[摘要]目的探究巴松管突觸前細(xì)胞基質(zhì)蛋白(BSN)在膠質(zhì)瘤組織表達(dá)及其對(duì)病人預(yù)后的影響。方法通過從癌癥基因組圖譜(TCGA)、中國(guó)腦膠質(zhì)瘤圖譜(CGGA)、膠質(zhì)瘤基因組數(shù)據(jù)庫(kù)(GEO)和臨床蛋白質(zhì)組腫瘤分析數(shù)據(jù)庫(kù)(CPTAC)下載膠質(zhì)瘤的轉(zhuǎn)錄組數(shù)據(jù)、蛋白組數(shù)據(jù)和臨床樣本資料,分析膠質(zhì)瘤組織BSN的表達(dá)水平及其與病人預(yù)后的關(guān)系。使用siRNA轉(zhuǎn)染U251細(xì)胞株,構(gòu)建BSN表達(dá)下調(diào)的膠質(zhì)瘤細(xì)胞系。采用Western blotting技術(shù)檢測(cè)BSN對(duì)膠質(zhì)瘤細(xì)胞增殖相關(guān)蛋白PCNA和遷移相關(guān)蛋白CD44的表達(dá)水平的影響。結(jié)果與正常腦組織相比,膠質(zhì)瘤組織BSN mRNA的表達(dá)水平顯著下調(diào)(Plt;0.001),其異常低表達(dá)與膠質(zhì)瘤病人的不良預(yù)后顯著相關(guān)(Plt;0.001)。隨著膠質(zhì)瘤級(jí)別的增加,BSN的mRNA水平逐漸下調(diào)。在高級(jí)別膠質(zhì)瘤中,BSN的蛋白表達(dá)水平也顯著低于正常組 (Plt;0.001)。Western blotting檢測(cè)結(jié)果顯示,敲低BSN基因可以顯著上調(diào)U251細(xì)胞中PCNA和CD44蛋白的表達(dá)水平,差異有統(tǒng)計(jì)學(xué)意義(F=14.56、164.90,Plt;0.01)。結(jié)論BSN在膠質(zhì)瘤組織中表達(dá)下調(diào)并與腫瘤的預(yù)后相關(guān)。敲低BSN可以促進(jìn)膠質(zhì)瘤細(xì)胞增殖、遷移相關(guān)蛋白的表達(dá)。BSN可能在膠質(zhì)瘤發(fā)生發(fā)展中扮演抑癌基因的角色。
[關(guān)鍵詞]神經(jīng)膠質(zhì)瘤;巴松管突觸前細(xì)胞基質(zhì)蛋白;受體,突觸前;膠質(zhì)母細(xì)胞瘤;基因敲低技術(shù);預(yù)后
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2024)03-0345-05
doi:10.11712/jms.2096-5532.2024.60.085[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240711.1358.004;2024-07-1515:51:06
Expression of the presynaptic cytomatrix protein Bassoon in glioma tissue and its influence on the prognosis of patientsZHOU Xiaotong, FU Lin, JIANG Hong(State Key Disciplines: Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate the expression of Bassoon (BSN), a presynaptic cytomatrix protein, in glioma tissue and its influence on the prognosis of patients. MethodsTCGA, CGGA, GEO, and CPTAC databases were used to download transcriptomic data, proteomic data, and the data of clinical samples, and the expression level of BSN in glioma tissue and its association with prognosis were analyzed. The U251 cell line was transfected with siRNA to construct a glioma cell line with downregulated BSN expression. Western blotting was used to measure the influence of BSN on the expression levels of the proliferation-related protein PCNA and the migration-related protein CD44 in glioma cells. ResultsThe mRNA expression level of BSN was downregulated in glioma tissue compared with normal brain tissue (Plt;0.001), and the abnormally low expression of BSN was significantly associated with the poor prognosis of glioma patients (Plt;0.001). The mRNA expression level of BSN gradually decreased with the increase in the grade of glioma. In addition, the protein expression level of BSN in high-grade glioma was significantly lower than that in the normal group (Plt;0.001). Western blotting showed that knockdown of BSN significantly upregulated the protein expression levels of PCNA and CD44 in U251 cells (F=14.56,164.90;Plt;0.01). ConclusionBSN expression is downregulated in glioma and is associated with tumor prognosis. Knockdown of BSN can promote the expression of proliferation and migration-related proteins in glioma cells, and BSN may play the role of a tumor suppressor gene in the development and progression of glioma.
