[摘要]目的探討外側(cè)蒼白球(GPe)立體定位注射鐵死亡誘導(dǎo)劑RSL3或Erastin對小鼠運(yùn)動(dòng)行為的影響。方法將8周齡雄性C57BL/6小鼠隨機(jī)分為對照組8只、實(shí)驗(yàn)組24只(Erastin組12只、RSL3組12只)。借助腦立體定位注射技術(shù),實(shí)驗(yàn)組小鼠GPe雙側(cè)注射200 nL的RSL3或Erastin(濃度為10 μmol/L),對照組小鼠注射等體積生理鹽水。兩周后,采用步態(tài)分析實(shí)驗(yàn)檢測小鼠的運(yùn)動(dòng)能力,采用免疫印跡法檢測小鼠GPe中長鏈酯酰輔酶A合成酶4(ACSL4)和谷胱甘肽過氧化物酶4(GPX4)的表達(dá)。結(jié)果與對照組相比,Erastin組和RSL3組小鼠的擺動(dòng)速度均升高,RSL3組小鼠的最大接觸面積、腳印面積和步幅長度均發(fā)生明顯改變,差異均有顯著性(F=5.433~7.486,q=4.039~5.446,P<0.05)。Erastin組和RSL3組小鼠GPe中GPX4表達(dá)水平均明顯下降,而RSL3組小鼠GPe中ACSL4表達(dá)水平明顯升高,差異均有統(tǒng)計(jì)學(xué)意義(F=6.207、19.740,q=3.847~7.735,P<0.01)。結(jié)論小鼠GPe立體定位注射鐵死亡誘導(dǎo)劑RSL3或Erastin兩周后可發(fā)生鐵死亡,運(yùn)動(dòng)行為增強(qiáng)。
[關(guān)鍵詞]蒼白球;鐵死亡;立體定位技術(shù);移動(dòng);小鼠,近交C57BL
[中圖分類號(hào)]R322.81;R329.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2024)03-0317-05
doi:10.11712/jms.2096-5532.2024.60.048[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240424.0943.005;2024-04-2417:07:50
Effect of stereotactic injection of a ferroptosis inducer in the external segment of globus pallidus on motor behavior in miceWANG Juan, LI Hui, SONG Ning, XIE Junxia (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate the effect of stereotactic injection of the ferroptosis inducer RSL3 or Erastin in the external segment of the globus pallidus (GPe) on the motor behavior of mice. MethodsMale C57BL/6 mice, aged 8 weeks, were randomly divided into control group with 8 mice and experimental group with 24 mice (12 mice in Erastin group and 12 mice in RSL3 group). By means of the stereotactic injection technique, the mice in the experimental group were injected with 200 nL RSL3 or Erastin (with a concentration of 10 μmol/L) into the bilateral GPe, and thosein the control group were injected with an equal volume of normal saline. After two weeks, gait analysis was used to observethe motor behavior of mice, and Western blot was used to measure the protein expression levels of long-chain acyl-CoA synthetase 4 (ACSL4) and glutathione peroxidase 4 (GPX4) in mouse GPe. ResultsCompared with the control group, the Erastin group and the RSL3 group had a significant increase in the swing speed of mice, and the RSL3 group had significant changes in maximum contact area, footprint area, and stride length (F=5.433-7.486,q=4.039-5.446,Plt;0.05). Compared with the control group, the Erastin group and the RSL3 group had a significant reduction in the protein expression level of GPX4 in the GPe of mice, and the RSL3 group had a significant increase in the protein expression level of ACSL4 (F=6.207,19.740;q=3.847-7.735;Plt;0.01). ConclusionStereotactic injection of the ferroptosis inducer RSL3 or Erastin in the GPe of mice can induce ferroptosis after two weeks, with enhanced motor behavior of mice.
