基金項(xiàng)目:江蘇省醫(yī)學(xué)會(huì)兒科醫(yī)學(xué)科研專(zhuān)項(xiàng)基金項(xiàng)目(SYH-32034-0073,SYH-32034-0085);南京市衛(wèi)生科技發(fā)展專(zhuān)項(xiàng)資金項(xiàng)目(YKK23209,YKK23288,YKK23289)
作者單位:1南京醫(yī)科大學(xué)第二附屬醫(yī)院兒科(郵編210003);2南京醫(yī)科大學(xué)第四附屬醫(yī)院兒科
作者簡(jiǎn)介:夏雨薇(2000),女,碩士在讀,主要從事小兒腎臟疾病診治及機(jī)制方面研究。E-mail:13218006127@163.com
△通信作者 E-mail:weihuagan@njmu.edu.cn
摘要:目的 探討tRF-1:30(tRF-1:30-Gln-CTG-4)對(duì)高糖(HG)誘導(dǎo)的腎小管上皮細(xì)胞(RTECs)中炎性因子表達(dá)的影響及分子機(jī)制。方法 將小鼠RTECs分為Control組、HG組、HG+tRF-1:30 mimic組、HG+tRF-1:30 NC組、HG+si-IKZF2組(IKAROS家族鋅指2,tRF-1:30抑制劑)、HG+si-NC組。實(shí)時(shí)熒光定量PCR檢測(cè)tRF-1:30、腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-6(IL-6)、單核細(xì)胞趨化蛋白-1(MCP-1)和IKZF2 mRNA的水平。酶聯(lián)免疫吸附試驗(yàn)檢測(cè)炎性因子水平,Western blot檢測(cè)IKZF2蛋白表達(dá)水平,雙螢光素酶報(bào)告實(shí)驗(yàn)驗(yàn)證tRF-1:30和IKZF2的關(guān)系。結(jié)果 在HG誘導(dǎo)的RTECs中炎性因子的表達(dá)水平顯著升高,而tRF-1:30表達(dá)水平顯著降低。過(guò)表達(dá)tRF-1:30顯著降低HG誘導(dǎo)的RTECs中炎性因子的表達(dá)水平。IKZF2在HG誘導(dǎo)的RTECs中顯著高表達(dá),進(jìn)一步敲低IKZF2可抑制炎性因子的釋放,而過(guò)表達(dá)tRF-1:30后IKZF2的表達(dá)水平下調(diào)。雙螢光素酶報(bào)告實(shí)驗(yàn)進(jìn)一步驗(yàn)證tRF-1:30與IKZF2可能存在靶向關(guān)系。結(jié)論 過(guò)表達(dá)tRF-1:30可能通過(guò)負(fù)向調(diào)控IKZF2的表達(dá)進(jìn)而抑制HG誘導(dǎo)的RTECs炎性因子的釋放。
關(guān)鍵詞:糖尿病腎??;端粒重復(fù)序列結(jié)合蛋白質(zhì)1;tRF-1:30-Gln-CTG-4;腎小管上皮細(xì)胞;炎性因子;IKAROS家族鋅指2
中圖分類(lèi)號(hào):R587.2 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240046
Effect of tRF-1:30 on the expression of inflammatory factors in renal tubular epithelial cells induced by high glucose
XIA Yuwei1, QIAO Yunyang1, LIU Xuewei1, SHI Huimin1, QU Gaoting1, ZHANG Aiqing2, GAN Weihua1△
1 Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China; 2 Department of Pediatric Nephrology, the Fourth Affiliated Hospital of Nanjing Medical University
△Corresponding Author E-mail: weihuagan@njmu.edu.cn
Abstract: Objective To investigate the effect and molecular mechanism of tRF-1:30-Gln-CTG-4 (tRF-1:30) on the expression of inflammatory factors in high glucose (HG)-induced renal tubular epithelial cells (RTECs). Methods RTECs were divided into the control group, the HG group, the HG+tRF-1:30 mimic group, the HG+tRF-1:30 negative control (NC) group, the HG+si-IKZF2 group and the HG+si-NC group. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of tRF-1:30, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and IKAROS family zinc finger protein 2 (IKZF2). Enzyme-linked immunosorbent assay (ELISA) was used to detect levels of TNF-α, IL-6 and MCP-1. Protein expression of IKZF2 was detected by Western blot assay. Dual-luciferase reporter assay was used to detect the targeting relationship between tRF-1:30 and IKZF2. Results The expression levels of inflammatory factors were elevated in HG-induced RTECs, and the expression level of tRF-1:30 was decreased (P<0.05). Overexpression of tRF-1:30 significantly decreased expression levels of inflammatory factors in HG-induced RTECs (P<0.05), and the expression level of IKZF2 was significantly increased (P<0.05). Further knockdown of IKZF2 can inhibit the release of inflammatory factors, and the expression level of IKZF2 was down-regulated after overexpression of tRF-1:30. Double luciferase reporting experiment further verified the possible targeting relationship between tRF-1:30 and IKZF2. Conclusion Overexpression of tRF-1:30 inhibits the expression of inflammatory factors in HG-induced RTECs by target binding and negatively regulating the expression of IKZF2.