[Key words]glioma; bassoon presynaptic cytomatrix protein; receptors, presynaptic; glioblastoma; gene knockdown techniques; prognosis
膠質(zhì)瘤是最常見的原發(fā)性顱內(nèi)腫瘤,約占惡性腦腫瘤的81%,具有浸潤(rùn)性生長(zhǎng)、難以完全切除、易復(fù)發(fā)、預(yù)后不良等特點(diǎn)[1]。世界衛(wèi)生組織根據(jù)膠質(zhì)瘤的惡性程度,將膠質(zhì)瘤分為4個(gè)等級(jí)[2]。目前臨床上,通常采用手術(shù)切除結(jié)合放化療等的治療方法,但由于腫瘤的彌漫侵襲性生長(zhǎng)、血-腦脊液屏障限制等因素,高級(jí)別膠質(zhì)瘤(WHO分級(jí)Ⅳ級(jí))如膠質(zhì)母細(xì)胞瘤(GBM),中位生存期僅約為14個(gè)月[3]。近年來,越來越多的分子治療靶點(diǎn)被發(fā)現(xiàn),這些分子標(biāo)記物對(duì)于腫瘤診斷、預(yù)后評(píng)估和個(gè)性化治療有重要意義[4]。巴松管突觸前細(xì)胞基質(zhì)蛋白(BSN)基因(OMIM*604020)位于3q21.31,編碼Bassoon蛋白,該蛋白在哺乳動(dòng)物大腦中表達(dá)豐富[5]。Bassoon參與突觸囊泡運(yùn)輸和活躍區(qū)細(xì)胞基質(zhì)的建立,協(xié)助谷氨酸能神經(jīng)元釋放神經(jīng)遞質(zhì),在維持突觸完整性方面起重要作用[6]。另外,BSN還能夠促進(jìn)tau蛋白的傳播,因此參與了阿爾茲海默病的發(fā)生[7]。然而,有關(guān)BSN在膠質(zhì)瘤中的表達(dá)及其作用仍是未知的。本研究利用癌癥基因組圖譜(TCGA)、中國(guó)腦膠質(zhì)瘤圖譜(CGGA)、膠質(zhì)瘤基因組數(shù)據(jù)庫(kù)(GEO)和臨床蛋白質(zhì)組腫瘤分析數(shù)據(jù)庫(kù)(CPTAC)分析了BSN在膠質(zhì)瘤中的表達(dá)及其對(duì)病人預(yù)后的影響,并初步探討其對(duì)人膠質(zhì)母細(xì)胞瘤U251細(xì)胞增殖和遷移相關(guān)蛋白表達(dá)的影響。
1材料與方法
1.1實(shí)驗(yàn)材料
本實(shí)驗(yàn)所用的細(xì)胞人膠質(zhì)母細(xì)胞瘤U251細(xì)胞購(gòu)于中國(guó)科學(xué)院上海研究院細(xì)胞庫(kù),高糖DMEM細(xì)胞培養(yǎng)液購(gòu)于以色列Biological Industries公司,胎牛血清購(gòu)于北京全式金生物技術(shù)有限公司,青霉素-鏈霉素混合液購(gòu)于北京索萊寶公司,增殖細(xì)胞核抗原(PCNA)、甘油醛-3-磷酸脫氫酶(GAPDH)抗體購(gòu)于美國(guó)CST公司,白細(xì)胞分化抗原44(CD44)抗體購(gòu)于美國(guó)Proteintech公司,siRNA-BSN病毒購(gòu)于蘇州吉瑪基因公司。
1.2實(shí)驗(yàn)方法
1.2.1細(xì)胞培養(yǎng)從液氮罐中取出凍存的U251細(xì)胞,迅速放置于37 ℃水浴鍋至完全溶解,將細(xì)胞懸液轉(zhuǎn)移至裝有5 mL溫?zé)峒?xì)胞培養(yǎng)液的離心管中。以1 000 r/min離心5 min,棄上清,再加入5 mL完全培養(yǎng)液,用吸管吹打混勻后將上述細(xì)胞懸液接種至25 cm2細(xì)胞培養(yǎng)瓶中,置于37 ℃、體積分?jǐn)?shù)0.05的CO2細(xì)胞培養(yǎng)箱中培養(yǎng),每3 d傳代1次。
