基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(81960161,31860291);貴州省教育廳創(chuàng)新群體重大研究項(xiàng)目(黔教合KY字[2018]025)
作者單位:遵義醫(yī)科大學(xué)生理學(xué)教研室(郵編563000)
作者簡(jiǎn)介:慕靜然(1995),女,碩士在讀,主要從事神經(jīng)炎癥方面研究。E-mail:1906420348@qq.com
△通信作者 E-mail:xiaohongliuedu@163.com
摘要:阿爾茨海默?。ˋD)是一種常見的神經(jīng)系統(tǒng)退行性疾病。補(bǔ)體系統(tǒng)激活在AD病變進(jìn)程中發(fā)揮了重要作用,活化的補(bǔ)體可與膜受體結(jié)合,調(diào)節(jié)下游信號(hào)發(fā)揮作用。抑制補(bǔ)體激活為AD治療提供了新思路。就有關(guān)補(bǔ)體系統(tǒng)激活參與AD病變的機(jī)制以及相應(yīng)的藥物研發(fā)進(jìn)展進(jìn)行綜述,以期為AD的診斷、治療及藥物研發(fā)提供新觀點(diǎn)。
關(guān)鍵詞:阿爾茨海默??;補(bǔ)體系統(tǒng)蛋白質(zhì)類;淀粉樣β肽類;突觸;tau蛋白質(zhì)類;膠質(zhì)細(xì)胞;神經(jīng)炎癥
中圖分類號(hào):R745.7 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20231554
Research progress on the activation of complement system is involved in the pathogenesis of Alzheimer's disease
MU Jingran, LUO Yan, LIANG Xuan, XU Tao, ZENG Junwei, LIU Xiaohong△
Department of Physiology, Zunyi Medical University, Zunyi 563000, China
△Corresponding Author E-mail: xiaohongliuedu@163.com
Abstract: Alzheimer's disease (AD) is a common neurodegenerative disease, which is mainly caused by brain lesions. The activation of complement system plays an important role in the process of AD lesions. The activated complement can bind to cell membrane receptors and regulate downstream signals. Therefore, inhibiting complement activation provides a new idea for AD treatment. This article reviews the progress in the mechanism and drug development of complement activation in AD, which may provide a new perspective for the diagnosis, treatment and drug development of AD.
Key words: Alzheimer disease; complement system proteins; amyloid beta-peptides; synapses; tau proteins; colloid cell; neuroinflammation
阿爾茨海默?。ˋlzheimer's disease,AD)是一種起病隱匿,呈進(jìn)行性發(fā)展的中樞神經(jīng)系統(tǒng)退行性疾病,病變腦區(qū)可見β淀粉樣蛋白(amyloid β-protein,Aβ)斑塊、神經(jīng)元內(nèi)神經(jīng)原纖維纏結(jié)、神經(jīng)元丟失以及膠質(zhì)細(xì)胞增生等現(xiàn)象,患者表現(xiàn)出進(jìn)行性認(rèn)知功能障礙、人格改變和行為異常等癥狀[1]?,F(xiàn)階段由于人口老齡化進(jìn)程加劇,AD患者人數(shù)持續(xù)攀升,但目前尚無可以根治或延緩AD病變且臨床不良反應(yīng)少的理想藥物,一旦病變進(jìn)入后期,患者生活不能自理,給家庭和社會(huì)帶來沉重的負(fù)擔(dān)。因此,有必要深入了解參與AD病變進(jìn)展的相關(guān)分子機(jī)制,找到更好的分子靶點(diǎn),助力AD治療藥物的研發(fā)。研究表明,補(bǔ)體系統(tǒng)激活在AD病變進(jìn)程中發(fā)揮作用,補(bǔ)體成分C1q、C3、C4以及C5b—C9膜攻擊復(fù)合物(membrane attack complex,MAC)沉積在淀粉樣斑塊和神經(jīng)原纖維纏結(jié)部位[2],且C1q可與Aβ形成復(fù)合物沉積于淀粉樣斑塊[3]。這些研究為了解AD病變機(jī)制提供了新視角,為以補(bǔ)體系統(tǒng)為靶點(diǎn)研發(fā)新藥治療AD提供了希望。本文就補(bǔ)體系統(tǒng)參與AD病變的機(jī)制及相關(guān)藥物研發(fā)進(jìn)展進(jìn)行綜述,為研發(fā)新藥提供參考。
