[摘要]"溶質(zhì)載體(solute"carrier,SLC)超家族成員數(shù)量龐大,功能繁多。研究證實(shí)SLC超家族部分成員可通過多種途徑參與白血病的發(fā)病過程,導(dǎo)致白血病細(xì)胞耐藥性增強(qiáng)、過度增殖、凋亡受阻、免疫逃逸等,其可作為白血病的潛在治療靶點(diǎn)之一。本文對(duì)SLC超家族部分成員在白血病中的研究進(jìn)展作一綜述,探究其在白血病的發(fā)生、發(fā)展、治療及預(yù)后等進(jìn)程中所扮演的角色,為白血病的臨床治療提供理論依據(jù)。
[關(guān)鍵詞]"溶質(zhì)載體超家族;白血病;發(fā)病機(jī)制;靶向治療
[中圖分類號(hào)]"R733.7""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.15.032
白血病是造血組織中某一血細(xì)胞系統(tǒng)過度增生、浸潤到各組織和器官而引起一系列臨床表現(xiàn)的惡性腫瘤[1]。溶質(zhì)載體(solute"carrier,SLC)超家族是人類基因組中最大的跨膜轉(zhuǎn)運(yùn)蛋白組,主要介導(dǎo)細(xì)胞與外界或細(xì)胞內(nèi)部各類溶質(zhì)的跨膜運(yùn)輸,在攝取營養(yǎng)物質(zhì)和其他外源性物質(zhì)的生理過程中發(fā)揮重要作用;研究發(fā)現(xiàn)SLC超家族中的多個(gè)成員參與藥物的吸收、分布、代謝和排泄過程,可作為藥物治療的直接靶點(diǎn)[2-3]。隨著對(duì)SLC超家族研究的不斷深入,人們發(fā)現(xiàn)SLC"2、SLC7A"7、SLC7A11、SLC19A1和SLC5A3等SLC超家族中的多個(gè)成員參與白血病的發(fā)病過程,通過多條信號(hào)通路調(diào)控白血病的發(fā)生發(fā)展。此外,多種SLC超家族成員可影響白血病細(xì)胞對(duì)化療藥物的攝取和清除。本文對(duì)SLC超家族部分成員在白血病中的研究進(jìn)展作一綜述,探究其在白血病的發(fā)生、發(fā)展、治療及預(yù)后等進(jìn)程中所扮演的角色,為白血病的臨床治療提供理論依據(jù)。
1""SLC超家族與急性淋巴細(xì)胞白血病
1.1""SLC2
研究表明,SLC2過表達(dá)可產(chǎn)生瓦爾堡效應(yīng),促進(jìn)腫瘤細(xì)胞的生長,其與腫瘤分期和不良臨床結(jié)局有關(guān)[4]。Zhao等[5]研究發(fā)現(xiàn),在費(fèi)城染色體(Philadelphia"chromosome,Ph)陽性急性淋巴細(xì)胞白血病(acute"lymphoblastic"leukemia,ALL)患者中,酪氨酸激酶BCR-ABL1融合蛋白通過靶向SLC2A5啟動(dòng)子上的原癌基因MYC結(jié)合位點(diǎn),使SLC2A5過表達(dá),促進(jìn)下游信號(hào)傳導(dǎo),增加白血病細(xì)胞對(duì)果糖的攝取和利用,從而提高白血病細(xì)胞的存活能力和化學(xué)抗性。SLC2A5的過表達(dá)可促進(jìn)磷脂酰肌醇3激酶/蛋白激酶B信號(hào)通路的激活,減弱化療藥物伊馬替尼對(duì)BCR-ABL下游信號(hào)通路的抑制作用,導(dǎo)致Ph陽性ALL細(xì)胞產(chǎn)生伊馬替尼耐藥,造成Ph陽性ALL患者預(yù)后不良[6]。因此,靶向抑制SLC2A5對(duì)Ph陽性ALL患者而言是一種行之有效的治療方法。
1.2""SLC7A7