1.2.2細(xì)胞轉(zhuǎn)染以5×107/ L細(xì)胞密度接種6孔板,每孔加入2 mL細(xì)胞懸液,待細(xì)胞生長(zhǎng)至70%~80%融合時(shí)用于實(shí)驗(yàn)。分別取Lipofectamine 2000和120 pmol/L的siRNA-BSN病毒各6 μL,用無血清無抗生素培養(yǎng)液稀釋至200 μL,混勻后室溫靜置5 min,將兩者混合形成RNA-脂質(zhì)體復(fù)合物,室溫靜置15~20 min。細(xì)胞分組如下:①siRNA-NC,②siRNA-BSN#1,③siRNA-BSN#2,④siRNA-BSN#3。將6孔板中的2 mL細(xì)胞培養(yǎng)液換成1 mL新的無血清無抗生素的基礎(chǔ)培養(yǎng)液,然后每孔分別逐滴加入400 μL的RNA-脂質(zhì)體復(fù)合物。將各組細(xì)胞放入CO2細(xì)胞培養(yǎng)箱中,37 ℃培養(yǎng)8 h后棄去培養(yǎng)液,換成含血清和抗生素的完全培養(yǎng)液繼續(xù)培養(yǎng)48 h。
1.2.3Western blotting檢測(cè)方法將U251細(xì)胞在6孔板中轉(zhuǎn)染48 h后從培養(yǎng)箱中取出,每孔加入100 μL裂解液,在冰上裂解30 min后提取以不同siRNA轉(zhuǎn)染的細(xì)胞蛋白,進(jìn)行十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(SDS-PAGE)。每孔加入10 μg 蛋白樣品,恒壓80 V,電泳2 h。恒流300 mA,轉(zhuǎn)膜90 min。用100 g/L的奶粉封閉液封閉2 h。加入CD44抗體(1∶1 000)、PCNA抗體(1∶1 000)及GAPDH抗體(1∶10 000)置4 ℃搖床過夜。一抗孵育結(jié)束后,用TBST溶液漂洗3次,每次10 min。加二抗(1∶10 000)室溫孵育1 h。二抗孵育結(jié)束后,用TBST溶液漂洗3次,每次10 min。用ECL化學(xué)發(fā)光試劑顯影,Image J軟件分析條帶,結(jié)果以目的蛋白與GAPDH條帶的灰度值的比值表示。
1.2.4生物信息學(xué)方法臨床數(shù)據(jù)分別來自GEO、TCGA、CGGA和CPTAC數(shù)據(jù)庫(kù),網(wǎng)址為http://www.ncbi.nlm.nih.gov/GEO/、https://portal.gdc.cancer.gov、http://www.cgga.org.cn/和https://ualcan.path.uab.edu/cgi-bin/CPTAC-Result.pl?genenam=bsnamp;ctype=GBM。使用Kaplan-Meier Plotter 分析OTUD7A的表達(dá)與病人生存的相關(guān)性,對(duì)應(yīng)網(wǎng)址為:http://kmplot.com/analysis/。
1.3統(tǒng)計(jì)學(xué)方法
應(yīng)用Graph Pad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料數(shù)據(jù)均采用±s表示,兩組間均數(shù)比較采用 Student’s t檢驗(yàn),多組均數(shù)比較采用單因素方差分析(One-way ANOVA),然后以Student-Newman-Keuls法進(jìn)行組間兩兩比較。以Plt;0.05表示差別具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1膠質(zhì)瘤和正常腦組織中BSN表達(dá)比較
通過GEO(主要包括GSE7696、GSE55918和GSE59612)數(shù)據(jù)庫(kù)下載膠質(zhì)瘤的轉(zhuǎn)錄組數(shù)據(jù)和臨床樣本資料。利用Graph Pad Prism 8.0 軟件整合分析BSN在膠質(zhì)瘤和正常腦組織中的mRNA表達(dá)水平。研究結(jié)果顯示,與正常腦組織相比較,膠質(zhì)瘤中BSNmRNA表達(dá)均異常降低,差異均有顯著意義(tGSE7696、GSE55918、GSE59612=5.937,Plt;0.001)。見圖1。
2.2BSN表達(dá)與膠質(zhì)瘤預(yù)后的關(guān)系
