[摘要]非酒精性脂肪性肝病(NAFLD),是全球最常見的肝病,與胰島素抵抗、肥胖和代謝綜合征密切相關(guān)。隨著年齡的增加,高血壓、高血脂、糖代謝異常等代謝疾病的發(fā)病率逐漸升高,而NAFLD通常因無癥狀而易被忽視,因此,尋找早期有效的診斷指標(biāo)對(duì)遏制疾病的發(fā)展十分必要。同型半胱氨酸是許多慢性疾病發(fā)生的危險(xiǎn)因素,如心血管疾病、糖尿病、NAFLD等,葉酸、維生素B12又與同型半胱氨酸的代謝密切相關(guān),本文就三者與NAFLD的關(guān)系作一綜述,為NAFLD的臨床診療提供新思路。
[關(guān)鍵詞]非酒精性脂肪性肝??;同型半胱氨酸;葉酸;維生素B12
doi:10.3969/j.issn.1674-7593.2024.03.017
Studies on the Relationship between Nonalcoholic Fatty Liver Diseaseand Homocysteine,F(xiàn)olic Acid and Vitamin B12
Zhang Yuying,Ma Luyao,Liu Siqi,Jin Zhenjing**
The Second Norman Bethune Hospital of Jilin University,Changchun130022
**Corresponding author:Jin Zhenjing,email:jinzj@jlu.edu.cn
[Abstract]Nonalcoholic fatty liver disease(NAFLD),a prevalent liver disorder globally,is strongly associated with insulin resistance,obesity,and metabolic syndrome.As individuals grow older,the likelihood of developing metabolic disorders such as hypertension,hyperlipidemia,and abnormal glucose metabolism increases gradually.NAFLD,which often lacks noticeable symptoms,tends to be overlooked.Therefore,it is important to identify early and effective diagnostic indicators in order to control the progression of the disease.Homocysteine is a known risk factor for several chronic illnesses,including cardiovascular disease,diabetes,and NAFLD.Folic acid and vitamin B12 play a significant role in the metabolism of homocysteine.This paper examines the correlation between the three factors and NAFLD,and presents novel concepts for potential clinical diagnostic and treatment approaches in the future.
[Key words]Non-alcoholic fatty liver disease;Homocysteine;Folic acid;Vitamin B12
非酒精性脂肪性肝?。∟onalcoholic fatty liver disease,NAFLD)是一種與胰島素抵抗、肥胖和代謝綜合征密切相關(guān)的代謝性疾病,是目前最常見的肝病,影響了全球約25%的人群,預(yù)計(jì)未來將成為肝硬化患者進(jìn)行肝移植的主要原因[1]。隨著年齡的增長(zhǎng),NAFLD的發(fā)病率也逐漸上升。NAFLD包括單純性脂肪肝(Simple fatty liver,SFL)、非酒精性脂肪性肝炎(Nonalcoholic steatohepatitis,NASH)及其相關(guān)肝硬化(Liver cirrhosis,LC),嚴(yán)重者甚至可以進(jìn)展為肝細(xì)胞癌(Hepatocellular carcinoma,HCC)。肝脂肪變性是NAFLD發(fā)病機(jī)制中的主要步驟。因此,控制肝臟脂肪積累對(duì)于預(yù)防或逆轉(zhuǎn)NAFLD的進(jìn)展至關(guān)重要。