SLC7A7位于染色體14q11.2,負(fù)責(zé)編碼氨基酸轉(zhuǎn)運(yùn)體y+LAT1,其可轉(zhuǎn)運(yùn)陽離子氨基酸(如精氨酸)進(jìn)出細(xì)胞[7]。Ji等[8]研究發(fā)現(xiàn),SLC7A7的過表達(dá)可激活陽離子氨基酸轉(zhuǎn)運(yùn)系統(tǒng)y+L,使轉(zhuǎn)運(yùn)出細(xì)胞的精氨酸數(shù)量增加,抑制哺乳動(dòng)物雷帕霉素靶蛋白信號(hào)通路,下調(diào)促凋亡蛋白Bax等的表達(dá),從而降低ALL細(xì)胞系Jurkat的凋亡率。
1.3""SLC7A11
SLC7A11位于人4號(hào)染色體,其翻譯的SLC7A11蛋白與SLC3A2蛋白共同組成胱氨酸/谷氨酸反轉(zhuǎn)運(yùn)體。鐵死亡是近年來發(fā)現(xiàn)的新型細(xì)胞死亡方式,SLC7A11在其中扮演重要角色。腫瘤細(xì)胞可通過p53/SLC7A11信號(hào)通路促進(jìn)SLC7A11的表達(dá),進(jìn)而促進(jìn)胱氨酸的攝取,加速谷胱甘肽的生物合成,從而抵消自身代謝速率增加所致的氧化應(yīng)激,防止脂質(zhì)過氧化產(chǎn)物積累,阻止腫瘤細(xì)胞發(fā)生鐵死亡,最終導(dǎo)致腫瘤細(xì)胞過度生長[9-11]。郭鈴等[12]研究發(fā)現(xiàn),紫薯花青素可與SLC7A11及致癌基因c-Myc等結(jié)合,從而影響蛋白的結(jié)構(gòu)和活性,誘導(dǎo)ALL細(xì)胞的程序性死亡。
1.4""SLC19A1
SLC19A1編碼還原型葉酸載體1。還原型葉酸載體1是葉酸進(jìn)入細(xì)胞的主要轉(zhuǎn)運(yùn)蛋白,在甲氨蝶呤(methotrexate,MTX)的細(xì)胞攝取中起重要作用[13]。Wang等[14]研究發(fā)現(xiàn)微RNA(microRNA,miRNA)-595可特異性結(jié)合ALL細(xì)胞系CEM/C1"SLC19A1的3'非翻譯區(qū),抑制還原型葉酸載體1的表達(dá),從而降低MTX的細(xì)胞攝取和細(xì)胞毒性作用。進(jìn)一步研究發(fā)現(xiàn),在ALL患兒中,SLC19A1啟動(dòng)子胞嘧啶-磷酸-鳥嘌呤呈高甲基化狀態(tài),影響MTX的暴露,揭示ALL患兒MTX反應(yīng)變異性的潛在機(jī)制[13]。另有研究發(fā)現(xiàn),白血病細(xì)胞中MTX的谷氨?;x產(chǎn)物在不同患者間的差異性可影響其抗白血病作用,而SLC19A1可顯著影響細(xì)胞內(nèi)谷氨?;x產(chǎn)物的水平[15]。但SLC19A1對(duì)MTX攝取的分子機(jī)制尚未完全清楚,有待進(jìn)一步研究。
2""SLC超家族與急性髓系白血病
2.1""SLC2
研究發(fā)現(xiàn),SLC2A5和SLC2A10高表達(dá)急性髓系白血病(acute"myeloid"leukemia,AML)患者的生存期較低表達(dá)SLC2A5和SLC2A10的AML患者短,而抑制SLC2A5基因的表達(dá)可顯著抑制AML細(xì)胞的增殖和遷移,提示SLC2A5、SLC2A10的表達(dá)與AML患者的預(yù)后密切相關(guān),其可能成為AML患者預(yù)后的生物標(biāo)志物[16]。Tilekar等[17]設(shè)計(jì)一種新型SLC2抑制劑噻唑烷二酮衍生物,其可誘導(dǎo)白血病細(xì)胞凋亡,破壞細(xì)胞周期,導(dǎo)致腫瘤細(xì)胞在G2/M階段生長停滯,但對(duì)正常細(xì)胞無影響。噻唑烷二酮衍生物有望成為治療白血病的新型化療藥物。
2.2""SLC5A3