Key words: diabetic nephropathies; telomeric repeat binding protein 1; tRF-1:30-Gln-CTG-4; renal tubular epithelial cells; inflammatory factors; IKAROS family zinc finger protein 2
糖尿病腎病(DKD)是慢性腎臟病的一種重要類(lèi)型[1],腎小管上皮細(xì)胞(RTECs)損傷是DKD的關(guān)鍵環(huán)節(jié)[2]。腎小管間質(zhì)炎癥在DKD的進(jìn)展中起重要作用,RTECs在炎癥反應(yīng)中起著關(guān)鍵作用[3]。因此,研究高糖(HG)條件下RTECs炎性因子的表達(dá)改變對(duì)探索DKD損傷的機(jī)制有重大意義。轉(zhuǎn)運(yùn)RNA的衍生片段(tRFs)是一類(lèi)新興的非編碼RNA。有研究揭示tRF-3022b可能通過(guò)與半乳糖凝集素1和巨噬細(xì)胞遷移抑制因子結(jié)合來(lái)影響結(jié)直腸癌的腫瘤生長(zhǎng)和M2巨噬細(xì)胞極化[4]。這些研究表明tRFs具有重要的臨床意義,可能構(gòu)成調(diào)節(jié)病理過(guò)程的新型分子治療靶點(diǎn)[5]。然而,tRFs在各種腎臟疾病中的作用卻鮮有報(bào)道。本課題組前期采用高通量測(cè)序技術(shù),通過(guò)HG誘導(dǎo)RTECs,篩選出多條差異表達(dá)的tRFs,在表達(dá)下調(diào)的tRFs中選取tRF-1:30-Gln-CTG-4(tRF-1:30)進(jìn)行了表達(dá)水平驗(yàn)證,同時(shí)證實(shí)其參與了RTECs損傷;并利用生物信息學(xué)分析發(fā)現(xiàn)IKAROS家族鋅指2(IKZF2)基因可能是tRF-1:30的作用靶點(diǎn),推測(cè)tRF-1:30對(duì)RTECs損傷的影響可能與IKZF2有關(guān)[6]。本研究旨在探索tRF-1:30對(duì)HG誘導(dǎo)的RTECs中炎性因子表達(dá)的影響及機(jī)制是否與IKZF2有關(guān),以便為臨床防治DKD尋求新的線(xiàn)索。
1 材料與方法
1.1 主要材料 本實(shí)驗(yàn)所用小鼠RTECs購(gòu)自北納生物。細(xì)胞培養(yǎng)所使用的F12培養(yǎng)液、胎牛血清、胰酶及磷酸鹽緩沖液均購(gòu)自美國(guó)Gibco公司;tRF-1:30 mimic及相應(yīng)的陰性對(duì)照(NC)、IKZF2 siRNA及相應(yīng)NC、轉(zhuǎn)染試劑盒購(gòu)自廣州銳博生物科技有限公司;TRIzol試劑購(gòu)自美國(guó)Invitrogen;實(shí)時(shí)熒光定量PCR(RT-qPCR)相關(guān)試劑盒購(gòu)自南京諾唯贊生物科技有限公司;PCR引物由南京銳真生物技術(shù)有限公司設(shè)計(jì)合成并驗(yàn)證;蛋白提取及定量相關(guān)試劑盒購(gòu)自南京諾唯贊生物科技有限公司;蛋白免疫印跡(Western blot)實(shí)驗(yàn)相關(guān)耗材購(gòu)自武漢賽維爾生物科技有限公司;兔源IKZF2一抗、鼠源GAPDH一抗、羊抗兔二抗、羊抗鼠二抗購(gòu)自中國(guó)Affinity Biosciences LTD公司;腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-6(IL-6)、單核細(xì)胞趨化蛋白-1(MCP-1)酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測(cè)試劑盒和雙螢光素酶報(bào)告檢測(cè)試劑盒購(gòu)自武漢亞科因生物技術(shù)有限公司。CO2細(xì)胞培養(yǎng)箱購(gòu)自美國(guó)Thermo Fisher公司;Lightcycler 480Ⅱ型熒光定量PCR儀購(gòu)自美國(guó)Roche公司;ELX800型全自動(dòng)吸收光酶標(biāo)儀、CHDMIDOC型凝膠成像系統(tǒng)購(gòu)自美Bio-Rad公司;CKX31型倒置顯微鏡購(gòu)自日本OLYMPUS公司。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng)及分組 使用含10%胎牛血清的F12培養(yǎng)液培養(yǎng)小鼠RTECs并置于37 ℃、5%CO2的細(xì)胞培養(yǎng)箱中,每隔1~2 d更換37 ℃預(yù)熱新鮮培養(yǎng)液1次。鏡下觀察細(xì)胞鋪至滿(mǎn)視野時(shí)進(jìn)行傳代鋪板,鏡下觀察細(xì)胞生長(zhǎng)密度達(dá)30%~50%,更換無(wú)血清培養(yǎng)液繼續(xù)培養(yǎng)12 h使細(xì)胞同步化。細(xì)胞分組及處理:Control組(正常培養(yǎng)的RTECs)、HG組(35 mmol/L葡萄糖干預(yù))、HG+tRF-1:30 mimic組(轉(zhuǎn)染tRF-1:30 mimic)、HG+tRF-1:30 NC組(轉(zhuǎn)染tRF-1:30 NC);HG+si-NC組(轉(zhuǎn)染si-NC)、HG+si-IKZF2組(轉(zhuǎn)染si-IKZF2)。