NAFLD通常由于無癥狀而易被忽視,因此,能夠準(zhǔn)確預(yù)測(cè)NAFLD發(fā)生和發(fā)展的生物標(biāo)志物對(duì)患者的健康是十分必要的。既往多項(xiàng)研究證明,同型半胱氨酸(Homocysteine,Hcy)是多種慢性疾病發(fā)生的危險(xiǎn)因素,肝臟是代謝Hcy的重要器官[2]。葉酸(Folic acid,F(xiàn)A)和維生素B12(Vitamin B12,Vit B12)在Hcy的代謝過程中起重要作用。FA在二氫葉酸還原酶的作用下還原為四氫葉酸,進(jìn)一步生成5,10-亞甲基四氫葉酸,在亞甲基四氫葉酸還原酶(Methylenetetrahydrofolate reductase,MTHFR)的催化下生成5-甲基四氫葉酸,Vit B12作為載體與 5-甲基四氫葉酸在甲硫氨酸合酶的催化下為Hcy提供甲基,重新合成甲硫氨酸,見圖1。Hcy、FA及Vit B12與NAFLD存在相關(guān)性,有可能作為早期診斷NAFLD的新型的血清標(biāo)志物。本文就Hcy、FA及Vit B12與NAFLD關(guān)系的研究進(jìn)展展開綜述。
1Hcy與NAFLD
Hcy是由甲硫氨酸(Methionine,Met),又稱蛋氨酸,脫甲基后生成。Hcy主要通過兩條途徑代謝:①Hcy甲基化重新合成Met;②Hcy通過轉(zhuǎn)硫途徑生成半胱氨酸(Cysteine,Cys)。病理情況下或Hcy代謝途徑中任一環(huán)節(jié)受阻,血漿Hcy濃度升高,出現(xiàn)高Hcy血癥(Hyperhomocysteinemia,HHcy)。Met是人體必需氨基酸之一,不能在體內(nèi)合成,必須從食物中獲得。高M(jìn)et飲食喂養(yǎng)會(huì)增加血漿Hcy水平,并且一定程度的HHcy可以促進(jìn)小鼠NAFLD的發(fā)展[3]。但另一項(xiàng)研究表明,膳食中缺乏Met和Met補(bǔ)充過量都可以使肝臟內(nèi)Hcy水平升高,這與Ahcy和Cbs基因表達(dá)減少相關(guān),它們是Hcy代謝途徑中的關(guān)鍵基因[4]。Ahcy基因編碼腺苷同型半胱氨酸酶(Adenosylhomocysteinase,Ahcy),可催化S-腺苷同型半胱氨酸(S-adenosyl homocysteine,SAH)可逆地水解為Hcy和腺苷,Cbs基因編碼胱硫醚-β-合成酶,促進(jìn)Hcy進(jìn)入轉(zhuǎn)硫途徑,生成Cys,從而降低Hcy的水平,故Ahcy和Cbs基因表達(dá)的下調(diào)與SAH和Hcy的升高密切相關(guān),同時(shí)Hcy可能激活脂肪生成的轉(zhuǎn)錄因子,主要是固醇調(diào)節(jié)原件結(jié)合蛋白1(Sterol regulatory element-binding protein 1,SREBP1),脂質(zhì)代謝基因和蛋白質(zhì)表達(dá)紊亂伴隨著肝臟脂質(zhì)積累,最終引發(fā)NAFLD。NAFLD患者的Hcy水平較高[5]。一項(xiàng)納入7 203例樣本的橫斷面研究顯示,Hcy水平升高與中國(guó)成人NAFLD的患病率呈正相關(guān),且與男性、正常體質(zhì)量和吸煙受試者相比,在女性、肥胖和不吸煙的成年人中觀察到的相關(guān)性更強(qiáng)[6]。
Hcy與NAFLD之間的機(jī)制目前尚未明確,可能與MTHFR的某些基因突變有關(guān)[7]。MTHFR中C677T和A1298C的多態(tài)性使Hcy代謝紊亂,導(dǎo)致其體內(nèi)濃度增加。序數(shù)回歸分析表明,由這兩種多態(tài)性引起的FA和Met代謝的變化與對(duì)歐洲人脂肪肝疾病無顯著影響[8]。而在中國(guó)人群中,MTHFR的C677T基因型和NAFLD在升高Hcy水平方面具有協(xié)同作用,但與NAFLD風(fēng)險(xiǎn)增加無直接相關(guān)性[9]。一項(xiàng)對(duì)照研究表明,MTHFR的C677T和A1298C多態(tài)性不是NAFLD發(fā)展的遺傳危險(xiǎn)因素,雖然NAFLD受試者中存在較高水平的Hcy,但這與肝病嚴(yán)重程度無關(guān)[10]。這些研究表明,基因的多態(tài)性在不同人種中的表現(xiàn)不同。
有學(xué)者針對(duì)Hcy對(duì)NAFLD病程的影響展開了研究,結(jié)果顯示,診斷為NAFLD的患者中,Hcy水平與NAFLD患者晚期纖維化風(fēng)險(xiǎn)獨(dú)立相關(guān)[11]。Hcy升高會(huì)誘導(dǎo)和加劇NASH的病程,與肝臟的炎癥和纖維化呈正相關(guān)[12]。在此項(xiàng)研究中還發(fā)現(xiàn)NASH中多種肝蛋白的Hcy化和泛素化增加,其中包括一種關(guān)鍵的自噬體/溶酶體融合蛋白,突觸融合蛋白17(Syntaxin 17,Stx17),被Hcy化和泛素化后,這些蛋白的降解會(huì)導(dǎo)致自噬受阻,在Hcy升高的NASH患者的自噬、炎癥和纖維化中都起著關(guān)鍵作用。