SLC5A3是主要的肌醇轉(zhuǎn)運(yùn)體之一,其定位于染色體21q22.1。Wei等[18]研究發(fā)現(xiàn),在肌醇-3-磷酸合成酶1(inositol-3-phosphate"synthase"1,ISYNA1)缺陷型AML中,ISYNA1的高甲基化及沉默狀態(tài)可影響肌醇的從頭合成,使得AML細(xì)胞對(duì)SLC5A3依賴性外源肌醇的轉(zhuǎn)運(yùn)需求增加,促進(jìn)細(xì)胞生長途徑的信號(hào)傳導(dǎo)。在SLC5A3過表達(dá)的AML細(xì)胞中,ISYNA1蛋白的表達(dá)水平降低,而過表達(dá)ISYNA1可完全緩解AML細(xì)胞對(duì)SLC5A3的依賴,進(jìn)一步驗(yàn)證SLC5A3通過維持足夠的肌醇水平支持AML細(xì)胞增殖[19]。
2.3""SLC6A8
SLC6A8在核仁磷酸蛋白1(nucleophosmin"1,NPM1)基因突變型AML中發(fā)揮重要作用。NPM1基因突變可導(dǎo)致NPM1突變蛋白從細(xì)胞核離域,從而促進(jìn)白血病的發(fā)生[20]。在NPM1突變型AML中,白血病細(xì)胞通過NPM1突變蛋白/CCCTC結(jié)合因子/細(xì)胞質(zhì)多聚腺苷酸結(jié)合蛋白1信號(hào)通路調(diào)控小細(xì)胞外囊泡將miR-19a-3p分泌到腫瘤微環(huán)境中,從而抑制SLC6A8的表達(dá),降低肌酸攝入,減少腺苷三磷酸的產(chǎn)生并損害CD8+T細(xì)胞的免疫功能,最終導(dǎo)致白血病細(xì)胞免疫逃逸[21]。此項(xiàng)研究提示,小細(xì)胞外囊泡相關(guān)的miR-19a-3p可能是治療NPM1突變型AML的有效治療靶點(diǎn)之一。然而也有研究表明,白血病細(xì)胞中肌酸蓄積的增加取決于生長培養(yǎng)基的攝取,肌酸攝取與SLC6A8的表達(dá)無關(guān)[22]。
2.4""SLC7A11
如前所述,p53/SLC7A11信號(hào)軸是鐵死亡的關(guān)鍵通路。Birsen等[23]研究發(fā)現(xiàn),突變型p53再激活化合物APR-246可直接靶向AML中的p53突變蛋白,激活p53突變體的轉(zhuǎn)錄活性,抑制SLC7A11表達(dá),最終誘導(dǎo)脂質(zhì)過氧化物合成;且APR-246可與其他誘導(dǎo)AML細(xì)胞鐵死亡因素聯(lián)合,協(xié)同促進(jìn)AML細(xì)胞凋亡。Wang等[9]研究發(fā)現(xiàn),長鏈非編碼RNA(long"noncoding"RNA,lncRNA)LINC00618可促進(jìn)長春新堿誘導(dǎo)的細(xì)胞鐵死亡;進(jìn)一步研究發(fā)現(xiàn)lncRNA"LINC00618可抑制淋巴組織特異解旋酶的表達(dá),下調(diào)SLC7A11的轉(zhuǎn)錄水平,促進(jìn)白血病細(xì)胞鐵死亡?;前愤拎な且环N具有SLC7A11抑制作用的藥物,在體外培養(yǎng)的原發(fā)性AML樣本中具有抗白血病活性,推測磺胺吡啶可用于AML的臨床治療[24]。Luo等[25]開發(fā)一種新的腫瘤治療方法FAST(ferroptosis"assassinates"tumor),即通過將氧化鐵納米顆粒與選擇性敲除SLC7A11等鐵死亡抵抗基因相結(jié)合,實(shí)現(xiàn)對(duì)AML細(xì)胞的抗腫瘤作用。SLC7A11的高表達(dá)與AML患者總生存期縮短顯著相關(guān),是評(píng)估白血病患者預(yù)后的生物標(biāo)志物[11]。
2.5""SLC22A1
SLC22A1編碼人有機(jī)陽離子轉(zhuǎn)運(yùn)體1,在索拉非尼的攝取中起主要作用。索拉非尼是一種靶向藥物,可有效治療AML,尤其對(duì)攜帶Fms樣酪氨酸激酶3(Fms-like"tyrosine"kinase"3,F(xiàn)LT3)突變患者,但化學(xué)耐藥性是索拉菲尼發(fā)揮療效的主要限制因素。與健康個(gè)體相比,SLC22A1的低表達(dá)在AML患者的原始細(xì)胞中十分常見[26]。Macias等[27]研究發(fā)現(xiàn)AML細(xì)胞系MOLM-13可通過SLC22A1攝取索拉非尼,而具有FLT3-內(nèi)部串聯(lián)重復(fù)突變的MOLM-13表達(dá)SLC22A1水平更高,對(duì)索拉非尼更敏感,表明SLC22A1的表達(dá)水平對(duì)AML細(xì)胞攝取索拉非尼十分重要。
