中圖分類號(hào):S664.9文獻(xiàn)標(biāo)志碼:A
Effects of Different pH Treatments on Growth and Physiological Characteristics of Macadamia integrifolia
HUAN XiuJu, QIN XiaoMin, PAN HaoNan, YANG XiaoZhou, PAN ZhenZhen, WEI ZheJun, HE XianYang, WANG WenLin, ZHENG ShuFang, TAN QiuJin* (Guangxi South Subtropical Agricultural Scientific Research Institute, Chongzuo, Guangxi 532415, China)
Abstract: 【Objective】 This study aimed to investigate the tolerance of macadamia (Macadamia integrifolia) seedlings to acid stress.【Method】 This study used the seedlings of M. integrifolia variety H2 as test materials and conducted a pot sand culture experiment treated with different pH levels (3,4,5,6),and the treatment with pH 6 was used as the control (CK).The growth and physiological characteristics of macadamia seedlings were analyzed at after treatment.【Result】 The research results showed that, after 90 d of acid stress treatment, the growth of macadamia plants was significantly inhibited, and plant height (PLH),leaf area (LA), shoot dry weight (SDW) and root dry weight (RDW) of macadamia seedlings showed an extremely significantly decrease (Plt;0.01) .The acid stress significantly inhibited ground diameter (GD) (Plt;0.05) . Compared with that of CK, the GD under pH 5, pH 4, and pH 3 conditions decreased by 5.7% , 7.3% ,and 13.5% ,respectively. The acid stress did not significantly influence root-shoot ratio (RSR). The chlorophyll content determination showed that acid stress extremely significantly reduced the chlorophyll a content (CAC) and total chlorophyll content, but had no significant effect on chlorophyll b content. The physiological characteristics analysis of root showed that, under acidic conditions, the content of soluble protein and malondialdehyde (MDA) showed an extremely significant decrease,while the content of abscisic acid (ABA) extremely significantly increased. Compared with CK, the ABA content in the treatments with pH 3, pH 4 and pH 5 extremely significantly increased by 19.3% 。 58.6% ,and 73.9% ,respectively. At the same time, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) allsignificantly decreased, and especially, the SOD activity extremely significantly decreased by 29.5% 。 43.3% ,and 60.7% ,respectively, compared with that in CK. The correlation analysis showed that the absolute value of correlation coefficients among all indicators were greater than O.4, indicating a moderate or higher correlation. The absolute value of correlation coefficients between PLH and the other 14 indicators were all greater than 0.6, showing a strong correlation and PLH had an extremely positive correlation with CAC and SOD. GD had an extremely positive correlation with the activity of SOD, POD, CAT and MDA content, and a moderately positive correlation with RSR. The absolute value of correlation coefficients between SDW and the other 14 traits were all greater than O.8, indicating a strong correlation.The absolute value of correlation coefficients between RDW and other traits were all greater than 0.7, indicating a strong correlation.The absolute value of correlation coefficients between ABA and the other 14 indicators were all greater than 0.7, showing a strong correlation.【Conclusion】 Acid stress inhibits the growth of macadamia seedlings, significantly reduced the PLH, LA, SDW, RDW, and GD but showed no significant effct on root-shoot ratio.Macadamia seedlings might enhance their resistance to external acid stress by regulating plant hormones (ABA), osmoregulatory substances (soluble proteins, MDA), and enzyme activity.