[Key words]globus pallidus; ferroptosis; stereotactic techniques; locomotion; mice, inbred C57BL
帕金森?。≒D)是一種常見的神經(jīng)退行性疾病,其患病率隨著年齡的增長而上升[1]。PD的神經(jīng)病理學(xué)標(biāo)志是黑質(zhì)(SN)致密部(SNc)出現(xiàn)多巴胺能神經(jīng)元丟失,以及路易小體的形成。PD被認(rèn)為是一種多系統(tǒng)疾病,其臨床主要表現(xiàn)為運(yùn)動(dòng)遲緩、靜息性震顫、僵直、姿勢和步態(tài)改變等運(yùn)動(dòng)癥狀,以及嗅覺減退、便秘、體位性低血壓、記憶喪失、抑郁、疼痛和睡眠障礙等非運(yùn)動(dòng)癥狀[1-2]。蒼白球(GP),又稱為舊紋狀體,分為內(nèi)側(cè)蒼白球(GPi)和外側(cè)蒼白球(GPe),位于基底神經(jīng)節(jié)的中心位置。GPe內(nèi)95%的神經(jīng)元為γ-氨基丁酸抑制性神經(jīng)元,是基底神經(jīng)節(jié)的主要輸出核團(tuán),在間接通路中連接紋狀體與丘腦底核,在運(yùn)動(dòng)功能調(diào)節(jié)方面發(fā)揮重要作用[3]。在PD中GPe功能障礙幾乎與所有的運(yùn)動(dòng)和非運(yùn)動(dòng)癥狀有關(guān)。鐵死亡是鐵依賴性的脂質(zhì)過氧化驅(qū)動(dòng)的一種獨(dú)特的細(xì)胞死亡方式[4]。Erastin和RSL3是兩種經(jīng)典的鐵死亡誘導(dǎo)劑。Erastin通過抑制Xc-系統(tǒng),促進(jìn)細(xì)胞對胱氨酸的攝取減少,從而降低細(xì)胞內(nèi)還原型谷胱甘肽(GSH)的水平;可以改變線粒體外膜的通透性,其作用靶點(diǎn)是電壓依賴性陰離子通道(VDACs);還可以通過調(diào)節(jié) ACSL4 來刺激脂質(zhì)過氧化[5-11]。RSL3是另一種鐵死亡誘導(dǎo)劑[12],它不依賴于VDACs或Xc-系統(tǒng),而是通過與 GPX4 的結(jié)合導(dǎo)致后者失去活性,因此一般認(rèn)為GPX4參與 RSL3 誘導(dǎo)的鐵死亡,導(dǎo)致脂質(zhì)過氧化物的積累增加[13-17]。在PD的體外和體內(nèi)模型中,鐵死亡已被證明是一種普遍的細(xì)胞死亡方式[18-19]。PD病人雖然存在蒼白球鐵沉積,但尚無研究報(bào)道是否存在鐵死亡,GPe鐵死亡是否與運(yùn)動(dòng)行為相關(guān)更無從可知[20]。本研究通過GPe立體定位注射鐵死亡誘導(dǎo)劑RSL3或Erastin探究其對小鼠運(yùn)動(dòng)行為影響。
1材料和方法
1.1實(shí)驗(yàn)材料
1.1.1實(shí)驗(yàn)動(dòng)物與飼養(yǎng)SPF級(jí)雄性C57BL/6小鼠,8周齡,體質(zhì)量(21±2)g,購自江蘇集萃藥康生物科技股份有限公司。將小鼠飼養(yǎng)于可自由飲水取食、室溫(20±2)℃、濕度(50±5)%、晝夜循環(huán)光照(12 h/12 h)的清潔環(huán)境中。動(dòng)物實(shí)驗(yàn)符合青島大學(xué)動(dòng)物倫理學(xué)要求。
1.1.2主要試劑及來源Erastin購自美國Sigma公司,RSL3購自美國Selleck公司,ACSL4、GPX4一抗均購自英國abcam公司, Rabbit-Anti-β-actin一抗購自中國博奧森公司,Goat-Anti-Rabbit IgG二抗購自中國愛必信公司。
1.2實(shí)驗(yàn)方法
1.2.1動(dòng)物分組與處理將小鼠隨機(jī)分為對照組(8只)和實(shí)驗(yàn)組(Erastin組12只、RSL3組12只)。用異氟烷對小鼠進(jìn)行全身麻醉,然后將其固定在腦立體定位儀上。將小鼠顱腦背側(cè)皮膚切開,以體積分?jǐn)?shù)0.03的過氧化氫溶液從顱骨表面擦洗,直至顱縫和前后囟清晰可見。調(diào)整確定坐標(biāo)(右側(cè)GPe立體定位坐標(biāo)為前囟后0.35 mm、右旁開2.05 mm、深度3.70 mm)后,采用微量注射泵在兩側(cè)GPe注射200 nL生理鹽水或鐵死亡誘導(dǎo)劑(RSL3或Erastin,濃度均為10 μmol/L),流量為0.5 nL/s,注射結(jié)束后留針10 min再緩慢退針。注射兩周后對小鼠進(jìn)行行為學(xué)檢測。