1.2.2 細(xì)胞轉(zhuǎn)染 將處于對(duì)數(shù)生長(zhǎng)期的RTECs接種至6孔板,置于條件為37 ℃、5%CO2的培養(yǎng)箱內(nèi),鏡下觀察細(xì)胞生長(zhǎng)至密度達(dá)30%~50%時(shí),按轉(zhuǎn)染試劑操作說(shuō)明書(shū)配制濃度為20 nmol/L轉(zhuǎn)染復(fù)合物,依據(jù)不同實(shí)驗(yàn)分組干預(yù)方式需要干預(yù)24 h后收集細(xì)胞以備后續(xù)實(shí)驗(yàn)。
1.2.3 RT-qPCR檢測(cè)tRF-1:30及炎性因子mRNA表達(dá)水平 使用TRIzol試劑裂解并提取各組細(xì)胞的總RNA,分光光度計(jì)測(cè)定總RNA濃度和純度,260/280 nm光密度比值保持在1.8~2.0。根據(jù)反轉(zhuǎn)錄試劑盒說(shuō)明書(shū)操作,將總RNA反轉(zhuǎn)錄為cDNA,用RT-qPCR法檢測(cè)tRF-1:30及炎性因子TNF-α、IL-6、MCP-1、IKZF2 mRNA表達(dá)水平,引物序列見(jiàn)表1。依據(jù)熔解曲線(xiàn)進(jìn)行產(chǎn)物的特異性分析。反應(yīng)條件:95 ℃預(yù)變性5 min;95 ℃變性10 s,60 ℃退火20 s,72 ℃延伸10 s,40個(gè)循環(huán)。以U6、β-actin作為內(nèi)參,采用2-ΔΔCt法計(jì)算目的基因的相對(duì)表達(dá)量。實(shí)驗(yàn)重復(fù)3次。[基因
名稱(chēng) 引物序列(5′→3′) 產(chǎn)物
大小/bp TNF-α 上游:CCTTATCTACTCCCAGGTTCTC 109 下游:GAGGCTGACTTTCTCCTGGTATG IL-6 上游:CTGCAAGAGACTTCCATCCAG 131 下游:AGTGGTATAGACAGGTCTGTTGG MCP-1 上游:TAAAAACCTGGATCGGAACCAAA 115 下游:GCATTAGCTTCAGATTTACGGGT IKZF2 上游:AAGGGGAACACGCCAATATGG 135 下游:GCTGCCTGTCACACTCTTCA β-actin 上游:CATCCGTAAAGACCTCTATGCCAAC 171 下游:ATGGAGCCACCGATCCACA tRF-1:30 上游:GGTTCCATGGTGTAATGGTGAGCACTCTGG 220 下游:ACGCTTCACGAATTTGCGTGTC U6 上游:CTCGCTTCGGCAGCACATATACT 93 下游:ACGCTTCACGAATTTGCGTGTC ][Tab.1 Sequences of RT-qPCR primers
表1 RT-qPCR引物序列]
1.2.4 Western blot檢測(cè)IKZF2蛋白表達(dá)水平 使用加入蛋白酶抑制劑的RIPA裂解液裂解細(xì)胞并提取細(xì)胞總蛋白。細(xì)胞刷刮下細(xì)胞并收集懸液至1.5 mL EP管中,在4 ℃下以12 000×g 離心30 min,取上清液,使用BCA法測(cè)定蛋白濃度并制備蛋白樣本。制備好的蛋白經(jīng)SDS-PAGE分離并轉(zhuǎn)膜至PVDF膜上,使用5%脫脂奶粉于室溫下封閉2 h,清洗后分別加入稀釋好的GAPDH、IKZF2一抗(1∶1 000),在4 ℃孵育過(guò)夜。次日,復(fù)溫并使用TBST充分洗膜后加入稀釋好的二抗(1∶3 000)," "室溫下置于搖床孵育1 h,再次洗膜,加入ECL顯色液并置于凝膠成像儀下曝光條帶。Image J軟件分析蛋白條帶灰度值,以GAPDH為內(nèi)參計(jì)算目的蛋白的相對(duì)表達(dá)量。實(shí)驗(yàn)重復(fù)3次。
1.2.5 ELISA檢測(cè)炎性因子水平 收集各組細(xì)胞,1 000×g離心20 min后收集上清液,按試劑盒說(shuō)明書(shū)操作,以空白組調(diào)零,450 nm波長(zhǎng)處依序測(cè)量各孔的吸光度。繪制標(biāo)準(zhǔn)曲線(xiàn),根據(jù)標(biāo)準(zhǔn)曲線(xiàn)計(jì)算樣本TNF-α、IL-6、MCP-1濃度。每組細(xì)胞設(shè)置3個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次。