Keywords: Macadamia integrifolia; sand culture; pH value; morphological traits; physiological characteristics
0 引言
【研究意義】根據(jù)全國(guó)土壤調(diào)查結(jié)果,我國(guó)土壤pH值為 ,以
為主(韓天富等,2020)。廣西地處歐亞大陸南緣,屬于熱帶亞熱帶季風(fēng)氣候區(qū),區(qū)內(nèi)pH值為
的紅壤分布范圍較廣(劉康懷等,2000)。澳洲堅(jiān)果(Macadamia inte-grifolia)又稱夏威夷果,為山龍眼科澳洲堅(jiān)果屬喬木(黃忠權(quán)等,2022),其果仁含有豐富的不飽和脂肪酸、蛋白質(zhì)、氨基酸、可溶性糖、膳食纖維和礦物質(zhì)等營(yíng)養(yǎng)成分,具有較好的保健功能(劉錦宜等,2018)。因澳洲堅(jiān)果經(jīng)濟(jì)價(jià)值高,可作為鄉(xiāng)村振興的支柱產(chǎn)業(yè),正被越來(lái)越多的熱帶亞熱帶適種區(qū)國(guó)家和地區(qū)栽種(王文林等,2022;萬(wàn)繼鋒等,2024)。我國(guó)從20世紀(jì)90年代末開(kāi)始引種試種澳洲堅(jiān)果,目前主要分布在云南、廣西、廣東、貴州等?。▍^(qū))(王文林等,2018)。澳洲堅(jiān)果的主要栽培地多為偏酸性的土壤,雖然澳洲堅(jiān)果對(duì)酸脅迫具有一定的耐受性,可在一定酸脅迫環(huán)境下生長(zhǎng),但過(guò)酸性土壤不利于澳洲堅(jiān)果的生長(zhǎng)發(fā)育。因此,研究酸脅迫對(duì)澳洲堅(jiān)果幼苗生長(zhǎng)和生理特性的影響,對(duì)于探索當(dāng)?shù)厮峄寥栏咝г耘嗄J?,提高土地利用率,同時(shí)提高澳洲堅(jiān)果的經(jīng)濟(jì)產(chǎn)量具有重要意義?!厩叭搜芯窟M(jìn)展】目前,在澳洲堅(jiān)果種苗繁育方面,有組織培養(yǎng)研究(郭凌飛等,2010);在種質(zhì)資源方面,有不同品種開(kāi)花結(jié)實(shí)率研究(陳海生等,2017)、種質(zhì)光合特性比較研究(宮麗丹等,2019)、土壤養(yǎng)分與果實(shí)內(nèi)含物相關(guān)性研究(鄭樹(shù)芳等,2021)、種質(zhì)果實(shí)性狀及營(yíng)養(yǎng)成分分析(譚秋錦等,2021);在育種方面,有接穗輻射誘變育種研究(孔廣紅等,2016)、基因克隆與功能分析(王文林等,2020)和轉(zhuǎn)錄組測(cè)序分析脂肪酸合成(劉紫艷等,2022);在抗性生理的研究方面,主要有耐寒性研究(岳海等,2010)、抗旱評(píng)價(jià)(倪書邦等,2011)和鉛脅迫研究(黃忠權(quán)等,2022)等。我國(guó)華南、西南地區(qū)因受季風(fēng)氣候影響,水熱資源充沛,酸雨淋失作用強(qiáng)烈,導(dǎo)致該地區(qū)土壤呈酸性反應(yīng),一定程度上影響了澳洲堅(jiān)果的生產(chǎn)性能和推廣利用。土壤酸化導(dǎo)致土壤肥力下降,影響作物生長(zhǎng)及產(chǎn)量(SCHRODERetal.,2011)。目前,酸性土壤的改良常采用施用石灰的方法進(jìn)行,但大面積果園施用石灰將大大增加經(jīng)濟(jì)成本,且長(zhǎng)期或大量施用石灰會(huì)引起土壤板結(jié),使土壤中鈣、鎂、鉀等植物生長(zhǎng)發(fā)育所需要的營(yíng)養(yǎng)元素大量流失,導(dǎo)致果實(shí)產(chǎn)量與品質(zhì)大大降低而帶來(lái)巨大經(jīng)濟(jì)損失(王敬國(guó),1995)。耐酸性澳洲堅(jiān)果砧木的培育和篩選已經(jīng)成為產(chǎn)業(yè)發(fā)展的重要需求和研究課題。