1.2.2步態(tài)分析實(shí)驗(yàn)通過Cat Walk(Noldus)自動(dòng)化步態(tài)測試,對小鼠的運(yùn)動(dòng)量和運(yùn)動(dòng)協(xié)調(diào)性進(jìn)行評價(jià)。采用爪印的長度或?qū)挾?、爪印與玻璃板的接觸面積、接觸壓強(qiáng)和步長等靜態(tài)參數(shù),還有擺動(dòng)速度、站立時(shí)間、站立指數(shù)、懸空時(shí)間和行走周期時(shí)間等動(dòng)態(tài)參數(shù),評估運(yùn)動(dòng)能力。以正常步態(tài)比例、雙足側(cè)向間距、支撐力等為指標(biāo),評價(jià)運(yùn)動(dòng)協(xié)調(diào)能力及姿態(tài)穩(wěn)定性。在收集數(shù)據(jù)時(shí),要保證每只小鼠收集到最少3個(gè)有效循環(huán),系統(tǒng)會(huì)自動(dòng)地對所有參數(shù)進(jìn)行記錄,并取其平均值進(jìn)行統(tǒng)計(jì)分析。
1.2.3免疫印跡法檢測鐵死亡相關(guān)蛋白ACSL4與GPX4的表達(dá)行為學(xué)檢測結(jié)束后,處死小鼠,取新鮮的GPe并測定其質(zhì)量。將 RIPA蛋白裂解液加入組織樣品中(每毫克25 μL),機(jī)械破碎后將其放置在冰面上30 min,使其完全裂解。然后,以4 ℃、12 000 r/min離心25 min,取出上清,用 BCA蛋白定量試劑盒對其進(jìn)行測定。將處理好的蛋白樣本進(jìn)行聚丙烯酰胺凝膠電泳后轉(zhuǎn)PVDF膜(0.45 μm)。用50 g/L脫脂奶粉在室溫下封閉2 h,然后分別加入一抗GPX4 (1∶5 000)、ACSL4 (1∶5 000)和β-actin(1∶10 000)在4 ℃下孵育過夜,再加入山羊抗兔二抗(1∶10 000)室溫孵育1 h。采用 ECL法進(jìn)行顯影。使用 Image J軟件進(jìn)行條帶灰度值計(jì)算,并以目標(biāo)蛋白與內(nèi)參照β-actin條帶灰度值之比為指標(biāo)計(jì)算GPX4和ACSL4的相對表達(dá)量。
1.3統(tǒng)計(jì)學(xué)處理
應(yīng)用Prism 6軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料數(shù)據(jù)以±s表示,多組均數(shù)比較采用單因素方差分析(One-Way ANOVA),組間兩兩比較使用Turkey法。以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1鐵死亡誘導(dǎo)劑對小鼠運(yùn)動(dòng)行為影響
與對照組相比,Erastin組小鼠的右前肢擺動(dòng)速度升高(F=5.433,q=4.039,P<0.05),右前肢步幅長度增加(F=7.486,q=3.693,P<0.05)。與對照組相比,RSL3組小鼠的右前肢的擺動(dòng)速度升高、步幅長度增加(F=5.433、7.486,q=4.286、5.446,P<0.05、0.01),左前肢的擺動(dòng)速度、身體速度均升高(F=4.106、4.745,q=3.966、4.329,P<0.05),右前肢的最大接觸面積和腳印長度均明顯增加(F=6.540、6.465,q=4.286、5.012,P<0.01),右前肢最小強(qiáng)度明顯減?。‵=7.281,q=5.397,P<0.01),右后肢的身體速度升高、步幅長度增加(F=3.467、4.111,q=3.715、3.728,P<0.05),左后肢的身體速度升高、步幅長度增加(F=6.242、9.873,q=4.838、6.093,P<0.01、0.001)。見表1。
2.2鐵死亡誘導(dǎo)劑對GPe中ACSL4與GPX4蛋白表達(dá)影響
與對照組相比,Erastin組小鼠GPe中GPX4表達(dá)下降(F=6.207,q=3.847,P<0.05),ACSL4表達(dá)水平不變(F=19.740,q=1.419,Pgt;0.05)。與對照組相比較,RSL3組小鼠GPe中GPX4的表達(dá)水平明顯下降(F=6.207,q=4.618,P<0.05),ACSL4的表達(dá)水平則明顯升高(F=19.740,q=7.735,P<0.01)。見圖1。
3討論