通過GEPIA分析TCGA的數(shù)據(jù),采用對(duì)數(shù)秩檢驗(yàn)(Log-rank test)的結(jié)果顯示,BSN表達(dá)更低組別的膠質(zhì)瘤病人,其總生存期和無病生存期均更短(Plt;0.001)。見圖2A、B。進(jìn)一步利用CGGA數(shù)據(jù)庫(kù)進(jìn)行驗(yàn)證,Kaplan-Meier生存分析顯示,BSN mRNA低表達(dá)水平與病人的不良預(yù)后呈顯著正相關(guān)(Plt;0.001),得到了與TCGA分析一致的結(jié)論。見圖2C。因此,BSN mRNA的低表達(dá)與膠質(zhì)瘤的不良預(yù)后相關(guān)。
2.3BSN表達(dá)與膠質(zhì)瘤不同等級(jí)的關(guān)系
通過下載TCGA和CGGA數(shù)據(jù)庫(kù)膠質(zhì)瘤轉(zhuǎn)錄組數(shù)據(jù)和臨床樣本資料,利用Graph Pad Prism 8.0 軟件整合分析了不同級(jí)別膠質(zhì)瘤中BSN mRNA的表達(dá)水平。結(jié)果顯示,隨著膠質(zhì)瘤等級(jí)的增加,BSNmRNA的表達(dá)水平逐漸降低(FTCGA=93.79,F(xiàn)CGGA=71.80,Plt;0.001)。見圖3A、B。進(jìn)一步通過分析CPTAC數(shù)據(jù)庫(kù)蛋白表達(dá)數(shù)據(jù)的結(jié)果表明,高級(jí)別的GBM中BSN的蛋白表達(dá)顯著低于正常組(Plt;0.001)。見圖3C。因此,BSN在高級(jí)別膠質(zhì)瘤中具有更顯著的異常低表達(dá)。
2.4敲低BSN對(duì)U251細(xì)胞PCNA和CD44蛋白表達(dá)影響
BSN mRNA的表達(dá)水平隨膠質(zhì)瘤惡性程度的增加而逐漸降低。見圖3A。定量PCR檢測(cè)結(jié)果顯示,相較于陰性對(duì)照組,實(shí)驗(yàn)組BSN的mRNA水平顯著下調(diào)。見圖4A。Western blotting技術(shù)檢測(cè)敲低BSN后PCNA和CD44蛋白表達(dá)結(jié)果顯示,對(duì)照組及敲低BSN各組的灰度值分別為0.77±0.06、1.04±0.11、1.39±0.15和1.07±0.11,與對(duì)照組相比較,敲低BSN各組U251細(xì)胞中PCNA蛋白和CD44蛋白表達(dá)水平均明顯升高,差異具有統(tǒng)計(jì)學(xué)意義(FPCNA=164.9,F(xiàn)CD44=14.56,Plt;0.01)。見圖4B、C。
3討論
GBM是目前最常見的成人腦腫瘤,容易復(fù)發(fā)且預(yù)后很差,5年生存率僅為5%[11-13],它表現(xiàn)為對(duì)正常腦組織的破壞,對(duì)常規(guī)治療的抵抗以及廣泛侵襲整個(gè)大腦[14-16]。因此,手術(shù)切除結(jié)合放化療的傳統(tǒng)治療方案預(yù)后效果不佳[17-18]。分子靶向技術(shù)在惡性腫瘤治療過程中發(fā)展迅速,也是膠質(zhì)瘤新療法研發(fā)的重要方向[19-20]。目前,貝伐珠單抗已在全球80多個(gè)國(guó)家或地區(qū)獲批用于復(fù)發(fā)性GBM病人的靶向治療,臨床試驗(yàn)結(jié)果顯示貝伐株單抗僅能延長(zhǎng)病人無病生存期,而對(duì)總生存期沒有影響[21-22]。而最新的研究結(jié)果表明,貝伐株單抗治療前神經(jīng)元型的GBM可顯著延長(zhǎng)病人的總生存期[23-25]。盡管貝伐株單抗等藥物已在臨床試驗(yàn)中初見成效,但是靶向藥物研發(fā)進(jìn)展仍相對(duì)緩慢,這與惡性膠質(zhì)瘤的高度異質(zhì)性和獲得性耐藥機(jī)制等原因有關(guān)。因此,有必要深入研究膠質(zhì)瘤發(fā)生發(fā)展的基因調(diào)控機(jī)制,以明確發(fā)現(xiàn)新的分子治療靶點(diǎn)[26-30]。