段蓉蓉等(2022)對(duì)7份積種質(zhì)進(jìn)行耐酸堿性評(píng)價(jià),研究結(jié)果表明,酸脅迫處理下5份積種質(zhì)資源出現(xiàn)頂端壞死現(xiàn)象,堿脅迫處理下僅河南積出現(xiàn)頂端壞死,酸脅迫對(duì)植株生長(zhǎng)的抑制強(qiáng)于堿脅迫,更易使新梢或芽點(diǎn)壞死,且隨著時(shí)間的推移,酸害程度逐漸加深。因此,耐酸研究可能更為緊迫。【本研究切入點(diǎn)】目前關(guān)于澳洲堅(jiān)果的脅迫研究主要集中于干旱研究、低溫脅迫和鉛脅迫等方面,對(duì)澳洲堅(jiān)果在酸性環(huán)境下的耐受能力研究有限,對(duì)其響應(yīng)酸脅迫的機(jī)制尚不明確?!緮M解決的關(guān)鍵問(wèn)題】本試驗(yàn)選擇澳洲堅(jiān)果品種H2實(shí)生苗作為試驗(yàn)材料,通過(guò)研究4個(gè)不同pH值的酸脅迫處理對(duì)幼苗的生長(zhǎng)及生理特性的影響,旨在揭示其對(duì)不同程度酸脅迫的響應(yīng)特征,探索其對(duì)酸脅迫的耐受規(guī)律,以期揭示其在酸性環(huán)境下的耐受機(jī)制。
1 材料和方法
1.1 試驗(yàn)地概況
本試驗(yàn)在廣西崇左市龍州縣(北緯 ,東經(jīng)
)廣西南亞熱帶農(nóng)業(yè)科學(xué)研究所的溫室大棚內(nèi)進(jìn)行,海拔 125m 左右。
1.2 試驗(yàn)材料
試驗(yàn)材料為澳洲堅(jiān)果品種H2實(shí)生幼苗,由廣西南亞熱帶農(nóng)業(yè)科學(xué)研究所提供。將沙子消毒處理后裝進(jìn)口徑為 5.8cm 、深度為 的32孔林木種子專用育苗盤,播入H2的種子,保持沙床濕潤(rùn),育苗至幼苗高
、徑粗
后,將幼苗栽植至盆栽容器中(規(guī)格
,栽培基質(zhì)比例為沙子:珍珠巖
3:1 ,控制盆栽容器內(nèi)基質(zhì)的相對(duì)濕度在 95% 以上,定植
,其間每株苗定量澆灌營(yíng)養(yǎng)液維持生長(zhǎng)。本實(shí)驗(yàn)所用的營(yíng)養(yǎng)液配方(霍格蘭配方)參照《試驗(yàn)研究及統(tǒng)計(jì)分析》(白厚義和肖俊璋,1998),大量元素和微量元素用量通用配方見(jiàn)表1。待幼苗長(zhǎng)出一輪新葉后開(kāi)始進(jìn)行酸脅迫處理。
1.3 試驗(yàn)方法
采用單因素完全隨機(jī)試驗(yàn)設(shè)計(jì),隨機(jī)對(duì)澳洲堅(jiān)果幼苗進(jìn)行編號(hào)。設(shè)置4個(gè)pH梯度營(yíng)養(yǎng)液進(jìn)行酸脅迫處理。參照表1營(yíng)養(yǎng)液配方,配成40倍母液。配制 的NaOH溶液和
的HC1溶液。根據(jù)酸脅迫營(yíng)養(yǎng)液用量稀釋母液,用PHB-5手持電子酸度計(jì)測(cè)定稀釋后的營(yíng)養(yǎng)液pH值,用配制的酸堿溶液將營(yíng)養(yǎng)液的pH值依次調(diào)整為6(CK)、5、4、3。每個(gè)pH處理2株澳洲堅(jiān)果幼苗,5次重復(fù),共40株。2023年3月開(kāi)始酸脅迫處理,每3d處理1次,每株幼苗澆灌
對(duì)應(yīng)pH值營(yíng)養(yǎng)液,當(dāng)調(diào)節(jié)到pH值為6(CK)時(shí)開(kāi)始澆灌幼苗,10株幼苗處理完成后再依次往下調(diào)節(jié)pH值為5、4、3進(jìn)行澆灌,使基質(zhì)完全濕潤(rùn)即可,酸脅迫處理持續(xù)進(jìn)行 90d。
1.4 性狀測(cè)定
選取長(zhǎng)勢(shì)一致的澳洲堅(jiān)果植株,測(cè)定形態(tài)性狀,每項(xiàng)性狀均重復(fù)測(cè)量3次。
葉面積(leafarea,LA):采集已經(jīng)完全展開(kāi)的第1至3片葉進(jìn)行測(cè)定。每處理隨機(jī)選取3株澳洲堅(jiān)果幼苗,采集離心葉附近已經(jīng)完全展開(kāi)的第1至3片成熟功能葉,用Yaxin-1242葉面積儀(北京雅欣理儀科技有限公司)測(cè)定其葉面積。株高(plantheight,PLH):采用鋼卷尺(精確至 0.1cm )測(cè)定植株基部至頂芽的垂直高度。地徑(grounddiameter,GD):采用電子游標(biāo)卡尺(精確至 )測(cè)定土痕處苗木直徑。將植株裝進(jìn)牛皮紙袋于烘箱,