正常生理狀態(tài)下,基底神經(jīng)節(jié)中鐵含量豐富,以GP和SN鐵含量最高,且隨年齡增長而累積[21-24]。在PD疾病狀態(tài)下,隨著磁共振成像技術(shù)的進(jìn)步,越來越多的證據(jù)表明SN中的鐵含量高于正常[25]。有證據(jù)表明,PD病人SN中的鐵含量與運(yùn)動(dòng)障礙相關(guān)[26]。有研究應(yīng)用磁敏感定量成像(QSM)技術(shù),分析早期PD組和晚期PD組病人的腦鐵含量,發(fā)現(xiàn)PD不同階段鐵積累呈區(qū)域進(jìn)行性模式,SNc的鐵沉積只在疾病的早期階段受到影響,而黑質(zhì)網(wǎng)狀部、紅核和GP,特別是GPi部分,則在疾病的晚期階段受到影響[27]。除了SN,在PD病人中GP鐵含量也升高[28]。特發(fā)性快速眼動(dòng)睡眠行為障礙(iRBD)是神經(jīng)退行性疾病的早期征象。QSM評估iRBD病人SN中的鐵含量增加,但是沒有發(fā)現(xiàn)GP中的鐵含量增加,這就說明PD病人GP鐵沉積可能是相對較晚的疾病特征[29]。
GPe是基底神經(jīng)節(jié)運(yùn)動(dòng)回路間接通路的關(guān)鍵組成部分,是連接紋狀體到丘腦底核的關(guān)鍵[30-32]。最近的研究表明,GPe中的小清蛋白(PV)神經(jīng)元直接投射到黑質(zhì)網(wǎng)狀部,與小鼠的運(yùn)動(dòng)能力直接相關(guān),并可激活基底神經(jīng)節(jié)中的多種核團(tuán),包括丘腦底核和GPi。運(yùn)用化學(xué)遺傳方法特異性滅活PV神經(jīng)元時(shí),神經(jīng)元自發(fā)放電頻率和小鼠運(yùn)動(dòng)功能明顯降低,但是小鼠的逆轉(zhuǎn)學(xué)習(xí)不受影響。在6-羥多巴胺誘導(dǎo)的PD模型小鼠中,利用光遺傳技術(shù)特異性激活GPe的PV神經(jīng)元可以顯著提高小鼠在開闊場實(shí)驗(yàn)中的運(yùn)動(dòng)速度,提示其運(yùn)動(dòng)能力增強(qiáng)[33]。PV神經(jīng)元是GPe占GABA神經(jīng)元比例最高的神經(jīng)元類型,快速高頻放電的特性使其呈現(xiàn)高代謝需求,因此對氧化應(yīng)激特別敏感[34]。有研究報(bào)道,在PD病人的尸檢腦組織和6-羥多巴胺誘導(dǎo)的PD模型小鼠中,GPe中PV神經(jīng)元的數(shù)量減少[35-36]。我們推測,PD時(shí)GPe鐵沉積很可能通過誘導(dǎo)鐵死亡造成PV神經(jīng)元活動(dòng)異常從而參與PD運(yùn)動(dòng)障礙。
本文實(shí)驗(yàn)結(jié)果表明,在GPe立體定位注射鐵死亡誘導(dǎo)劑RSL3或Erastin兩周后,GPX4蛋白表達(dá)水平明顯下降,提示GPe中發(fā)生鐵死亡,但行為學(xué)檢測結(jié)果顯示小鼠運(yùn)動(dòng)行為增強(qiáng)。注射RSL3兩周后,ACSL4蛋白的表達(dá)水平明顯升高,而Erastin組GPe中ACSL4蛋白沒有變化。其原因可能是兩種藥物的作用靶點(diǎn)以及機(jī)制不同,Erastin主要是抑制Xc-系統(tǒng),作用靶點(diǎn)在VDACs,而RSL3主要是與GPX4結(jié)合。有研究表明,在神經(jīng)退行性變初期神經(jīng)元興奮性增加[35-37]。我們推測,GPe注射鐵死亡誘導(dǎo)劑后小鼠運(yùn)動(dòng)能力增強(qiáng),可能與GPe神經(jīng)元興奮性增加有關(guān),代表了GPe神經(jīng)元損傷的初期。本實(shí)驗(yàn)中所使用的鐵死亡誘導(dǎo)劑濃度較低、時(shí)間較短,雖然在小鼠的GPe中誘導(dǎo)了明顯的鐵死亡,但此時(shí)該腦區(qū)某些神經(jīng)元興奮性卻是升高的而不是降低的,隨著鐵死亡誘導(dǎo)劑濃度增加或者時(shí)間的延長可能會(huì)損傷神經(jīng)元而導(dǎo)致運(yùn)動(dòng)障礙。
綜上所述,本研究進(jìn)一步證實(shí)了GPe與小鼠運(yùn)動(dòng)行為相關(guān),為臨床上GPe神經(jīng)元活動(dòng)異常與PD運(yùn)動(dòng)障礙提供了新的實(shí)驗(yàn)證據(jù)。
[參考文獻(xiàn)]
[1]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson’s disease[J]. The Lancet Neuro-logy, 2021,20(5):385-397.