本文討論了膠質(zhì)瘤中的一個(gè)潛在的分子標(biāo)志物BSN,這可能為膠質(zhì)母細(xì)胞瘤研究帶來新思路。首先,我們分析了TCGA、CGGA、GEO和CPTAC數(shù)據(jù)庫(kù)的相關(guān)數(shù)據(jù)。本文的研究結(jié)果顯示,與正常腦組織相比,膠質(zhì)瘤中BSN表達(dá)水平下調(diào),其異常低表達(dá)與膠質(zhì)瘤病人的不良預(yù)后顯著相關(guān)。PCNA只存在于正常增殖細(xì)胞及腫瘤細(xì)胞中,與細(xì)胞DNA合成關(guān)系密切,在細(xì)胞增殖的啟動(dòng)過程中發(fā)揮重要作用,是反映細(xì)胞增殖狀態(tài)的良好指標(biāo)。CD44則是上皮-間質(zhì)轉(zhuǎn)化關(guān)鍵調(diào)節(jié)因子,能夠驅(qū)動(dòng)癌癥相關(guān)的信號(hào)傳導(dǎo),促進(jìn)腫瘤的轉(zhuǎn)移過程。而進(jìn)一步敲低BSN可顯著上調(diào)U251細(xì)胞中PCNA和CD44蛋白的表達(dá)水平。因此,敲低BSN可能增強(qiáng)U251細(xì)胞的增殖能力與遷移能力,BSN有可能是抑制膠質(zhì)瘤發(fā)生發(fā)展的關(guān)鍵基因。但敲低BSN對(duì)U251細(xì)胞增殖與遷移能力的影響及具體機(jī)制還不夠明確,后續(xù)研究將對(duì)此進(jìn)行深入探討,以期為靶向治療膠質(zhì)瘤提供實(shí)驗(yàn)數(shù)據(jù)。
[參考文獻(xiàn)]
[1]OSTROM Q T, BAUCHET L, DAVIS F G, et al. The epidemiology of glioma in adults: a “state of the science” review[J]. Neuro-oncology, 2014,16(7):896-913.
3期周曉彤,等. 膠質(zhì)瘤組織BSN表達(dá)及其對(duì)病人預(yù)后的影響349
[2]LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathologica, 2016,131(6):803-820.
[3]GRAUS F, BRUNA J, PARDO J, et al. Patterns of care and outcome for patients with glioblastoma diagnosed during 2008—2010 in Spain[J]. Neuro-oncology, 2013,15(6):797-805.
[4]DA C X, PU J, LIU Z, et al. HACE1-mediated NRF2 activation causes enhanced malignant phenotypes and decreased ra-diosensitivity of glioma cells[J]. Signal Transduction and Targeted Therapy, 2021,6(1):399.
[5]OKERLUND N D, SCHNEIDER K, LEAL-ORTIZ S, et al. Bassoon controls presynaptic autophagy through Atg5[J]. Neuron, 2018,97(3):727.
[6]WAITES C L, LEAL-ORTIZ S A, OKERLUND N, et al. Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation[J]. The EMBO Journal, 2013,32(7):954-969.
[7]MARTINEZ P, PATEL H, YOU Y W, et al. Bassoon contributes to tau-seed propagation and neurotoxicity[J]. Nature Neuroscience, 2022,25(12):1597-1607.
[8]BLEEKER F E, MOLENAAR R J, LEENSTRA S. Recent advances in the molecular understanding of glioblastoma[J]. Journal of Neuro-Oncology, 2012,108(1):11-27.