殺青 15min ,
烘干至恒重,測(cè)得地上部分干質(zhì)量(shootdryweight,SDW)、根系干質(zhì)量(rootdryweight,RDW),計(jì)算根冠比(rootshootratio,RSR),即
生理指標(biāo)測(cè)定。每處理隨機(jī)選取3株健康幼苗,采集其上部第 片成熟功能葉,用去離子水洗凈后采用乙醇丙酮法(鄒琦,2000)測(cè)定葉綠素總量(totalchlorophyllcontents,TCC)、葉綠素a含量(chlorophyllacontent,CAC)及葉綠素b含量(chlorophyllbcontent,CBC)。同時(shí)用去離子水清洗根系,擦干后于液氮中保存??扇苄缘鞍祝╯olubleprotein,SP)含量測(cè)定采用考馬斯亮藍(lán)G-250比色法(李合生,2000),脫落酸(ab-scisicacid,ABA)含量采用LC-MS液質(zhì)聯(lián)用檢測(cè),丙二醛(malondialdehyde,MDA)含量測(cè)定采用硫代巴比妥酸(TBA)法(李合生,2000),超氧化物歧化酶(superoxidedismutase,SOD)活性測(cè)定采用氮藍(lán)四唑(NBT)法,過(guò)氧化物酶(peroxidase,POD)活性測(cè)定采用愈創(chuàng)木酚法,過(guò)氧化氫酶(catalase,CAT)活性測(cè)定采用過(guò)氧化氫還原法(高俊鳳,2006)。
1.5 數(shù)據(jù)分析
使用MicrosoftExcel2010作圖分析,統(tǒng)計(jì)分析使用SPSS25及Origin2021版軟件完成。相關(guān)性分析采用皮爾遜(Pearson)相關(guān)系數(shù)表示。對(duì)相關(guān)系數(shù)的絕對(duì)值進(jìn)行分級(jí), 、
、
、
分別為極弱相關(guān)(不相關(guān))、弱相關(guān)、中等相關(guān)、強(qiáng)相關(guān)以及極強(qiáng)相關(guān)(SRI-KANTHandSCHMID,2011;張冰冰等,2022)。
2 結(jié)果與分析
2.1酸脅迫對(duì)澳洲堅(jiān)果幼苗生長(zhǎng)的影響
由圖1可知,酸脅迫對(duì)株高、地上部分干質(zhì)量、根系干質(zhì)量和葉面積的影響極顯著( ? Plt; 0.01),地徑僅pH3處理與對(duì)照(CK)相比差異顯著 (Plt;0.05) 。不同 p H 處理對(duì)根冠比的影響不顯著。與CK相比,酸脅迫對(duì)澳洲堅(jiān)果的株高等6個(gè)生長(zhǎng)特性指標(biāo)均產(chǎn)生不利影響,表明其抑制了澳洲堅(jiān)果的生長(zhǎng)。酸脅迫下,隨著pH降低,株高、地徑、地上部分干質(zhì)量、根系干質(zhì)量和葉面積均呈現(xiàn)逐漸降低的趨勢(shì)。pH5處理的根冠比最高,表明弱酸可促進(jìn)根系生長(zhǎng),而強(qiáng)酸對(duì)根系生長(zhǎng)發(fā)育不利。與CK相比, p H5 , pH4 、pH3處理的株高分別下降 10.5% 、 20.4% 和 26.6% ,地徑分別下降5.7% 、 7.3% 和 13.5% ,地上部分干質(zhì)量分別下降2.4% 、 30.7% 和 31.4% ,根系干質(zhì)量分別下降0.15% 、 31.3% 和 32.4% ,葉面積分別下降 2.0% 、17.5% 和 23.5% 。這些結(jié)果表明酸脅迫條件下植株生長(zhǎng)、生物量積累受到抑制。
注:柱上不同大寫字母表示差異極顯著 (Plt;0.01) ,不同小寫字母表示差異顯著 (Plt;0.05) 0Note: Different uppercase letters above columns indicate extremely significant diferences ( ? Plt;0.01) ,and different lowercase letters above columns indicate signifi-cant differences (Plt;0.05) *