1 補(bǔ)體系統(tǒng)簡(jiǎn)介
補(bǔ)體系統(tǒng)是天然免疫系統(tǒng)的重要組成部分,主要由補(bǔ)體固有成分、補(bǔ)體受體和補(bǔ)體調(diào)節(jié)蛋白組成,廣泛參與機(jī)體的免疫和炎癥反應(yīng),在識(shí)別和清除病原微生物方面扮演重要角色。補(bǔ)體固有成分包括C1—C9、B因子、D因子及甘露糖結(jié)合凝集素等。補(bǔ)體受體包括C1-5R、C3aR、C5aR、C1qR等。補(bǔ)體調(diào)節(jié)蛋白包括I因子、H因子、補(bǔ)體成分4結(jié)合蛋白(C4bp)、補(bǔ)體1抑制因子(C1INH)、衰變加速因子(decay accelerating factor,DAF)、膜輔助蛋白及淋巴細(xì)胞分化簇(cluster of differentiation,CD59)等。補(bǔ)體激活主要有經(jīng)典激活途徑、凝集素途徑和替代途徑。這3條途徑激活后均導(dǎo)致C5轉(zhuǎn)化酶激活,C5b與C6—C9形成MAC,通過破壞局部磷脂雙層結(jié)構(gòu)導(dǎo)致細(xì)胞裂解。在補(bǔ)體活化的過程中,多種裂解片段能夠與細(xì)胞膜上的相應(yīng)受體結(jié)合,從而發(fā)揮調(diào)理、趨化、炎癥介導(dǎo)和免疫黏附等作用[4-5]。
2 補(bǔ)體系統(tǒng)參與AD病變的臨床研究
補(bǔ)體系統(tǒng)的激活不僅在中樞神經(jīng)系統(tǒng)的發(fā)育階段發(fā)揮作用,也參與了神經(jīng)系統(tǒng)疾病的病變進(jìn)展[4]。中樞神經(jīng)系統(tǒng)的神經(jīng)元、小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞均可表達(dá)多種補(bǔ)體成分或補(bǔ)體受體[5]。近年來對(duì)臨床AD患者進(jìn)行的一些研究結(jié)果提示,補(bǔ)體系統(tǒng)的激活可導(dǎo)致神經(jīng)炎癥、神經(jīng)元突觸結(jié)構(gòu)丟失和隨后的神經(jīng)退行性病變。
有研究在AD患者腦區(qū)尸檢觀察到C1q、C3和C4與Aβ斑塊及神經(jīng)原纖維纏結(jié)共存于病變部位;顳葉皮質(zhì)C3和C4表達(dá)增加;補(bǔ)體激活產(chǎn)物C3b及MAC在病變部位表達(dá)增加[4]。另有研究發(fā)現(xiàn),在AD患者的額上回小膠質(zhì)細(xì)胞以及淀粉樣斑塊表達(dá)C1qa、C1qb和C1qc[6];在突觸后位點(diǎn)C3表達(dá)增加[7];在前額葉皮質(zhì)和旁海馬回C3和C3aR1表達(dá)增加[8-9],C3表達(dá)增多與核轉(zhuǎn)錄因子(NF)-κB p65激活后入核結(jié)合到C3啟動(dòng)子區(qū)域促進(jìn)其轉(zhuǎn)錄有關(guān)[8]。生物信息學(xué)分析顯示C3/C3aR通路激活后可能通過調(diào)節(jié)炎癥反應(yīng)和免疫細(xì)胞的激活參與AD病變[9]。Zhang等[10]采用基因生物學(xué)技術(shù)針對(duì)早發(fā)或有家族史的AD病例進(jìn)行全外顯子組測(cè)序,發(fā)現(xiàn)補(bǔ)體因子C7基因的一個(gè)頻率稀有的錯(cuò)義突變r(jià)s3792646(p.K420Q)顯著提高了AD發(fā)病的風(fēng)險(xiǎn),rs3792646風(fēng)險(xiǎn)變異攜帶者相對(duì)于非風(fēng)險(xiǎn)變異攜帶者在年輕時(shí)期即表現(xiàn)出海馬體積減小,認(rèn)知功能減退,導(dǎo)致AD疾病提前發(fā)生。Yuan等[11]觀察到高加索人CR1基因簇rs6656401A/G和rs3818361T/C的多態(tài)性與AD發(fā)病具有高度相關(guān)性。對(duì)于攜帶H等位基因(HindIII多態(tài)性)或Q等位基因(Q981H多態(tài)性)的AD患者,與攜帶相同基因的對(duì)照組相比,外周血紅細(xì)胞上CR1密度降低,而外周血中可溶性的CR1顯著升高[12]。
