2007, 2(1):141-151.
[10]QI Y, ZHANG Z W, LI Y N, et al. Whether the subacute MPTP-treated mouse is as suitable as a classic model of Parkinsonism[J]. Neuromolecular Medicine, 2023, 25(3):360-374.
[11]CHEN F H, QIAN J L, CAO Z K, et al. Chemogenetic and optogenetic stimulation of zona incerta GABAergic neurons ameliorates motor impairment in Parkinson’s disease[J]. iScience, 2023, 26(7):107149.
[12]LANGSTON J W. The MPTP story[J]. Journal of Parkinson’s Disease, 2017,7(s1):S11-S19.
[13]BEZARD E, JABER M, GONON F, et al. Adaptive changes in the nigrostriatal pathway in response to increased 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurodegene-ration in the mouse[J]. The European Journal of Neuroscience, 2000,12(8):2892-2900.
[14]SCHILDKNECHT S, PAPE R, MEISER J, et al. Preferential extracellular generation of the active parkinsonian toxin MPP+ by transporter-independent export of the intermediate MPDP+[J]. Antioxidants amp; Redox Signaling, 2015, 23(13):1001-1016.
[15]MEREDITH G E, RADEMACHER D J. MPTP mouse mo-dels of Parkinson’s disease: an update[J]. Journal of Parkinson’s Disease, 2011,1(1):19-33.
[16]ZHANG X W, BAI L P, ZHANG S, et al. Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson’s disease model in mice[J]. Free Radical Biology amp; Medicine, 2018,124:380-387.
[17]PRZEDBORSKI S, VILA M. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model: a tool to explore the patho-genesis of Parkinson’s disease[J]. Annals of the New York Academy of Sciences, 2003,991:189-198.
[18]SANTORO M, FADDA P, KLEPHAN K J, et al. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson’s disease[J]. Journal of Neurochemistry, 2023,164(2):121-142.
[19]LIANG Y, CHEN C, XIA B M, et al. Neuroprotective effect of echinacoside in subacute mouse model of Parkinson’s di-sease[J]. Bio Med Research International, 2019, 2019:4379639.
[20]張子龍,劉思含,姚繼紅,等. 帕金森病小鼠CatWalk行為學研究[J]. 中國比較醫(yī)學雜志, 2020,30(1):7-11.
(本文編輯于國藝)