2.2酸脅迫對(duì)澳洲堅(jiān)果幼苗根內(nèi)滲透調(diào)節(jié)物質(zhì) 含量的影響
由圖2可知,酸脅迫對(duì)澳洲堅(jiān)果幼苗根內(nèi)的可溶性蛋白質(zhì)、丙二醛含量的影響極顯著。隨著pH降低,這兩種滲透調(diào)節(jié)物質(zhì)的含量均呈現(xiàn)逐漸降低的趨勢(shì)。與CK相比,pH5、pH4、pH3處理的可溶性蛋白質(zhì)含量分別下降 2.0% 、 7.4% 和 10.6% ,丙二醛含量分別下降 9.0% 、 15.4% 和 29.8% 。這些結(jié)果表明酸脅迫可能抑制了植株中的可溶性蛋白質(zhì)合成和積累,從而使其生活力降低,不利于生長(zhǎng);另一個(gè)可能則是植株通過(guò)降低可溶性蛋白質(zhì)和丙二醛含量來(lái)增強(qiáng)其抗性,以適應(yīng)酸性環(huán)境。
注:柱上不同大寫字母表示差異極顯著 (Plt;0.01) ,不同小寫字母表示差異顯著 (Plt;0.05) 6
Note: Different uppercase letters above columns indicate extremely significant differences (Plt;0.01) ,and different lowercase letters above columns indicate significant differences (Plt;0.05) ·
2.3 酸脅迫對(duì)澳洲堅(jiān)果幼苗根內(nèi)酶活性的影響
由圖3可知,酸脅迫對(duì)澳洲堅(jiān)果幼苗根內(nèi)SOD、POD和CAT這三種酶活性的影響極顯著(Plt;0.01) )。隨著pH降低,這三種酶活性均呈現(xiàn)逐漸降低的趨勢(shì)。與CK相比,pH5、pH4、pH3處理的SOD活性分別下降 29.5% 、 43.3% 和 60.7% ,POD活性分別下降 31.5% 、 42.3% 和 54.7% ,CAT活性分別下降 17.0% 、 20.2% 和 32.3% 。這些結(jié)果表明酸脅迫顯著抑制了澳洲堅(jiān)果幼苗根內(nèi)的氧化酶活性。
Fig.3Effects of acid stresson activity of antioxidant enzymes in root of M.integrifolia seedlings
注:柱上不同大寫字母表示差異極顯著 (Plt;0.01) ,不同小寫字母表示差異顯著 (Plt;0.05) 。Note: Different uppercase letters above columns indicate extremely significant differences (Plt;0.01) ,and different lowercase letters above columns indicate signifi-cant differences (Plt;0.05) 。:
2.4酸脅迫對(duì)澳洲堅(jiān)果根內(nèi)脫落酸含量的影響
由圖4可知,酸脅迫對(duì)澳洲堅(jiān)果幼苗根內(nèi)脫落酸含量的影響差異極顯著 (Plt;0.01) 。隨著pH降低,脫落酸含量上升。 pH3 處理的脫落酸含量最高,為 0.4105ng/g ,與CK相比,pH5、 pH4 、pH3處理的脫落酸含量分別上升 19.3% 、 58.6% 和73.9% 。這些結(jié)果表明,植株可能通過(guò)增加脫落酸含量來(lái)適應(yīng)酸性環(huán)境。
注:柱上不同大寫字母表示差異極顯著 (Plt;0.01) ;不同小寫字母表示差異顯著 (Plt;0.05) 。