此外,有研究采用蛋白組學(xué)技術(shù)檢測(cè)到AD患者血漿外泌體補(bǔ)體成分C1qc和C9含量升高[13]。來自AD患者血漿中星形膠質(zhì)細(xì)胞來源的外泌體補(bǔ)體成分C1q、C4b、C3d、B因子、D因子、Bb、C3b以及C5b—C9 MAC含量升高(不包括甘露糖結(jié)合凝集素),CR1和補(bǔ)體調(diào)節(jié)蛋白CD59、CD46、DAF(不包括I因子)含量在AD 1期下降,到2期下降更明顯[14]。Nogueras-Ortiz等[15]將AD患者星形膠質(zhì)細(xì)胞來源的外泌體作用于人類誘導(dǎo)性多能干細(xì)胞來源的神經(jīng)元或大鼠皮層神經(jīng)元,均導(dǎo)致神經(jīng)元活力下降、神經(jīng)元突起密度下降、MAC形成,神經(jīng)元膜結(jié)構(gòu)遭到破壞。AD患者外周血C2、C7和C1q結(jié)合蛋白(C1qBP)含量升高[16];腦脊液中C3和C3片段(C3b、iC3b和C3c)含量上升,其程度與腦脊液中淀粉樣物質(zhì)沉積和tau表達(dá)相關(guān),也與病變腦區(qū)tau蛋白表達(dá)相關(guān)[7,17]。Lu等[18]在遲發(fā)型AD患者的外周血中檢測(cè)到補(bǔ)體H因子和C-反應(yīng)蛋白含量下降。綜合以上臨床研究結(jié)果,推測(cè)補(bǔ)體系統(tǒng)的激活可能參與了AD病變進(jìn)展。
3 補(bǔ)體系統(tǒng)參與AD病變的機(jī)制
Aβ的異常聚集和神經(jīng)纖維纏結(jié)被認(rèn)為是AD病變最重要的病理特征。Aβ的產(chǎn)生和清除出現(xiàn)紊亂導(dǎo)致形成淀粉樣斑塊,tau蛋白異常磷酸化導(dǎo)致形成神經(jīng)纖維纏結(jié)。其次,病變部位伴有膠質(zhì)細(xì)胞激活和神經(jīng)炎癥,這些因素共同促進(jìn)神經(jīng)元損傷和突觸丟失[19],導(dǎo)致AD患者的認(rèn)知功能下降。補(bǔ)體系統(tǒng)激活通過影響Aβ的聚集和神經(jīng)毒性、tau蛋白異常磷酸化、神經(jīng)炎癥以及神經(jīng)元突觸丟失等機(jī)制促進(jìn)了AD病變。
3.1 調(diào)節(jié)Aβ聚集 Aβ1-42寡聚體的形成在AD病變進(jìn)展中具有重要作用。載脂蛋白ApoE4與Aβ1-42結(jié)合后構(gòu)象變化,促進(jìn)Aβ聚集形成淀粉樣斑塊。補(bǔ)體成分C1q與ApoE4結(jié)合可加劇Aβ聚集,而H因子與ApoE4結(jié)合可抑制補(bǔ)體激活,抑制Aβ寡聚體形成。在特發(fā)性腦積水患者(約有50%發(fā)展為AD)皮質(zhì)腦組織活檢顯示,補(bǔ)體成分C1q、H因子、ApoE與Aβ斑塊共定位。H因子與ApoE2(不是ApoE4)結(jié)合形成復(fù)合物后可限制Aβ聚集;當(dāng)H因子與ApoE2/Aβ1-42結(jié)合則抑制C3裂解生成C3a、C3b和iC3b。小膠質(zhì)細(xì)胞分布的補(bǔ)體受體CR3具有H因子、C3b和iC3b的結(jié)合位點(diǎn),當(dāng)H因子存在時(shí),ApoE2與小膠質(zhì)細(xì)胞CR3結(jié)合能力減弱,Aβ1-42與CR3的結(jié)合能力也很弱,導(dǎo)致小膠質(zhì)細(xì)胞攝取Aβ1-42減少[20]。
3.2 促進(jìn)Aβ的神經(jīng)元毒性 Aβ是由39~43個(gè)氨基酸組成的具有β折疊結(jié)構(gòu)的小分子肽,在細(xì)胞外聚集后形成不溶性多肽,對(duì)神經(jīng)元產(chǎn)生毒性作用,如促進(jìn)胞內(nèi)Ca2+超載、氧自由基和炎性因子聚集、產(chǎn)生過多NO導(dǎo)致神經(jīng)元損傷及誘導(dǎo)神經(jīng)元凋亡等。補(bǔ)體系統(tǒng)激活可以促進(jìn)Aβ的神經(jīng)元毒性,其機(jī)制主要如下。
3.2.1 促進(jìn)氧化應(yīng)激 Aβ作用于大鼠小膠質(zhì)細(xì)胞,可激活還原型輔酶Ⅱ(NADPH)氧化酶并釋放大量過氧化物。在大鼠海馬,激活NADPH氧化酶導(dǎo)致產(chǎn)生大量過氧亞硝酸根離子,可以介導(dǎo)酪氨酸硝化和半胱氨酸硝化,這對(duì)神經(jīng)元胞內(nèi)蛋白質(zhì)和酶的功能造成極大損害,導(dǎo)致神經(jīng)元死亡。AD患者尸檢結(jié)果顯示病變腦區(qū)存在大量過氧亞硝酸根離子沉積、脂質(zhì)過氧化和DNA氧化損傷等現(xiàn)象[21]。研究表明,Aβ可以與C3b結(jié)合,補(bǔ)體活化后產(chǎn)生的C5a可以被小膠質(zhì)細(xì)胞CD88受體識(shí)別,促進(jìn)小膠質(zhì)細(xì)胞激活,導(dǎo)致氧自由基、炎性因子、活性氮中間體以及生物活性胺生成和釋放,加重了氧化應(yīng)激導(dǎo)致的神經(jīng)元損傷[21]。