1.2.6 雙螢光素酶報(bào)告實(shí)驗(yàn)驗(yàn)證tRF-1:30與IKZF2間的關(guān)系 通過(guò)TargetScan在線(xiàn)網(wǎng)站(https://www.targetscan.org/)預(yù)測(cè)tRF-1:30和IKZF2有無(wú)結(jié)合位點(diǎn)。將tRF-1:30 NC、tRF-1:30 mimic分別與野生型(wild type,WT)IKZF2、突變型(mutant,MUT)IKZF2兩兩組合轉(zhuǎn)染至293T細(xì)胞中,設(shè)為tRF-1:30 NC+WT-IKZF2組、tRF-1:30 NC+MUT-IKZF2組、tRF-1:30 mimic+WT-IKZF2組、tRF-1:30 mimic+MUT-IKZF2組。繼續(xù)培養(yǎng)48 h后,檢測(cè)并計(jì)算各組細(xì)胞螢光素酶相對(duì)活性。實(shí)驗(yàn)重復(fù)3次。
1.3 統(tǒng)計(jì)學(xué)方法 采用GraphPad Prism 9.5軟件進(jìn)行數(shù)據(jù)分析。計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差[([x] ±s)
]表示,2組間比較采用t檢驗(yàn),多組間的比較采用單因素方差分析,組間多重比較采用Tukey-q檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 tRF-1:30和炎性因子在HG誘導(dǎo)的RTECs中的表達(dá)水平 與Control組相比,HG組TNF-α、IL-6、MCP-1 mRNA和蛋白表達(dá)水平升高,tRF-1:30 mRNA表達(dá)水平降低(P<0.05),見(jiàn)表2。[組別 mRNA TNF-α IL-6 MCP-1 tRF-1:30 Control組 1.01±0.09 1.00±0.14 0.99±0.08 1.02±0.08 HG組 2.47±0.29 2.68±0.35 2.01±0.28 0.27±0.06 t 8.228** 7.690** 6.126** 13.300** ][組別 蛋白/(ng/L) TNF-α IL-6 MCP-1 Control組 70.33±8.67 42.33±5.20 30.67±5.16 HG組 202.50±26.47 165.50±20.42 65.17±4.73 t 8.224** 10.120** 8.538** ][Tab.2 Expression levels of tRF-1:30 and inflammatory factors in the control group and the HG group
表2 Control組和HG組細(xì)胞tRF-1:30和
炎性因子表達(dá)水平][ **P<0.01。][(n=3,[x] ±s)
]
2.2 過(guò)表達(dá)tRF-1:30對(duì)HG誘導(dǎo)的RTECs炎性因子表達(dá)的影響 與HG組、HG+tRF-1:30 NC組相比,HG+tRF-1:30 mimic組tRF-1:30 mRNA表達(dá)水平升高(P<0.05)。HG+tRF-1:30 NC組tRF-1:30 mRNA表達(dá)水平較HG組差異無(wú)統(tǒng)計(jì)學(xué)意義;與HG組、HG+tRF-1:30 NC組相比,HG+tRF-1:30 mimic組TNF-α、IL-6、MCP-1 mRNA和蛋白表達(dá)水平降低(P<0.05),見(jiàn)表3。
2.3 IKZF2在HG誘導(dǎo)的RTECs中的表達(dá)情況 與Control組相比,HG組細(xì)胞IKZF2 mRNA(1.48±0.22 vs. 1.00±0.05,t=3.593,P<0.05)和蛋白(1.48±0.05 vs. 1.00±0.05,t=11.780,P<0.01)表達(dá)水平均升高,見(jiàn)圖1。lt;C:\Users\Lenovo\Desktop\修改備用\責(zé)編\2024年-6期\Image\image2_2.pnggt;[Control組][HG組][IKZF2][56 ku][36 ku][GAPDH][Fig.1 Detection of IKZF2 expression in HG-induced RTECS by Western blot assay
圖1 Western blot檢測(cè)IKZF2在HG誘導(dǎo)的RTECS中的表達(dá)情況]
2.4 敲低IKZF2對(duì)HG誘導(dǎo)的RETCs炎性因子表達(dá)的影響 與HG組、HG+si-NC組比較,HG+si-IKZF2組IKZF2及炎性因子TNF-α、IL-6、MCP-1 mRNA和蛋白表達(dá)水平均降低,見(jiàn)圖2,表4、5。lt;C:\Users\Lenovo\Desktop\修改備用\責(zé)編\2024年-6期\Image\image3_2.pnggt;[A][B][C][D][IKZF2][GAPDH][56 ku][36 ku][A:Control組;B:HG組;C:HG+si-IKZF2組;D:HG+si-NC組。