Note: Different uppercase letters above columns indicate extremely significant differences ( ,and different lowercase letters above columns indicate significant differences( (Plt;0.05) :
2.5酸脅迫對(duì)澳洲堅(jiān)果幼苗葉片葉綠素含量的 影響
由表2可知,酸脅迫對(duì)澳洲堅(jiān)果幼苗葉片葉綠素a和葉綠素總量的影響極顯著 (Plt;0.01) ,對(duì)葉綠素b的影響不顯著。隨著pH值降低,葉綠素總量也相應(yīng)下降; pH3 條件下葉綠素總量最低。與CK相比,pH5、pH4、pH3處理的葉綠素總量分別下降 8.0% 、24.2% 和 29.1% ,表明酸脅迫抑制葉綠素的合成。
2.6 相關(guān)性分析
從圖5可知,不同處理澳洲堅(jiān)果幼苗所有性狀間相關(guān)系數(shù)的絕對(duì)值均大于0.4,表明均在中等相關(guān)及以上。PLH與14個(gè)性狀的相關(guān)系數(shù)的絕對(duì)值皆大于0.6,呈強(qiáng)相關(guān),與CAC、SOD呈極強(qiáng)正相關(guān);GD與SOD、POD、CAT、MDA呈極強(qiáng)正相關(guān),與RSR呈中等正相關(guān);SDW與其他14個(gè)性狀的相關(guān)系數(shù)的絕對(duì)值皆大于0.8,呈極強(qiáng)相關(guān);RDW與其他性狀相關(guān)系數(shù)的絕對(duì)值均大于0.7,呈強(qiáng)相關(guān);ABA與其他14個(gè)性狀相關(guān)系數(shù)的絕對(duì)值皆大于0.7,呈強(qiáng)相關(guān)。
Fig.5Correlationcoeffcients betweenmorphologicaltraits andphysiologicalcharacteristicsofM.integrifoliaseedlings under different pH treatments注:*表示相關(guān)顯著 (Plt;0.05) ,**表示相關(guān)極顯著 (Plt;0.01) 。PLH,株高;GD,地徑;SDW,地上部分干質(zhì)量;RDW,根系干質(zhì)量;RSR,根冠比;LA,葉面積;CAC,葉綠素a含量;CBC,葉綠素b含量;TCC,葉綠素總量;SPC,可溶性蛋白含量;ABA,脫落酸;MDA,丙二醛;SOD,超氧化物歧化酶;POD,過(guò)氧化物酶;CAT,過(guò)氧化氫酶Note: * indicates a significant correlation (Plt;0.05) ,and indicates an extremely significant correlation $_{\cdot}P{lt;}0.01\$ )PLH,plant height; GD, ground diameter;hophyetsbleiia
3討論
土壤酸害是限制作物生長(zhǎng)與產(chǎn)量提高的主要非生物脅迫因子之一(梁宏衛(wèi)等,2022)。周高峰等(2018)以HB柚(Citrus grandis)實(shí)生幼苗為試材,利用盆栽沙培試驗(yàn)進(jìn)行不同pH處理,結(jié)果表明,酸性(pH4)脅迫處理150d后,HB柚植株的生長(zhǎng)受到了顯著的抑制,株高、葉面積和生物量均顯著低于對(duì)照(pH6}) 。徐開(kāi)杰等(2015)研究表明,隨著水培液pH增大,柳枝稷不同品種幼苗的分?jǐn)?shù)、株高、鮮苗質(zhì)量、根冠比、根系活力以及凈光合速率都極顯著降低。酸處理抑制了根系及地上部生物量的積累,植株根冠比在酸脅迫下降低(王光濤,2021)。計(jì)算根冠比可以了解地上地下的生物量分配規(guī)律。在本研究中,不同 p H}"處理澳洲堅(jiān)果幼苗根冠比表現(xiàn)為 p H5gt;p H 6gt;pH4gt;pH3 ,表明弱酸可促進(jìn)根系生長(zhǎng),而強(qiáng)酸對(duì)根系生長(zhǎng)發(fā)育不利。