3.2.2 加劇神經(jīng)炎癥反應(yīng) 在AD病變進(jìn)程中,膠質(zhì)細(xì)胞激活促進(jìn)炎性因子的生成與釋放,炎性因子的存在又促進(jìn)了補(bǔ)體系統(tǒng)的激活。在AD小鼠大腦,持續(xù)的神經(jīng)炎癥伴隨著干擾素(IFN)信號(hào)通路的激活,而IFN-β不僅刺激腫瘤壞死因子(TNF)-α和趨化因子(CXC基序)配體1(CXCL1)表達(dá)和釋放,也促進(jìn)補(bǔ)體通路的激活,C1q、C2、C3、C4、Cd47和Cfb生成增多[22]。
Litvinchuk等[9]在PS19/tau轉(zhuǎn)基因AD小鼠腦區(qū)病變部位觀察到小膠質(zhì)細(xì)胞標(biāo)志物離子鈣結(jié)合銜接分子1(ionized calcium binding adapter molecule 1,Iba-1)、星形膠質(zhì)細(xì)胞標(biāo)志物膠質(zhì)細(xì)胞原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)以及補(bǔ)體C3和C3aR1表達(dá)升高,小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞體積變大,細(xì)胞分支減少,分支突起的復(fù)雜度下降;但C3aR基因敲除后,AD小鼠膠質(zhì)細(xì)胞激活減弱,外觀形態(tài)以及GFAP和Iba-1表達(dá)恢復(fù)正常;進(jìn)一步研究表明,星形膠質(zhì)細(xì)胞激活后依賴于NF-κB p65的C3轉(zhuǎn)錄增多。星形膠質(zhì)細(xì)胞激活后C3裂解產(chǎn)物C3a釋放增多,可以作用于小膠質(zhì)細(xì)胞C3aR,小膠質(zhì)細(xì)胞活化后釋放神經(jīng)活性物質(zhì)轉(zhuǎn)而進(jìn)一步激活星形膠質(zhì)細(xì)胞,導(dǎo)致更多C3生成,可見C3/C3a-C3aR通過促進(jìn)膠質(zhì)細(xì)胞激活參與AD病變[23]。在小膠質(zhì)細(xì)胞C3a/C3aR1信號(hào)通路下游的信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3(STAT3)激活可促進(jìn)炎性因子白細(xì)胞介素(IL)-1β、IL-6和TNF-α表達(dá)升高,AD患者病變腦區(qū)Aβ累積和神經(jīng)元損傷加劇[9];但C3aR基因敲除后,與炎癥相關(guān)的轉(zhuǎn)錄因子Stat3、Nfe2I2、Irf8、Spi1和Runx1表達(dá)下調(diào),炎性因子生成隨之減少[23]。
除補(bǔ)體C3外,C1q和C5a可通過促進(jìn)神經(jīng)炎癥間接加劇Aβ導(dǎo)致的神經(jīng)元損傷。C1q通過促進(jìn)炎癥小體活化導(dǎo)致膠質(zhì)細(xì)胞激活和炎性因子生成[24];但C5a參與炎癥反應(yīng)的機(jī)制較復(fù)雜。C5a/C5aR可激活下游Janus激活激酶2(JAK2)/STAT3信號(hào)通路促進(jìn)Aβ誘導(dǎo)的BV2細(xì)胞表達(dá)與釋放IL-1β、IL-6和TNF-α[25];Aβ還可聯(lián)合C5a作用于人單核細(xì)胞,觸發(fā)Toll樣受體4(TLR4)/NF-κB通路激活,導(dǎo)致炎性因子IL-1β和IL-6生成增多[2]。另外,C5a可以吸引中性粒細(xì)胞遷移到Aβ斑塊部位并釋放中性粒細(xì)胞外誘捕網(wǎng)(neutrophil extracellular traps,NETs)包圍Aβ斑塊,C1q與CR1結(jié)合也參與Aβ斑塊募集中性粒細(xì)胞和隨后的NETs釋放過程,這種過激的炎癥反應(yīng)加劇了神經(jīng)元損傷[26]。
3.2.3 促進(jìn)神經(jīng)元突觸丟失 在AD病變進(jìn)程中,補(bǔ)體成分C1q、C3、MAC以及補(bǔ)體受體C3aR1等參與了小膠質(zhì)細(xì)胞激活后對(duì)神經(jīng)元突觸的吞噬作用。C1q在AD小鼠的皮質(zhì)和海馬小膠質(zhì)細(xì)胞中表達(dá)升高,這與離體實(shí)驗(yàn)中Aβ誘導(dǎo)小膠質(zhì)細(xì)胞表達(dá)C1q一致;隨著AD病變進(jìn)展,可見C1q與興奮性突觸標(biāo)志物突觸后密度蛋白95(postsynaptic density protein 95,PSD95)共定位增多,PSD95與小膠質(zhì)細(xì)胞標(biāo)志物Iba-1共定位也增多,提示小膠質(zhì)細(xì)胞吞噬突觸;相反,抑制C1q表達(dá)導(dǎo)致CA1區(qū)小膠質(zhì)細(xì)胞吞噬突觸能力降低,突觸丟失減輕[27]。在記憶功能受損小鼠的海馬齒狀回也檢測(cè)到C1q、PSD95和突觸素1與小膠質(zhì)細(xì)胞溶酶體標(biāo)志物CD68和Lamp1共定位,說明小膠質(zhì)細(xì)胞對(duì)突觸進(jìn)行了吞噬[28]。對(duì)C1q介導(dǎo)的小膠質(zhì)細(xì)胞突觸吞噬,需要C1q與髓系細(xì)胞觸發(fā)受體2(TREM2)和ApoE共同參與完成[29],但可以被代謝型谷氨酸受體5的沉默變構(gòu)劑BMS-984923逆轉(zhuǎn)[30]。