Fig.2 IKZF2 protein expression level detected by Western blot assay
圖2 Western blot檢測(cè)IKZF2蛋白表達(dá)水平
][組別 IKZF2蛋白 IKZF2 mRNA Control組 1.00±0.05 1.00±0.09 HG組 1.45±0.01a 1.53±0.06a HG+si-NC組 1.41±0.02a 1.53±0.11a HG+si-IKZF2組 0.65±0.11bc 0.19±0.03bc F 376.400** 191.400** ][Tab.4 Comparison of the relative expression levels of IKZF2 protein and mRNA between the four groups
表4 各組IKZF2蛋白和mRNA相對(duì)
表達(dá)量比較][ **P<0.01;a與Control組比較,b與HG組比較,c與HG+si-NC組比較,P<0.05。][(n=3,[x] ±s)
][組別 mRNA TNF-α IL-6 MCP-1 Control組 1.00±0.05 1.02±0.12 1.05±0.10 HG組 1.93±0.15a 1.68±0.14a 1.53±0.06a HG+si-NC組 1.90±0.10a 1.70±0.10a 1.56±0.14a HG+si-IKZF2組 0.46±0.06bc 0.63±0.10bc 0.47±0.21bc F 157.000** 60.760** 41.500** ][組別 蛋白/(ng/L) TNF-α IL-6 MCP-1 Control組 70.33±4.04 42.53±6.15 32.30±4.30 HG組 203.70±23.16a 153.90±15.12a 58.86±6.40a HG+si-NC組 197.80±30.48a 148.10±18.40a 66.70±5.59a HG+si-IKZF2組 109.47±26.39bc 70.27±7.76bc 46.33±5.47bc F 24.000** 57.360** 12.190** ][Tab.5 Comparison of mRNA and protein expression levels of inflammatory factors after knockdown of IKZF2 expression between the four groups
表5 敲低IKZF2表達(dá)后各組細(xì)胞炎性因子mRNA及蛋白表達(dá)水平比較][ **P<0.01;a與Control組比較,b與HG組比較,c與HG+si-NC組比較,P<0.05。][(n=3,[x] ±s)
]
2.5 tRF-1:30影響IKZF2并調(diào)控其表達(dá) 與HG組、HG+tRF-1:30 NC組相比,HG+tRF-1:30 mimic組IKZF2的mRNA和蛋白表達(dá)水平降低(P<0.05),見(jiàn)圖3、表6。生物信息學(xué)預(yù)測(cè)顯示,tRF-1:30與IKZF2存在結(jié)合位點(diǎn),見(jiàn)圖4。在兩個(gè)結(jié)合處進(jìn)行了雙螢光素酶報(bào)告實(shí)驗(yàn),結(jié)果顯示,tRF-1:30與IKZF2-WT載體共轉(zhuǎn)染至RTECs后雙螢光素酶活性降低,而與MUT載體共轉(zhuǎn)染RTECs后雙螢光素酶活性比較差異無(wú)統(tǒng)計(jì)學(xué)意義,見(jiàn)圖5。lt;C:\Users\Lenovo\Desktop\修改備用\責(zé)編\2024年-6期\Image\image4_2.pnggt;[IKZF2][GAPDH][56 ku][36 ku][A][B][C][D][ A:Control組;B:HG組;C:HG+tRF-1:30 mimic組;D:HG+tRF-1:30 NC組。
Fig.3 IKZF2 protein expression level after addition of tRF-1:30 detected by Western blot assay
圖3 Western blot檢測(cè)加入tRF-1:30后IKZF2蛋白表達(dá)水平
][組別 IKZF2 mRNA IKZF2蛋白 Control組 1.02±0.02 0.99±0.04 HG組 2.23±0.29a 1.34±0.12a HG+tRF-1:30 NC組 2.06±0.31 1.53±0.07 HG+tRF-1:30 mimic組 1.54±0.11bc 0.73±0.04bc F 18.910** 66.600** ][Tab.6 Effect of tRF-1:30 overexpression on IKZF2 expression induced by high glucose