2FA與NAFLD
FA水平與罹患NAFLD的風(fēng)險(xiǎn)呈負(fù)相關(guān)[13]。一項(xiàng)納入8 397例病例的調(diào)查顯示,只有紅細(xì)胞FA與NAFLD風(fēng)險(xiǎn)增加獨(dú)立相關(guān)[11]。肝臟的炎癥是影響脂肪性肝病進(jìn)展的重要因素。FA可以通過降低反應(yīng)活性氧(Reactive oxygen species,ROS)和Hcy的水平來減少肝癌HepG2細(xì)胞的炎癥,從而抑制核因子激活的B細(xì)胞的κ-輕鏈(Nuclear factor-kappa B,NF-κB)通路增強(qiáng),起到抗炎作用[14]。高脂肪飲食小鼠補(bǔ)充FA后NF-κB活化和炎癥因子的表達(dá)顯著降低,肝臟脂肪積累和炎癥灶的聚集都有所減輕[15]。
從基因角度研究,NAFLD大鼠FA的抗脂肪變性、胰島素增敏、降糖和促脂作用可能與肝臟微RNA miR-21、miR-34a和miR-122的表觀遺傳調(diào)控及其靶基因(HBP1、SIRT1和SREBP-1c)的表達(dá)有關(guān)[16]。補(bǔ)充FA可改善喂食高果糖大鼠的肝脂肪變性,其機(jī)制可能是提高了肝激酶B1(Liver kinase B1,LKB1)和磷酸化AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)的水平,抑制了肝臟中乙酰輔酶A羧化酶(Acetyl coenzyme A carboxylase,ACC)的磷酸化,增加了肝臟中的S-腺苷甲硫氨酸(S-adenosylmethionine,SAM),從而抑制肝臟脂肪生成,改善了肝脂肪變性[17]。FA可以通過沉默信息調(diào)節(jié)因子1(Silence information regulation factor 1,SIRT1)依賴機(jī)制上調(diào)過氧化物酶體增殖物激活的受體α(Peroxisome proliferator-activated receptor alpha,PPARα)水平,改善肝臟脂代謝,恢復(fù)肝臟單碳代謝和腸道微生物群多樣性,從而減弱NASH[18]。自噬功能障礙也是導(dǎo)致NAFLD發(fā)生的重要機(jī)制。給予NAFLD大鼠不同劑量的FA,可以抑制促炎細(xì)胞因子腫瘤壞死因子-α(Tumornecrosis factor-alpha,TNF-α)、白細(xì)胞介素-8(Interleukin 8,IL-8)和自噬標(biāo)志物L(fēng)C3B蛋白的表達(dá),并增加IL-22水平,且與FA的劑量顯著相關(guān),這說明FA有調(diào)節(jié)促炎細(xì)胞因子和自噬產(chǎn)生的能力[19]。膳食FA或Vit B12也可促進(jìn)Hcy酶促轉(zhuǎn)化為Met,降低HHcy和肝臟Hcy化蛋白的水平,恢復(fù)Stx17表達(dá)和自噬,刺激脂肪酸的β氧化,改善NASH[12]。將新生雞的原代肝細(xì)胞作為早期脂肪肝體外的自然模型探討FA是否可以預(yù)防脂肪肝,結(jié)果發(fā)現(xiàn),F(xiàn)A可以抑制新生脂肪酸的合成,協(xié)調(diào)促進(jìn)甘油三酯水解,減少其沉積[20]。該研究還發(fā)現(xiàn)脂肪生成抑制可能是減弱了胰島素/胰島素樣生長(zhǎng)因子(Insulin-like growth factors,IGF)信號(hào)介導(dǎo)的磷脂酰肌醇3激酶-蛋白激酶B-固醇調(diào)節(jié)原件結(jié)合蛋白(Phosphatidylinositol 3 kinase-Protein kinase B-Sterol regulates element-binding proteins,PI3K-AKT-SREBP)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑,所以IGF2抑制劑和PI3K抑制劑能減少甘油三酯的沉積,在未來可能可以用于預(yù)防NAFLD。
3Vit B12與NAFLD