此外,在AD病變中,C3與C3aR也參與了小膠質(zhì)細(xì)胞吞噬神經(jīng)元突觸的過程。在AD小鼠大腦,IFN-β陽(yáng)性的小膠質(zhì)細(xì)胞可以包裹淀粉樣纖維的神經(jīng)原纖維纏結(jié),促進(jìn)C3介導(dǎo)的突觸吞噬[22];在AD小鼠病變?cè)缙?,小膠質(zhì)細(xì)胞表面分布的C3aR1激活,Iba-1和溶酶體標(biāo)志物CD68表達(dá)上升,海馬CA3區(qū)突觸標(biāo)志物突觸素(SYP)和PSD95、Iba-1熒光雙標(biāo)共定位;當(dāng)C3aR基因敲除則Iba-1和CD68表達(dá)恢復(fù)正常,SYP和PSD95與Iba-1共定位減少,此時(shí)AD小鼠海馬CA1區(qū)和CA3區(qū)神經(jīng)元數(shù)目下降、Schaffer側(cè)枝-CA1區(qū)長(zhǎng)時(shí)程增強(qiáng)減弱等現(xiàn)象均得到改善,可見C3aR激活參與了小膠質(zhì)細(xì)胞對(duì)神經(jīng)元突觸的吞噬現(xiàn)象[9]。
研究發(fā)現(xiàn)在AD小鼠整個(gè)病程中,皮質(zhì)、海馬和小腦的C1q、C3裂解片段和C5b-9的含量始終處于高水平。補(bǔ)體系統(tǒng)激活后,MAC參與小膠質(zhì)細(xì)胞激活后對(duì)神經(jīng)元突觸進(jìn)行吞噬的過程,突觸前標(biāo)志物Bassoon和突觸后標(biāo)志物PSD95表達(dá)明顯下降,然而,C6基因敲除或者給予C7中和抗體73D1后,AD小鼠海馬神經(jīng)元分支數(shù)目減少、樹突棘密度下降、突觸數(shù)目下降等現(xiàn)象得到改善,突觸前和突觸后標(biāo)志物表達(dá)升高,說明MAC C5b-9也參與小膠質(zhì)細(xì)胞對(duì)突觸的吞噬過程[31]。
3.3 促進(jìn)tau蛋白異常磷酸化 作為微管相關(guān)蛋白,tau蛋白在生理?xiàng)l件下可以穩(wěn)定微管并參與調(diào)節(jié)微管組裝、軸突運(yùn)輸、信號(hào)轉(zhuǎn)導(dǎo)和細(xì)胞周期等。在AD病變過程中,tau蛋白過度磷酸化導(dǎo)致神經(jīng)元微管結(jié)構(gòu)異常和軸突物質(zhì)運(yùn)輸功能障礙,形成神經(jīng)原纖維纏結(jié)[32]。研究提示,補(bǔ)體系統(tǒng)激活通過促進(jìn)tau蛋白磷酸化參與AD病變。在奧卡地酸處理的SH-SY5Y細(xì)胞(一種AD細(xì)胞模型),C3/C3aR通路活化通過調(diào)節(jié)糖原合酶激酶(GSK)3β磷酸化導(dǎo)致tau蛋白異常磷酸化[33]。在AD小鼠皮質(zhì)和海馬,C3/C3aR1通路活化促進(jìn)下游STAT3磷酸化,進(jìn)而誘導(dǎo)tau蛋白磷酸化;相反,C3ar1基因敲除或給予STAT3活性抑制劑均明顯減輕AD小鼠皮質(zhì)和海馬tau蛋白磷酸化[9]。另外,C3/C3aR通路活化也可以促進(jìn)p35/細(xì)胞周期素依賴蛋白激酶5(CDK5)激活導(dǎo)致tau蛋白過度磷酸化,阻斷該通路可明顯減輕tau蛋白過度磷酸化,改善AD小鼠認(rèn)知功能減退[34]。Jun等[35]發(fā)現(xiàn)AD患者病變腦區(qū)補(bǔ)體C4a與磷酸化tau蛋白的表達(dá)相關(guān)聯(lián),但C4a參與調(diào)節(jié)tau蛋白磷酸化的機(jī)制尚不清楚。
4 基于補(bǔ)體系統(tǒng)靶點(diǎn)的AD治療藥物研發(fā)