[2]COSTA H N, ESTEVES A R, EMPADINHAS N, et al. Parkinson’s disease: a multisystem disorder[J]. Neuroscience Bulletin, 2023,39(1):113-124.
[3]HEGEMAN D J, HONG E S, HERNNDEZ V M, et al. The external globus pallidus: progress and perspectives[J]. The European Journal of Neuroscience, 2016,43(10):1239-1265.
[4]STOCKWELL B R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022,185(14):2401-2421.
[5]DOLMA S, LESSNICK S L, HAHN W C, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003,3(3):285-296.
[6]YAN R, XIE E, LI Y, et al. The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis[J]." Cell Research, 2022,32(7):687-690.
[7]WANG L, LIU Y, DU T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]." Cell Death and Differentiation., 2020,27(2):662-675.
[8]LI Y, ZENG X, LU D, YIN M, SHAN M, GAO Y. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis[J]." Human Reproduction, 2021,36(4):951-964.
[9]YAGODA N, VON RECHENBERG M, ZAGANJOR E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels[J]. Nature, 2007,447(7146):864-868.
[10]ZHAO Y C, LI Y Q, ZHANG R F, et al. The role of erastin in ferroptosis and its prospects in cancer therapy[J]. OncoTargets and Therapy, 2020,13:5429-5441.
[11]YUAN H, LI X M, ZHANG X Y, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochemical and Biophysical Research Communications, 2016,478(3):1338-1343.
[12]YANG W S, STOCKWELL B R. Synthetic lethal screeningidentifies compounds activating iron-dependent, nonapoptoticcell death in oncogenic-RAS-harboring cancer cells[J]. Che-mistry amp; Biology, 2008,15(3):234-245.
3期王娟,等. 外側(cè)蒼白球注射鐵死亡誘導(dǎo)劑對小鼠運(yùn)動(dòng)行為的影響321
[13]SHIN D, KIM E H, LEE J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer[J]. Free Radical Biology and Medicine, 2018,129:454-462.
[14]YANG W S, KIM K J, GASCHLER M M, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(34):E4966-E4975.
[15]CHEFF D M, HUANG C, SCHOLZEN K C, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1[J]." Redox Biology, 2023,62:102703.