Vit B12作為輔酶參與葉酸循環(huán),也可以作為線粒體酶甲基丙二酰輔酶A變位酶的輔因子,調(diào)節(jié)長(zhǎng)鏈脂肪酰輔酶A轉(zhuǎn)移至線粒體的速率,并影響脂質(zhì)代謝。NAFLD受試者和健康對(duì)照組的Vit B12和FA水平差異無統(tǒng)計(jì)學(xué)意義,但補(bǔ)充Vit B12可以降低NAFLD患者Hcy水平[21]。Vit B12有望成為NAFLD的治療靶點(diǎn)。但一項(xiàng)Meta分析顯示,與非NAFLD患者相比,NAFLD患者Vit B12的水平?jīng)]有變化[22]。血清Vit B12水平與NAFLD呈非線性關(guān)系[23]。但也有研究表明,與缺少健康飲食的人相比,飲食營(yíng)養(yǎng)豐富的人,尤其是食物中含有充足的維生素,患NAFLD的風(fēng)險(xiǎn)較低[24]。低水平的Vit B12與NASH的組織學(xué)嚴(yán)重程度顯著相關(guān)[25]。與之相反,有些研究認(rèn)為,血清Vit B12水平與肝纖維化呈正相關(guān),甚至在單純性脂肪變性和肝纖維化的更晚期階段,血清Vit B12水平更高[26]。關(guān)于Vit B12與NAFLD的關(guān)系、機(jī)制尚未明確,還需要更進(jìn)一步地深入研究。
4小結(jié)與展望
綜上所述,Hcy、FA、Vit B12與NAFLD有著密切的關(guān)系,HHcy血癥、低FA、低Vit B12可能促進(jìn)NAFLD的發(fā)生。外源性補(bǔ)充FA、Vit B12可以抑制炎癥途徑,降低Hcy水平,可能有助于改善NAFLD的進(jìn)展,可能是一個(gè)新的治療方向。目前在臨床,仍沒有可靠的血液生物標(biāo)志物代替影像學(xué)檢查診斷脂肪肝,所以對(duì)于Hcy、FA和Vit B12在血清中表達(dá)水平能否用于NAFLD的診斷仍存在爭(zhēng)議,NAFLD的發(fā)生是多種因素介導(dǎo)的復(fù)雜過程,具體作用機(jī)制以及應(yīng)如何治療和預(yù)防,仍需大量的流行病學(xué)研究及臨床試驗(yàn)予以進(jìn)一步辨證。
參考文獻(xiàn)
[1]Khan RS,Bril F,Cusi K,et al.Modulation of insulin resistance in nonalcoholic fatty liver disease[J].Hepatology,2019,70(2):711-724.
[2]中國(guó)營(yíng)養(yǎng)學(xué)會(huì)骨健康與營(yíng)養(yǎng)專業(yè)委員會(huì),中華醫(yī)學(xué)會(huì)腸外腸內(nèi)營(yíng)養(yǎng)學(xué)分會(huì),中國(guó)老年醫(yī)學(xué)學(xué)會(huì)北方慢性病防治分會(huì).高同型半胱氨酸血癥診療專家共識(shí)[J].腫瘤代謝與營(yíng)養(yǎng)電子雜志,2020,7(3):283-288.
Society BHaNBoCN,Nutrition CSoPaE,Society NCDPaTBoCG.Expert consensus on hyperhomocysteinemia[J].Electron J Metab Nutr Cancer,2020,7(3):283-288.
[3]Ai Y,Sun Z,Peng C,et al.Homocysteine induces hepatic steatosis involving ER stress response in high methionine diet-fed mice[J].Nutrients,2017,9(4):346.
[4]Aissa AF,Tryndyak V,de Conti A,et al.Effect of methionine-deficient and methionine-supplemented diets on the hepatic one-carbon and lipid metabolism in mice[J].Mol Nutr Food Res,2014,58(7):1502-1512.
[5]Hu Y,Liu J,Dong X,et al.Clinical study of serum homocysteine and non-alcoholic fatty liver disease in euglycemic patients[J].Med Sci Monit,2016,22:4146-4151.
[6]Dai H,Wang W,Tang X,et al.Association between homocysteine and non-alcoholic fatty liver disease in Chinese adults: a cross-sectional study[J].Nutr J,2016,15(1):102.
[7]de Carvalho SC,Muniz MT,Siqueira MD,et al.Plasmatic higher levels of homocysteine in non-alcoholic fatty liver disease(NAFLD)[J].Nutr J,2013,12:37.