小膠質(zhì)細(xì)胞激活在AD病變中具有復(fù)雜的雙面作用。補(bǔ)體系統(tǒng)的激活可以促進(jìn)小膠質(zhì)細(xì)胞活化,具有限制β-淀粉樣蛋白積累的積極作用,但持續(xù)的小膠質(zhì)細(xì)胞激活也可以促進(jìn)炎性因子分泌,加強(qiáng)吞噬神經(jīng)元突觸,加劇AD病變進(jìn)展[36-37]。在早發(fā)AD模型小鼠,給予補(bǔ)體抑制蛋白Crry后,病變部位Aβ沉積更為嚴(yán)重;補(bǔ)體C3敲除后,小膠質(zhì)細(xì)胞吞噬功能減弱,Aβ沉積也未得到改善,這可能是因?yàn)樵诓∽冊(cè)缙谘a(bǔ)體激活在一定程度上有助于小膠質(zhì)細(xì)胞對(duì)Aβ斑塊進(jìn)行吞噬清除[36]。基于補(bǔ)體的藥物治療需要更慎重考慮用藥時(shí)機(jī)和用藥劑量。然而,在Tg2576小鼠AD發(fā)病早期和晚期給予靶向C5a的AD疫苗(AFF1和AFF2)均可改善情景記憶能力,但不同的是,早期用藥可以減輕海馬小膠質(zhì)細(xì)胞激活及Aβ斑塊的積累;后期用藥可以抑制小膠質(zhì)細(xì)胞激活,但并不影響Aβ斑塊沉積[38]。盡管實(shí)驗(yàn)結(jié)果不一致,但由于在AD患者表現(xiàn)出臨床癥狀前就已出現(xiàn)腦內(nèi)Aβ斑塊,而tau蛋白異常磷酸化導(dǎo)致的神經(jīng)原纖維纏結(jié)以及突觸丟失程度與患者的認(rèn)知功能減退關(guān)系更為密切。因此,目前大多數(shù)研究仍支持抑制小膠質(zhì)細(xì)胞活性或抑制補(bǔ)體系統(tǒng)的激活對(duì)于AD的治療是有益的,至少可緩解神經(jīng)元突觸丟失,改善長(zhǎng)時(shí)程增強(qiáng)減退的現(xiàn)象,這對(duì)于改善AD患者的認(rèn)知功能下降至關(guān)重要[36],以補(bǔ)體系統(tǒng)作為靶點(diǎn)研發(fā)新藥仍然值得期待。
長(zhǎng)效C5補(bǔ)體抑制劑依庫(kù)珠單抗Eculizumab和Ravulizumab在臨床主要用于視神經(jīng)脊髓炎譜系疾病、全身性重癥肌無力和陣發(fā)性血紅蛋白尿的治療。在AD患者中使用Eculizumab有望防止補(bǔ)體過度活化[36]。應(yīng)用補(bǔ)體C3抑制劑Cp40治療恒河猴牙周炎及血液透析導(dǎo)致的恒河猴補(bǔ)體激活時(shí),可見血液中抗炎因子IL-10的濃度上升,提示Cp40可以抑制補(bǔ)體激活并減輕炎癥,因此有望用于免疫功能較低的AD患者。靶向C1q的單克隆抗體ANX005尚在臨床試驗(yàn)階段,面臨的首要困難是難以透過血腦屏障,不容易發(fā)揮后續(xù)效應(yīng),因此給藥方式和藥物劑型還在改進(jìn)中[36]。在動(dòng)物和離體細(xì)胞實(shí)驗(yàn)中,針對(duì)補(bǔ)體C1q的阻斷性抗體均可以抑制小膠質(zhì)細(xì)胞激活,減輕由于tau蛋白異常磷酸化導(dǎo)致的神經(jīng)元突觸丟失[39]。隨后研發(fā)的另一種AD治療藥物PBD-C06(正處在臨床前研究階段)是一種人源化pE3-Aβ抗體藥物,可抑制C1q激活,減輕神經(jīng)炎癥,結(jié)合和去除大腦中的pGlu3-Aβ淀粉樣蛋白,有望減輕患者的記憶功能減退[40]。梓醇是一種源于地黃的環(huán)烯醚萜類化合物,目前在治療糖尿病的臨床試驗(yàn)階段,但動(dòng)物實(shí)驗(yàn)表明,梓醇有望用于AD的預(yù)防和治療,不良反應(yīng)少且安全性高,可阻斷NF-κB的激活[41],從而減少膠質(zhì)細(xì)胞的激活和補(bǔ)體C3的生成,抑制炎性因子生成。
5 小結(jié)
AD患者外周血和腦脊液中補(bǔ)體成分增加,補(bǔ)體系統(tǒng)激活通過影響Aβ的聚集、Aβ的神經(jīng)毒性、tau蛋白異常磷酸化、神經(jīng)炎癥以及神經(jīng)元突觸丟失等機(jī)制促進(jìn)了AD病變進(jìn)展。以補(bǔ)體系統(tǒng)作為靶點(diǎn)研發(fā)新藥,并應(yīng)用于AD防治將成為可能。目前應(yīng)用補(bǔ)體激活抑制物緩解AD病變進(jìn)展的研究幾乎均是在動(dòng)物實(shí)驗(yàn)的基礎(chǔ)上進(jìn)行的。因此,這些補(bǔ)體激活抑制物能否應(yīng)用于臨床,還需要解決血腦屏障通透性差、半衰期短等問題。此外,給藥時(shí)機(jī)、給藥劑量以及藥物的生物安全性都需要大量細(xì)致深入的研究。
參考文獻(xiàn)
[1] 邵蕊,李岱,韓召利,等. 基于老年綜合評(píng)估的個(gè)體化康復(fù)訓(xùn)練對(duì)阿爾茨海默病患者認(rèn)知功能、風(fēng)險(xiǎn)防范的影響[J]. 天津醫(yī)藥,2021,49(8):847-851. SHAO R,LI D,HAN Z L,et al. Effects of individualized rehabilitation training based on comprehensive geriatric assessment on cognitive function and risk prevention of patients with Alzheimer's disease[J]. Tianjin Med J,2021,49(8):847-851. doi:10.11958/20210643.