[16]CUI Y, ZHANG Z, ZHOU X, et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression[J]." Journal of Neuroinflammation, 2021,18(1):249.
[17]SUI X, ZHANG R, LIU S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]." Frontiers in Pharmacology, 2018,9:1371.
[18]YAN H F, ZOU T, TUO Q Z, et al. Ferroptosis: mechanisms and links with diseases[J]." Signal Transduction and Targeted Therapy, 2021,6(1):49.
[19]VAN B D, GOUEL F, JONNEAUX A, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC[J]. Neurobiology of Disease, 2016,94:169-178.
[20]ACOSTA-CABRONERO J, CARDENAS-BLANCO A, BETTS M J, et al. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson’s disease[J]. Brain: a Journal of Neurology, 2017,140(1):118-131.
[21]THOMAS G E C, ZARKALI A, RYTEN M, et al. Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson’s disease[J]." Brain: A Journal of Neurology, 2021,144(6):1787-1798.
[22]WOLOZIN B, GOLTS N. Iron and Parkinson’s disease[J]." The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 2002,8(1):22-32.
[23]JIMNEZ-JIMNEZ F J, ALONSO-NAVARRO H, GARCA-MARTN E, et al. Biological fluid levels of iron and iron-rela-ted proteins in Parkinson’s disease: review and meta-analysis[J]. European journal of neurology, 2021,28(3):1041-1055.
[24]XU Y, HUANG X, GENG X, et al. Meta-analysis of iron metabolism markers levels of Parkinson’s disease patients determined by fluid and MRI measurements[J]. Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements," 2023,78:127190.
[25]LANGLEY J, HE N Y, HUDDLESTON D E, et al. Reproducible detection of nigral iron deposition in 2 Parkinson’s di-sease cohorts[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2019,34(3):416-419.
[26]MOCHIZUKI H, CHOONG C J, BABA K. Parkinson’s di-sease and iron[J]. Journal of Neural Transmission, 2020,127(2):181-187.
[27]GUAN X J, XUAN M, GU Q Q, et al. Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping[J/OL]. NMR in Biomedicine, 2017,30(4):10.1002/nbm.3489. doi:10.1002/nbm.3489.
[28]UCHIDA Y, KAN H, SAKURAI K, et al. Voxel-based quantitative susceptibility mapping in Parkinson’s disease with mild cognitive impairment[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2019,34(8):1164-1173.
[29]SUN J Y, LAI Z Y, MA J H, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2020,35(3):478-485.
[30]GITTIS A H, BERKE J D, BEVAN M D, et al. New roles for the external globus pallidus in basal ganglia circuits and behavior[J]." The Journal of neuroscience: the official journal of the Society for Neuroscience, 2014,34(46):15178-15183.
[31]DONG J, HAWES S, WU J, et al. Connectivity and functio-nality of the globus pallidus externa under normal conditions and Parkinson’s disease[J]." Frontiers in neural circuits, 2021,15:645287.
[32]HEGEMAN D J, HONG E S, HERNNDEZ V M, et al. The external globus pallidus: progress and perspectives[J]." The European JJournal of Neuroscience, 2016,43(10):1239-1265.
[33]LILASCHAROEN V, WANG E H, DO N, et al. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits[J]. Nature Neuroscience, 2021,24(4):504-515.
[34]FERNNDEZ-SUREZ D, CELORRIO M, LANCIEGO J L, et al. Loss of parvalbumin-positive neurons from the globus pallidus in animal models of Parkinson disease[J]. Journal of Neuropathology and Experimental Neurology, 2012,71(11):973-982.
[35]HARDMAN C D, HALLIDAY G M. The external globus pallidus in patients with Parkinson’s disease and progressive supranuclear palsy[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 1999,14(4):626-633.
[36]TOZZI A, SCIACCALUGA M, LOFFREDO V, et al. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit[J]. Brain: a Journal of Neurology, 2021,144(11):3477-3491.
[37]LASSER-KATZ E, SIMCHOVITZ A, CHIU W H, et al. Mutant α-synuclein overexpression induces stressless pacema-king in vagal motoneurons at risk in Parkinson’s disease[J]. The Journal of Neuroscience, 2017,37(1):47-57.
(本文編輯于國藝)