[8]De Vincentis A,Mancina RM,Pihlajamki J,et al.Genetic variants in the MTHFR are not associated with fatty liver disease[J].Liver Int,2020 Aug;40(8):1934-1940.
[9]Wang X,Zhou Y,Zhang M,et al.The methylenetetrahydrofolate reductase genotype 677CT and non-alcoholic fatty liver disease have a synergistic effect on the increasing homocysteine levels in subjects from Chongqing,China[J].Genes Dis,2019,6(1):88-95.
[10]Franco Brochado MJ,Domenici FA,Candolo Martinelli Ade L,et al.Methylenetetrahydrofolate reductase gene polymorphism and serum homocysteine levels in nonalcoholic fatty liver disease[J].Ann Nutr Metab,2013,63(3):193-199.
[11]Li L,Huang Q,Yang L,et al.The association between non-alcoholic fatty liver disease(NAFLD) and advanced fibrosis with serological vitamin B12 markers: results from the NHANES 1999-2004[J].Nutrients,2022,14(6):1224.
[12]Tripathi M,Singh BK,Zhou J,et al.Vitamin B12 and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17 homocysteinylation[J].J Hepatol,2022,77(5):1246-1255.
[13]Yuan S,Chen J,Dan L,et al.Homocysteine,folate,and nonalcoholic fatty liver disease:a systematic review with meta-analysis and Mendelian randomization investigation[J].Am J Clin Nutr,2022,116(6):1595-1609.
[14]Bagherieh M,Kheirollahi A,Zamani-Garmsiri F,et al.Folic acid ameliorates palmitate-induced inflammation through decreasing homocysteine and inhibiting NF-κB pathway in HepG2 cells[J].Arch Physiol Biochem,2023,129(4):893-900.
[15]Sid V,Shang Y,Siow YL,et al.Folic acid supplementation attenuates chronic hepatic inflammation in high-fat diet fed mice[J].Lipids,2018,53(7):709-716.
[16]Salman M,Kamel MA,El-Nabi S,et al.The regulation of HBP1,SIRT1,and SREBP-1c genes and the related microRNAs in non-alcoholic fatty liver rats:the association with the folic acid anti-steatosis[J].PLoS One,2022,17(4):e0265455.
[17]Kim H,Min H.Folic acid supplementation prevents high fructose-induced non-alcoholic fatty liver disease by activating the AMPK and LKB1 signaling pathways[J].Nutr Res Pract,2020,14(4):309-321.
[18]Xin FZ,Zhao ZH,Zhang RN,et al.Folic acid attenuates high-fat diet-induced steatohepatitis via deacetylase SIRT1-dependent restoration of PPARα[J].World J Gastroenterol,2020,26(18):2203-2220.
[19]Youssry S,Kamel MA.Effect of folate supplementation on immunological and autophagy markers in experimental nonalcoholic fatty liver disease[J].Eur Cytokine Netw,2019,30(4):135-143.
[20]Liu Y,Shen J,Yang X,et al.Folic acid reduced triglycerides deposition in primary chicken hepatocytes[J].J Agric Food Chem,2018,66(50):13162-13172.
[21]Talari HR,Molaqanbari MR,Mokfi M,et al.The effects of vitamin B12 supplementation on metabolic profile of patients with non-alcoholic fatty liver disease:a randomized controlled trial[J].Sci Rep,2022,12(1):14047.
[22]Costa DS,Guahnon MP,Seganfredo FB,et al.Vitamin B12 and homocysteine levels in patients with NAFLD:a systematic review and meta-analysis[J].Arq Gastroenterol,2021,58(2):234-239.
[23]Peng H,Wang M,Pan L,et al.Associations of serum multivitamin levels with the risk of non-alcoholic fatty liver disease:a population-based cross-sectional study in U.S. adults[J].Front Nutr,2022,9:962705.
[24]Vahid F,Hekmatdoost A,Mirmajidi S,et al.Association between index of nutritional quality and nonalcoholic fatty liver disease:the role of vitamin D and B group[J].Am J Med Sci,2019,358(3):212-218.
[25]Mahamid M,Mahroum N,Bragazzi NL,et al.Folate and B12 levels correlate with histological severity in NASH patients[J].Nutrients,2018,10(4):440.
[26]Bertol FS,Araujo B,Jorge BB,et al.Role of micronutrients in staging of nonalcoholic fatty liver disease:a retrospective cross-sectional study[J].World J Gastrointest Surg,2020,12(6):269-276.
(2023-09-15收稿)