[2] YANG J,WISE L,F(xiàn)UKUCHI K I. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer's disease[J]. Front Immunol,2020,11:724. doi:10.3389/fimmu.2020.00724.
[3] YIN C,ACKERMANN S,MA Z,et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q[J]. Nat Med,2019,25(3):496-506. doi:10.1038/s41591-018-0336-8.
[4] SHAH A,KISHORE U,SHASTRI A. Complement system in Alzheimer's disease[J]. Int J Mol Sci,2021,22(24):13647. doi:10.3390/ijms222413647.
[5] FATOBA O,ITOKAZU T,YAMASHITA T. Complement cascade functions during brain development and neurodegeneration[J]. FEBS J,2022,289(8):2085-2109. doi:10.1111/febs.15772.
[6] CHEN W T,LU A,CRAESSAERTS K,et al. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease[J]. Cell,2020,182(4):976-991.e19. doi:10.1016/j.cell.2020. 06.038.
[7] WU T,DEJANOVIC B,GANDHAM V D,et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy[J]. Cell Rep,2019,28(8):2111-2123.e6. doi:10.1016/j.celrep.2019.07.060.
[8] LIAN H,YANG L,COLE A,et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease[J]. Neuron,2015,85(1):101-115. doi:10.1016/j.neuron.2014.11.018.
[9] LITVINCHUK A,WAN Y W,SWARTZLANDER D B,et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease[J]. Neuron,2018,100(6):1337-1353.e5. doi:10.1016/j.neuron.2018.10.031.
[10] ZHANG D F,F(xiàn)AN Y,XU M,et al. Complement C7 is a novel risk gene for Alzheimer's disease in Han Chinese[J]. Natl Sci Rev,2019,6(2):257-274. doi:10.1093/nsr/nwy127.
[11] YUAN H,DU L,GE P. Complement receptor 1 genetic polymorphism contributes to sporadic Alzheimer's disease susceptibility in Caucasians: a meta-analysis[J]. Biosci Rep,2020,40(6):BSR20200321. doi:10.1042/BSR20200321.
[12] MAHMOUDI R,F(xiàn)ELDMAN S,KISSERLI A,et al. Inherited and acquired decrease in complement receptor 1(CR1)density on red blood cells associated with high levels of soluble CR1 in Alzheimer's disease[J]. Int J Mol Sci,2018,19(8):2175. doi:10.3390/ijms19082175.
[13] CAI H,PANG Y,WANG Q,et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer's disease[J]. Alzheimers Res Ther,2022,14(1):181. doi:10.1186/s13195-022-01133-1.
[14] GOETZL E J,SCHWARTZ J B,ABNER E L,et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease[J]. Ann Neurol,2018,83(3):544-552. doi:10.1002/ana.25172.
[15] NOGUERAS-ORTIZ C J,MAHAIRAKI V,DELGADO-PERAZA F,et al. Astrocyte- and neuron-derived extracellular vesicles from Alzheimer's disease patients effect complement-mediated neurotoxicity[J]. Cells,2020,9(7):1618. doi:10.3390/cells9071618.
[16] FLORENTINUS-MEFAILOSKI A,BOWDEN P,SCHELTENS P,et al. The plasma peptides of Alzheimer's disease[J]. Clin Proteomics,2021,18(1):17. doi:10.1186/s12014-021-09320-2.
[17] BONHAM L W,DESIKAN R S,YOKOYAMA J S,et al. The relationship between complement factor C3,APOE ε4,amyloid and tau in Alzheimer's disease[J]. Acta Neuropathol Commun,2016,4(1):65. doi:10.1186/s40478-016-0339-y.
[18] LU G,LIU W,HUANG X,et al. Complement factor H levels are decreased and correlated with serum C-reactive protein in late-onset Alzheimer's disease[J]. Arq Neuropsiquiatr,2020,78(2):76-80. doi:10.1590/0004-282X20190151.
[19] 王翠,楊暢,金玉,等. 木犀草苷對(duì)阿爾茨海默病模型細(xì)胞凋亡和炎性因子表達(dá)的研究[J]. 天津醫(yī)藥,2023,51(7):701-706. WANG C,YANG C,JIN Y,et al. Study of cynaroside on apoptosis and expression of inflammatory factor in model cells of Alzheimer's disease[J]. Tianjin Med J,2023,51(7):701-706. doi:10.11958/20221922.
[20] CHERNYAEVA L,RATTI G,TEIRIL? L,et al. Reduced binding of ApoE4 to complement factor H promotes amyloid-β oligomerization and neuroinflammation[J]. EMBO Rep,2023,24(7):e56467. doi:10.15252/embr.202256467.
[21] BISHT K,SHARMA K,TREMBLAY M è. Chronic stress as a risk factor for Alzheimer's disease:Roles of microglia-mediated synaptic remodeling,inflammation,and oxidative stress[J]. Neurobiol Stress,2018,9:9-21. doi:10.1016/j.ynstr.2018.05.003.