2.6""SLC23A2
SLC23A2編碼鈉離子依賴的維生素C轉(zhuǎn)運(yùn)體2,其主要參與維生素C的攝取,在調(diào)節(jié)維生素C的功能中發(fā)揮重要作用。維生素C被證實(shí)是細(xì)胞表觀遺傳過程的關(guān)鍵調(diào)節(jié)因子,可抑制白血病進(jìn)展,因此SLC23A2是白血病治療的主要靶基因之一[28]。Li等[29]研究發(fā)現(xiàn),過表達(dá)的B細(xì)胞淋巴瘤2通過相關(guān)途徑導(dǎo)致SLC23A2水平下調(diào),癌基因Mcl1高水平表達(dá),進(jìn)而調(diào)控下游致癌基因c-Myc的轉(zhuǎn)錄,促進(jìn)白血病細(xì)胞生長。
3""SLC超家族與慢性髓細(xì)胞白血病
SLC22參與慢性髓細(xì)胞白血?。╟hronic"myelogenous"leukemia,CML)細(xì)胞對(duì)伊馬替尼的攝取過程。SLC22的表達(dá)受其編碼基因啟動(dòng)子單核苷酸多態(tài)性的影響,而這些多態(tài)性可能會(huì)干擾伊馬替尼的分布,進(jìn)而影響藥物反應(yīng)[30]。Cargnin等[31]通過系統(tǒng)回顧和Meta分析發(fā)現(xiàn),SLC22A1表達(dá)的變異性對(duì)伊馬替尼治療反應(yīng)至關(guān)重要,攜帶SLC22A1的rs628031A等位基因或rs683369G等位基因的CML患者在使用伊馬替尼治療后表現(xiàn)出的主要分子反應(yīng)顯著降低,證實(shí)SLC22A1基因常見多態(tài)性作為CML患者伊馬替尼臨床反應(yīng)預(yù)測因子的可行性。
4""小結(jié)與展望
SLC超家族在維持人體正常功能方面起重要作用,其失調(diào)與白血病的發(fā)生發(fā)展及白血病細(xì)胞對(duì)化療藥物的耐藥性有關(guān),在白血病發(fā)病機(jī)制及靶向治療藥物研發(fā)方面具有廣闊應(yīng)用前景。多種針對(duì)SLC超家族的調(diào)節(jié)劑對(duì)白血病細(xì)胞具有抑制作用,且許多用于白血病治療的一線藥物通過SLC轉(zhuǎn)運(yùn)蛋白攝取。盡管SLC超家族在細(xì)胞代謝中具有重要作用,但現(xiàn)階段仍缺乏高質(zhì)量的化合物及可進(jìn)入臨床研發(fā)的化療藥物,亟需更多SLC超家族的相關(guān)研究以進(jìn)一步探究其與白血病的相關(guān)性,從而進(jìn)一步改善患者的臨床結(jié)局。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] WHITELEY"A"E,"PRICE"T"T,"CANTELLI"G,"et"al."Leukaemia:"A"model"metastatic"disease[J]."Nat"Rev"Cancer,"2021,"21(7):"461–475.
[2] LI"K"C,"GIRARDI"E,"KARTNIG"F,"et"al."Cell-surface"SLC"nucleoside"transporters"and"purine"levels"modulate"BRD4-dependent"chromatin"states[J]."Nat"Metab,"2021,"3(5):"651–664.