表6 過(guò)表達(dá)tRF-1:30對(duì)高糖誘導(dǎo)后IKZF2
表達(dá)的影響][ **P<0.01;a與Control組比較,b與HG組比較,c與HG+ tRF-1:30 NC組比較,P<0.05。][(n=3,[x] ±s)
]lt;C:\Users\Lenovo\Desktop\修改備用\責(zé)編\2024年-6期\Image\image6_1.pnggt;[tRF-1:30 NC組
tRF-1:30 mimic組][t=3.672
P<0.05][t=2.283
P>0.05][1.0][1.5][0.5][0.0][相對(duì)螢光素酶活性][IKZF2-WT][IKZF2-MUT][A]lt;C:\Users\Lenovo\Desktop\修改備用\責(zé)編\2024年-6期\Image\image7_1.pnggt;[t=5.032
P<0.05][t=1.153
P>0.05][tRF-1:30 NC組
tRF-1:30 mimic組][1.0][1.5][0.5][0.0][相對(duì)螢光素酶活性][IKZF2-WT][IKZF2-MUT][B][ A:結(jié)合位點(diǎn)1相對(duì)螢光素酶活性檢測(cè);B:結(jié)合位點(diǎn)2相對(duì)螢光素酶活性檢測(cè)。
Fig.5 Results of luciferase reporter gene assay
圖5 螢光素酶報(bào)告基因?qū)嶒?yàn)結(jié)果]lt;C:\Users\Lenovo\Desktop\修改備用\責(zé)編\2024年-6期\Image\image5_1.pnggt;[Fig.4 The nucleic acid base binding sites of IKZF2 and tRF-1:30
圖4 IKZF2和tRF-1:30核酸堿基結(jié)合位點(diǎn)]
3 討論
DKD的發(fā)病機(jī)制非常復(fù)雜,尚不完全清楚。近年有研究表明,炎癥在DKD的發(fā)生和發(fā)展中起著重要作用,多種促炎細(xì)胞因子參與DKD的發(fā)生[7]。腎小管損傷在DKD中起著重要作用,高血糖可以使RTECs釋放多種炎性細(xì)胞因子,從而導(dǎo)致炎癥的發(fā)生,同時(shí)介導(dǎo)了DKD的發(fā)生和發(fā)展[8-11]。因此,抑制RTECs炎癥的發(fā)生對(duì)治療腎臟相關(guān)疾病具有重要意義。
tRFs以不同方式在癌癥、神經(jīng)退行性疾病、病毒感染等疾病中發(fā)揮重要作用,顯示了它們?cè)诙喾N疾病中都有應(yīng)用的潛力[12]。tRF-36可以通過(guò)調(diào)節(jié)鐵死亡來(lái)促進(jìn)胰腺炎的進(jìn)展[13];tRF5-AlaCGC可通過(guò)激活p65導(dǎo)致亞砷酸鹽反應(yīng)中IL-8分泌增多[14],表明tRFs可能與細(xì)胞的炎癥反應(yīng)相關(guān)。有關(guān)tRFs在腎臟疾病方面的研究較少。本課題組前期研究發(fā)現(xiàn),tRF-003634可以通過(guò)降低Toll樣受體家族成員4的mRNA穩(wěn)定性來(lái)減輕足細(xì)胞損傷[15],也可能作為MAPK通路的下游效應(yīng)分子改善足細(xì)胞凋亡[16],表明了tRFs在腎臟疾病中有發(fā)揮作用的潛能。然而,tRFs對(duì)RTECs損傷的影響尚不清楚。結(jié)合課題組前期研究成果,本文選擇了tRF-1:30進(jìn)行深入研究,結(jié)果顯示,HG誘導(dǎo)的RTECs中炎性因子TNF-α、IL-6、MCP-1釋放增多,tRF-1:30表達(dá)水平降低,說(shuō)明tRF-1:30可能與腎小管炎性因子的表達(dá)有關(guān)。將tRF-1:30過(guò)表達(dá)后,HG誘導(dǎo)的RTECs中炎性因子TNF-α、IL-6、MCP-1的表達(dá)水平降低;TNF-α是一種Ⅱ型跨膜蛋白,與TNF受體1和受體2結(jié)合參與復(fù)雜的免疫反應(yīng)和炎癥反應(yīng);IL-6是促炎細(xì)胞因子,其高表達(dá)可導(dǎo)致RTECs發(fā)生炎癥反應(yīng);MCP-1是趨化因子家族成員,主要參與單核細(xì)胞和巨噬細(xì)胞的活化、浸潤(rùn)及遷移,促進(jìn)炎癥反應(yīng)[17]。本研究結(jié)果表明tRF-1:30可以抑制HG誘導(dǎo)的RTECs炎癥反應(yīng)。