[22] ROY E R,WANG B,WAN Y W,et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease[J]. J Clin Invest,2020,130(4):1912-1930. doi:10.1172/JCI133737.
[23] LIAN H,LITVINCHUK A,CHIANG A C,et al. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease[J]. J Neurosci,2016,36(2):577-589. doi:10.1523/JNEUROSCI.2117-15.2016.
[24] GUAN P P,GE T Q,WANG P. As a potential therapeutic target,C1q induces synapse loss via inflammasome-activating apoptotic and mitochondria impairment mechanisms in Alzheimer's disease[J]. J Neuroimmune Pharmacol,2023,18(3):267-284. doi:10.1007/s11481-023-10076-9.
[25] AN X Q,XI W,GU C Y,et al. Complement protein C5a enhances the β-amyloid-induced neuro-inflammatory response in microglia in Alzheimer's disease[J]. Med Sci(Paris),2018,34 Focus issue F1:116-120. doi:10.1051/medsci/201834f120.
[26] KRETZSCHMAR G C,BUMILLER-BINI V,GASPARETTO FILHO M A,et al. Neutrophil extracellular traps:A perspective of neuroinflammation and complement activation in Alzheimer's disease[J]. Front Mol Biosci,2021,8:630869. doi:10.3389/fmolb.2021.630869.
[27] HAO X,LI Z,LI W,et al. Periodontal infection aggravates c1q-mediated microglial activation and synapse pruning in Alzheimer's mice[J]. Front Immunol,2022,13:816640. doi:10.3389/fimmu.2022.816640.
[28] WANG C,YUE H,HU Z,et al. Microglia mediate forgetting via complement-dependent synaptic elimination[J]. Science,2020,367(6478):688-694. doi:10.1126/science.aaz2288.
[29] QIN Q,WANG M,YIN Y,et al. The Specific mechanism of TREM2 regulation of synaptic clearance in Alzheimer's disease[J]. Front Immunol,2022,13:845897. doi:10.3389/fimmu.2022.845897.
[30] SPURRIER J,NICHOLSON L,F(xiàn)ANG X T,et al. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q[J]. Sci Transl Med,2022,14(647):eabi8593. doi:10.1126/scitranslmed.abi8593.
[31] CARPANINI S M,TORVELL M,BEVAN R J,et al. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models[J]. Acta Neuropathol Commun,2022,10(1):99. doi:10.1186/s40478-022-01404-w.
[32] LEE H E,LIM D,LEE J Y,et al. Recent tau-targeted clinical strategies for the treatment of Alzheimer's disease[J]. Future Med Chem,2019,11(15):1845-1848. doi:10.4155/fmc-2019-0151.
[33] HU J,YANG Y,WANG M,et al. Complement C3a receptor antagonist attenuates tau hyperphosphorylation via glycogen synthase kinase 3β signaling pathways[J]. Eur J Pharmacol,2019,850:135-140. doi:10.1016/j.ejphar.2019.02.020.
[34] YAO Y,CHANG Y,LI S,et al. Complement C3a receptor antagonist alleviates tau pathology and ameliorates cognitive deficits in P301S mice[J]. Brain Res Bull,2023,200:110685. doi:10.1016/j.brainresbull.2023.110685.
[35] JUN G R,YOU Y,ZHU C,et al. Protein phosphatase 2A and complement component 4 are linked to the protective effect of APOE ?2 for Alzheimer's disease[J]. Alzheimers Dement,2022,18(11):2042-2054. doi:10.1002/alz.12607.
[36] JEVTIC S,SENGAR A S,SALTER M W,et al. The role of the immune system in Alzheimer disease:Etiology and treatment[J]. Ageing Res Rev,2017,40:84-94. doi:10.1016/j.arr.2017.08.005.
[37] HANSEN D V,HANSON J E,SHENG M. Microglia in Alzheimer's disease[J]. J Cell Biol,2018,217(2):459-472. doi:10.1083/jcb.201709069.
[38] LANDLINGER C,OBERLEITNER L,GRUBER P,et al. Active immunization against complement factor C5a:A new therapeutic approach for Alzheimer's disease[J]. J Neuroinflammation,2015,12:150. doi:10.1186/s12974-015-0369-6.
[39] DEJANOVIC B,HUNTLEY M A,DE MAZIèRE A,et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies[J]. Neuron,2018,100(6):1322-1336.e7. doi:10.1016/j.neuron.2018.10.014.
[40] HETTMANN T,GILLIES S D,KLEINSCHMIDT M,et al. Development of the clinical candidate PBD-C06,a humanized pGlu3-Aβ-specific antibody against Alzheimer's disease with reduced complement activation[J]. Sci Rep,2020,10(1):3294. doi:10.1038/s41598-020-60319-5.
[41] CHEN H,DENG C,MENG Z,et al. Effects of catalpol on Alzheimer's disease and its mechanisms[J]. Evid Based Complement Alternat Med,2022,2022:2794243. doi:10.1155/2022/2794243.
(2023-10-11收稿 2023-11-20修回)
(本文編輯 李志蕓)