[3] PIZZAGALLI"M"D,"BENSIMON"A,"SUPERTI-FURGA"G."A"guide"to"plasma"membrane"solute"carrier"proteins[J]."FEBS"J,"2021,"288(9):"2784–2835.
[4] BARRON"C"C,"BILAN"P"J,"TSAKIRIDIS"T,"et"al."Facilitative"glucose"transporters:"Implications"for"cancer"detection,"prognosis"and"treatment[J]."Metabolism,"2016,"65(2):"124–139.
[5] ZHAO"P,"HUANG"J,"ZHANG"D,"et"al."SLC2A5nbsp;overexpression"in"childhood"Philadelphia"chromosome-"positive"acute"lymphoblastic"leukaemia[J]."Br"J"Haematol,"2018,"183(2):"242–250.
[6] 嚴(yán)天友,"娜仁朵蘭,"龔玉萍."Glut5在Ph+急性淋巴細(xì)胞白血病伊馬替尼耐藥中的機(jī)制研究[J]."四川大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),"2017,"48(3):"389–393.
[7] ROTOLI"B"M,"BARILLI"A,"VISIGALLI"R,"et"al."Y+LAT1"and"y+LAT2"contribution"to"arginine"uptake"in"different"human"cell"models:"Implications"in"the"pathophysiology"of"lysinuric"protein"intolerance[J]."J"Cell"Mol"Med,"2020,"24(1):"921–929.
[8] JI"X,"YANG"X,"WANG"N,"et"al."Function"of"SLC7A7"in"T-cell"acute"lymphoblastic"leukemia[J]."Cell"Physiol"Biochem,"2018,"48(2):"731–740.
[9] WANG"Z,"CHEN"X,"LIU"N,"et"al."A"nuclear"long"non-coding"RNA"LINC00618"accelerates"ferroptosis"in"a"manner"dependent"upon"apoptosis[J]."Mol"Ther,"2021,"29(1):"263–274.
[10] WEI"J,"NAI"G"Y,"DAI"Y,"et"al."Dipetidyl"peptidase-4"and"transferrin"receptor"serve"as"prognostic"biomarkers"for"acute"myeloid"leukemia[J]."Ann"Transl"Med,"2021,"9(17):"1381.
[11] SHI"Z"Z,"TAO"H,"FAN"Z"W,"et"al."Prognostic"and"immunological"role"of"key"genes"of"ferroptosis"in"pan-cancer[J]."Front"Cell"Dev"Biol,"2021,"9:"748925.
[12] 郭鈴,"劉靜,"郭渠蓮,"等."紫薯花青素的成分鑒定及其抗白血病潛在靶點(diǎn)的篩選驗(yàn)證[J]."廣西科學(xué),"2022,"29(5):"949–958.
[13] WANG"S"M,"LI"M,"WU"W"S,"et"al."Methylation"analysis"of"the"SLC19A1"promoter"region"in"Chinese"children"with"acute"lymphoblastic"leukaemia[J]."J"Clin"Pharm"Ther,"2020,"45(4):"646–651.
[14] WANG"S"M,"SUN"L"L,"WU"W"S,"et"al."MiR-595"suppresses"the"cellular"uptake"and"cytotoxic"effects"of"methotrexate"by"targeting"SLC19A1"in"CEM/C1"cells[J]."Basic"Clin"Pharmacol"Toxicol,nbsp;2018,"123(1):"8–13.
[15] LOPEZ-LOPEZ"E,"AUTRY"R"J,"SMITH"C,"et"al."Pharmacogenomics"of"intracellular"methotrexate"polyglutamates"in"patients’"leukemia"cells"in"vivo[J]."J"Clin"Invest,"2020,"130(12):"6600–6615.
[16] LAI"B,"LAI"Y,"ZHANG"Y,"et"al."The"solute"carrier"family"2"genes"are"potential"prognostic"biomarkers"in"acute"myeloid"leukemia[J]."Technol"Cancer"Res"Treat,"2020,"19:"1533033819894308.
[17] TILEKAR"K,"UPADHYAY"N,"SCHWEIPERT"M,"et"al."Permuted"2,"4-thiazolidinedione"(TZD)"analogs"as"GLUT"inhibitors"and"their"in-vitro"evaluation"in"leukemic"cells[J]."Eur"J"Pharm"Sci,"2020,"154:"105512.