為進(jìn)一步研究tRF-1:30影響RTECs炎癥損傷的分子機(jī)制,本實(shí)驗(yàn)通過(guò)在線(xiàn)數(shù)據(jù)庫(kù)預(yù)測(cè)發(fā)現(xiàn)tRF-1:30與IKZF2存在結(jié)合位點(diǎn)。有研究表明過(guò)表達(dá)IKZF2可能使細(xì)胞產(chǎn)生抗炎細(xì)胞因子IL-10來(lái)促進(jìn)腫瘤免疫逃逸[18]。另有研究發(fā)現(xiàn),鋅指蛋白36通過(guò)降低IKZF2的表達(dá)參與炎癥基因的調(diào)控[19]。IKZF2與狼瘡性腎炎亦相關(guān),可能成為區(qū)分狼瘡性腎炎患者與健康人的生物標(biāo)志物[20]。IKZF2還可調(diào)節(jié)輔助性T細(xì)胞的發(fā)育以介導(dǎo)日本鏈球菌感染的C57BL/6小鼠脾中的免疫反應(yīng)[21]。因此,IKZF2可能參與免疫和炎癥反應(yīng)的調(diào)控。本實(shí)驗(yàn)結(jié)果顯示,HG誘導(dǎo)的RTECs中IKZF2高表達(dá),提示IKZF2可能參與了RTECs的損傷過(guò)程;敲低IKZF2可以降低HG誘導(dǎo)的RTECs中炎性因子TNF-α、IL-6、MCP-1的釋放,表明抑制IKZF2的表達(dá)可以緩解HG誘導(dǎo)的RTECs炎癥反應(yīng)。本研究利用生物信息學(xué)技術(shù)發(fā)現(xiàn)了IKZF2與tRF-1:30的相互作用靶點(diǎn),雙螢光素酶報(bào)告實(shí)驗(yàn)為tRF-1:30與IKZF2之間的靶向調(diào)控關(guān)系提供了證據(jù),表明tRF-1:30可能通過(guò)調(diào)控IKZF2影響HG誘導(dǎo)的RTECs炎性因子的表達(dá)。
綜上所述,tRF-1:30在HG誘導(dǎo)的RTECs中顯著低表達(dá),過(guò)表達(dá)tRF-1:30可能通過(guò)負(fù)向調(diào)控IKZF2表達(dá)水平,進(jìn)而抑制HG誘導(dǎo)的RTECs釋放炎性因子。本研究尚存在不足之處,雙螢光素酶實(shí)驗(yàn)驗(yàn)證了tRF-1:30與IKZF2之間的結(jié)合,但還無(wú)法驗(yàn)證其是否具有直接的靶向調(diào)控關(guān)系,在tRF-1:30/IKZF2軸中兩者上下游關(guān)系未來(lái)還需進(jìn)一步深入研究加以驗(yàn)證。
參考文獻(xiàn)
[1] GUPTA S,DOMINGUEZ M,GOLESTANEH L. Diabetic kidney disease:an update[J]. Med Clin North Am,2023,107(4):689-705. doi:10.1016/j.mcna.2023.03.004.
[2] CHEN S J,LV L L,LIU B C,et al. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease[J]. Cell Prolif,2020,53(3):e12763. doi:10.1111/cpr.12763.
[3] YANG W X,LIU Y,ZHANG S M,et al. Epac activation ameliorates tubulointerstitial inflammation in diabetic nephropathy[J]. Acta Pharmacol Sin,2022,43(3):659-671. doi:10.1038/s41401-021-00689-2.
[4] LU S,WEI X,TAO L,et al. A novel tRNA-derived fragment tRF-3022b modulates cell apoptosis and M2 macrophage polarization via binding to cytokines in colorectal cancer[J]. J Hematol Oncol,2022,15(1):176. doi:10.1186/s13045-022-01388-z.
[5] YU X,XIE Y,ZHANG S,et al. tRNA-derived fragments:Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections[J]. Theranostics,2021,11(1):461-469. doi:10.7150/thno.51963.
[6] JI J,RONG J,ZHENG H,et al. Expression profiles of tRNA derived fragments in high glucose treated tubular epithelial cells[J]. Exp Ther Med,2023,25(1):26. doi:10.3892/etm.2022.11725.
[7] LIU C,YANG M,LI L,et al. A glimpse of inflammation and anti-inflammation therapy in diabetic kidney disease[J]. Front Physiol,2022,13:909569. doi:10.3389/fphys.2022.909569.