[9]GONZLEZ-MAGAA A, BLANCO F J. Human PCNA structure, function and interactions[J]. Biomolecules, 2020,10(4):570.
[10]HASSN MESRATI M, SYAFRUDDIN S E, MOHTAR M A, et al. CD44: a multifunctional mediator of cancer progression[J]. Biomolecules, 2021,11(12):1850.
[11]BATASH R, ASNA N, SCHAFFER P, et al. Glioblastoma multiforme, diagnosis and treatment; recent literature review[J]. Current Medicinal Chemistry, 2017, 24(27):3002-3009.
[12]XU S C, TANG L, LI X Z, et al. Immunotherapy for glioma: Current management and future application[J]." Cancer Letters, 2020,476:1-12
[13]CHEN R, SMITH-COHN M, COHEN A L, et al. Glioma subclassifications and their clinical significance[J]." Neurothe-rapeutics, 2017,14(2):284-297.
[14]WICK W, KESSLER T. New glioblastoma heterogeneity atlas—a shared resource[J]. Nature Reviews Neurology, 2018,14:453-454.
[15]CHOUDHARY S, BURNS S C, MIRSAFIAN H, et al. Genomic analyses of early responses to radiation inglioblastoma reveal new alterations at transcription, splicing, and translation levels[J]. Scientific Reports, 2020,10(1):8979.
[16]LAPOINTE S, PERRY A, BUTOWSKI N A. Primary brain tumours in adults[J]. Lancet, 2018,392(10145):432-446.
[17]GRIMM S A, CHAMBERLAIN M C. Brainstem glioma: a review[J]." Current Neurology and Neuroscience Reports, 2013,13(5):346.
[18]GUSYATINER O, HEGI M E. Glioma epigenetics: From subclassification to novel treatment options[J]." Seminars in Cancer Biology, 2018,51:50-58.
[19]XU C, XIAO M L, LI X, et al. Origin, activation, and targeted therapy of glioma-associated macrophages[J]. Frontiers in Immunology, 2022,13:974996.
[20]CHI Y B, ZHU S S, WANG C, et al. Glioma homing peptide-modified PEG-PCL nanoparticles for enhanced anti-glioma therapy[J]. Journal of Drug Targeting, 2016,24(3):224-232.
[21]GARCIA J, HURWITZ H I, SANDLER A B, et al. Bevacizumab (Avastin) in cancer treatment: a review of 15 years of clinical experience and future outlook[J]. Cancer Treatment Reviews, 2020,86:102017.
[22]LI M G, KROETZ D L. Bevacizumab-induced hypertension:clinical presentation and molecular understanding[J]. Pharmacology amp; Therapeutics, 2018,182:152-160.
[23]CHINOT O L, DE LA MOTTE ROUGE T, MOORE N, et al. AVAglio: phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme[J]. Advances in Therapy, 2011,28(4):334-340.
[24]CHINOT O L, WICK W, MASON W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma[J]. The New England Journal of Medicine, 2014,370(8):709-722.
[25]RIMINI M, RIMASSA L, UESHIMA K, et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis[J]." ESMO Open, 2022,7(6):100591.
[26]DIAZ R J, ALI S, QADIR M G, et al. The role of bevacizu-mab in the treatment of glioblastoma[J]." Journal of Neuro-Oncology, 2017,133(3):455-467.
[27]TREIBER H, VON DER BRELIE C, MALINOVA V, et al. Regorafenib for recurrent high-grade glioma: a unicentric retrospective analysis of feasibility, efficacy, and toxicity[J]. Neurosurgical Review, 2022,45(5):3201-3208.
[28]LOMBARDI G, DE SALVO G L, BRANDES A A, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. The Lancet Oncology, 2019,20(1):110-119.
[29]JIANG J W, ZHANG L, CHEN H N, et al. Regorafenib induces lethal autophagy arrest by stabilizing PSAT1 in glioblastoma[J]. Autophagy, 2020,16(1):106-122.
[30]OSUKA S, VAN MEIR E G. Overcoming therapeutic resis-tance in glioblastoma: the way forward[J]. The Journal of Clinical Investigation, 2017,127(2):415-426.
(本文編輯于國(guó)藝)