[18] WEI"Y,"HUANG"Y"H,"SKOPELITIS"D"S,"et"al."SLC5A3-dependent"myo-inositol"auxotrophy"in"acute"myeloid"leukemia[J]."Cancer"Discov,"2022,"12(2):"450–467.
[19] LIN"S,"LARRUE"C,"SCHEIDEGGER"N"K,"et"al."An"in"vivo"CRISPR"screening"platform"for"prioritizing"therapeutic"targets"in"AML[J]."Cancer"Discov,"2022,"12(2):"432–449.
[20] PAPAEMMANUIL"E,"GERSTUNG"M,"BULLINGER"L,"et"al."Genomic"classification"and"prognosis"in"acute"myeloid"leukemia[J]."N"Engl"J"Med,"2016,"374(23):"2209–2221.
[21] PENG"M,"REN"J,"JING"Y,"et"al."Tumour-derived"small"extracellular"vesicles"suppress"CD8+"T"cell"immune"function"by"inhibiting"SLC6A8-mediated"creatine"import"in"NPM1-mutated"acute"myeloid"leukaemia[J]."J"Extracell"Vesicles,"2021,"10(13):"e12168.
[22] OKUMU"D"O,"APONTE-COLLAZO"L"J,"DEWAR"B"J,"et"al."Lyn"regulates"creatine"uptake"in"an"imatinib-resistant"CML"cell"line[J]."Biochim"Biophys"Acta"Gen"Subj,"2020,"1864(4):"129507.
[23] BIRSEN"R,"LARRUE"C,"DECROOCQ"J,"et"al."APR-246"induces"early"cell"death"by"ferroptosis"in"acute"myeloid"leukemia[J]."Haematologica,"2022,"107(2):"403–416.
[24] PARDIEU"B,"PASANISI"J,"LING"F,"et"al."Cystine"uptake"inhibition"potentiates"front-line"therapies"in"acute"myeloid"leukemia[J]."Leukemia,"2022,"36(6):"1585–1595.
[25] LUO"T,"WANG"Y,"WANG"J."Ferroptosis"assassinates"tumor[J]."J"Nanobiotechnology,"2022,"20(1):"467.
[26] STEFANKO"E,"RYBKA"J,"JA?WIEC"B,"et"al."Significance"of"OCT1"expression"in"acute"myeloid"leukemia[J]."Pathol"Oncol"Res,"2017,"23(3):"665–671.
[27] MACIAS"R"I"R,"SáNCHEZ-MARTíN"A,"RODRíGUEZ-MACíAS"G,"et"al."Role"of"drug"transporters"in"the"sensitivity"of"acute"myeloid"leukemia"to"sorafenib[J]."Oncotarget,"2018,"9(47):"28474–28485.
[28] DAS"A"B,"SMITH-DíAZ"C"C,"VISSERS"M"C"M."Emerging"epigenetic"therapeutics"for"myeloid"leukemia:"Modulating"demethylase"activity"with"ascorbate[J]."Haematologica,"2021,"106(1):"14–25.
[29] LI"J,"ZHANG"W,"LIU"W,"et"al."Association"of"leukemia"target"genes"Tet2,"Bcl2,"and"SLC23A2"in"vitamin"C"pathways[J]."Cancer"Genomics"Proteomics,"2019,"16(5):"333–344.
[30] JARUSKOVA"M,"CURIK"N,"HERCOG"R,"et"al."Genotypes"of"SLC22A4"and"SLC22A5"regulatory"loci"are"predictive"of"the"response"of"chronic"myeloid"leukemia"patients"to"imatinib"treatment[J]."J"Exp"Clin"Cancer"Res,"2017,"36(1):"55.
[31] CARGNIN"S,"RAVEGNINI"G,"SOVERINI"S,"et"al."Impact"of"SLC22A1"and"CYP3A5"genotypes"on"imatinib"response"in"chronic"myeloid"leukemia:"A"systematic"review"and"Meta-analysis[J]."Pharmacol"Res,"2018,"131:"244–254.
(收稿日期:2023–06–09)
(修回日期:2023–08–01)