[8] JUNG S W,MOON J Y. The role of inflammation in diabetic kidney disease[J]. Korean J Intern Med,2021,36(4):753-766. doi:10.3904/kjim.2021.174.
[9] 黃湘寧,王屹菲,俞赟豐,等. 基于文獻(xiàn)的糖尿病腎病動(dòng)物模型應(yīng)用分析[J]. 中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2023,29(13):188-196. HUANG X N,WANG Y F,YU Y F,et al. Animal modeling of diabetic nephropathy[J]. Chinese Journal of Experimental Traditional Medical Formulae,2023,29(13):188-196. doi:10.13422/j.cnki.syfjx.20230517.
[10] 李申,劉志紅. 糖尿病腎病腎小管損傷機(jī)制[J]. 腎臟病與透析腎移植雜志,2018,27(3):265-268. LI S,LIU Z H. Mechanism of renal tubular injury in diabetic nephropathy[J]. Journal of Kidney Disease and Dialysis Kidney Transplantation,2018,27(3):265-268. doi:10.3969/j.issn.1006-298X.2018.03.015.
[11] 楊娟,張厚芬,吳松,等. LncRNA OIP5-AS1調(diào)節(jié)miR-25-3p/SOX4軸對(duì)高糖誘導(dǎo)的人腎小管上皮細(xì)胞生物學(xué)過(guò)程的影響[J]. 天津醫(yī)藥,2023,51(2):131-138. YANG J,ZHANG H F,WU S,et al. Effect of LncRNA OIP5-AS1 regulating miR-25-3p/SOX4 axis on the biological process of human renal tubular epithelial cells induced by high glucose[J]. Tianjin Med J,2023,51(2):131-138. doi:10.11958/20220849.
[12] CHU X,HE C,SANG B,et al. Transfer RNAs-derived small RNAs and their application potential in multiple diseases[J]. Front Cell Dev Biol,2022,10:954431. doi:10.3389/fcell.2022.954431.
[13] FAN X R,HUANG Y,SU Y,et al. Exploring the regulatory mechanism of tRNA-derived fragments 36 in acute pancreatitis based on small RNA sequencing and experiments[J]. World J Gastroenterol,2023,29(30):4642-4656. doi:10.3748/wjg.v29.i30.4642.
[14] LIU S,CHEN Y,REN Y,et al. A tRNA-derived RNA fragment plays an important role in the mechanism of arsenite -induced cellular responses[J]. Sci Rep,2018,8(1):16838. doi:10.1038/s41598-018-34899-2.
[15] GAO X,QIAO Y,LI S,et al. tRF-003634 alleviates adriamycin-induced podocyte injury by reducing the stability of TLR4 mRNA[J]. PLoS One,2023,18(10):e293043. doi:10.1371/journal.pone.0293043.
[16] 王娥,趙唐明,鄭輝,等. tRF-003634對(duì)阿霉素腎病小鼠足細(xì)胞凋亡的作用和機(jī)制研究[J]. 徐州醫(yī)科大學(xué)學(xué)報(bào),2022,42(12):866-873. WANG E,ZHAO T M,ZHENG H,et al. Effects and mechanism of tRF-003634 on foot cell apoptosis in mice with adriamycin nephropathy[J]. Journal of Xuzhou Medical University,2022,42(12):866-873. doi:10.3969/j.issn.2096-3882.2022.12.002.
[17] 黎妞,馬東紅. 炎癥因子與糖尿病腎臟疾病的研究進(jìn)展[J]. 醫(yī)學(xué)綜述,2021,27(14):2870-2874. LI N,MA D H. Research progress of inflammatory factors and diabetic kidney disease[J]. Medical Recapitulate,2021,27(14):2870-2874. doi:10.3969/j.issn.1006-2084.2021.14.030.
[18] XU B,LIU F,GAO Y,et al. High expression of IKZF2 in malignant T cells promotes disease progression in cutaneous T cell lymphoma[J]. Acta Derm Venereol,2021,101(12):adv613. doi:10.2340/actadv.v101.570.
[19] MAKITA S,TAKATORI H,NAKAJIMA H. Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins[J]. Front Immunol,2021,12:711633. doi:10.3389/fimmu.2021.711633.
[20] ZHOU M,KANG Y,LI J,et al. Omics-based integrated analysis identified IKZF2 as a biomarker associated with" lupus nephritis[J]. Sci Rep,2022,12(1):9612. doi:10.1038/s41598-022-13336-5.
[21] XIE S,WEI H,PENG A,et al. Ikzf2 regulates the development of ICOS(+) Th cells to mediate immune response in the spleen of s.japonicum-infected C57BL/6 Mice[J]. Front Immunol,2021,12:687919. doi:10.3389/fimmu.2021.687919.
(2024-01-08收稿 2024-02-01修回)
(本文編輯 胡小寧)