黃忠權(quán)等(2022)探究澳洲堅(jiān)果對(duì)土壤鉛脅迫的耐受性,結(jié)果顯示鉛濃度對(duì)株高增量影響極顯著( ? Plt;0.01. ),對(duì)地徑增量影響不顯著。植物葉綠素含量多少?zèng)Q定了植物光合作用能力的強(qiáng)弱(王卓遠(yuǎn),2015),同時(shí)也能體現(xiàn)植物的生長(zhǎng)情況,因此也是決定作物產(chǎn)量的重要因子(宮兆寧等,2014)。汪燦等(2014)研究表明植物的產(chǎn)量與葉綠素含量呈極顯著正相關(guān)。曾詩(shī)媛(2018)的研究結(jié)果表明,當(dāng)酸脅迫為pH 時(shí),隨培養(yǎng)液pH值的升高,山核桃實(shí)生苗成熟葉的葉綠素含量呈現(xiàn)明顯增加的趨勢(shì),本研究結(jié)果與之一致。植物體內(nèi)的可溶性蛋白大多為參與各類代謝的酶類物質(zhì),其含量在受到逆境脅迫時(shí)會(huì)發(fā)生相應(yīng)的變化以應(yīng)對(duì)逆境反應(yīng)(史玉煒等,2007)。丁京晶等(2024)研究水培條件下不同pH對(duì)菠蘿幼苗葉片生理特性的影響,其中可溶性蛋白質(zhì)含量表現(xiàn)為
,表明酸度過(guò)低不利于可溶性蛋白質(zhì)的合成,本研究結(jié)果與之相符。ABA在逆境條件下迅速形成,使植物的生理過(guò)程發(fā)生變化,以適應(yīng)環(huán)境(馬英姿等,2008)。王光濤(2021)的研究表明,在酸脅迫條件下,2個(gè)小麥品種的ABA含量均升高,本研究結(jié)果與之一致。MDA是膜脂過(guò)氧化過(guò)程中的重要產(chǎn)物,MDA含量可以反映植物遭受逆境傷害的程度(趙明德等,2021)。本研究中,相較于pH6 處理,其他處理的MDA含量顯著下降,這可能是由于酸脅迫處理后期,MDA含量降低以適應(yīng)酸脅迫的原因。農(nóng)江飛(2018)的研究結(jié)果表明,酸脅迫(
)處理10d時(shí),各砧木葉片中的MDA含量均顯著高于對(duì)照,酸脅迫處理30d時(shí),MDA含量顯著降低,呈現(xiàn)先上升后下降的趨勢(shì)。植物在受到酸脅迫時(shí),內(nèi)部生理生化系統(tǒng)會(huì)受到不同程度的影響,從而產(chǎn)生大量活性氧(ROS)來(lái)應(yīng)對(duì)脅迫,而高抗氧化酶活性則是植物增強(qiáng)抗逆性的重要途徑(MUBARAKSHINAandIVANOV,2010)。在本研究中,植株體內(nèi)抗氧化酶系統(tǒng)的SOD、POD和CAT活性,均相較pH6處理(CK)有所下降,這可能是因?yàn)樗崦{迫影響質(zhì)膜的正常透性,改變了膜結(jié)合酶類的正?;钚裕瑥亩鹨幌盗械难醮x失調(diào),隨著環(huán)境酸度增加活性氧產(chǎn)生加快,清除系統(tǒng)的功能降低(杜紅陽(yáng)等,2011)。柳枝稷在pH值小于5.0時(shí),其生長(zhǎng)發(fā)育受到顯著影響,幼苗生長(zhǎng)緩慢,葉片干黃,根系活力明顯降低(徐開(kāi)杰等,2015)。本實(shí)驗(yàn)中, pH3 處理的澳洲堅(jiān)果幼苗植株生長(zhǎng)受嚴(yán)重抑制,隨著脅迫時(shí)間延長(zhǎng),葉片由綠色轉(zhuǎn)變?yōu)榭蔹S,無(wú)新根。pH4 處理的植株整體生長(zhǎng)不良,處于停止或緩慢生長(zhǎng)狀態(tài),新根較少;pH5處理的植株生長(zhǎng)良好。
4結(jié)論
酸脅迫抑制澳洲堅(jiān)果幼苗生長(zhǎng),顯著降低了其株高、葉面積、地上部分干質(zhì)量、根系干質(zhì)量和地徑,但對(duì)根冠比的影響不顯著。澳洲堅(jiān)果可能通過(guò)調(diào)節(jié)激素(脫落酸)滲透調(diào)節(jié)物質(zhì)(可溶性蛋白、丙二醛)及酶活性等提高其抗性,以適應(yīng)外界酸脅迫環(huán)境。
參考文獻(xiàn)References
白厚義,肖俊璋.1998.試驗(yàn)研究及統(tǒng)計(jì)分析[M].西安:世界 圖書出版公司,46. BAI H Y,XIAO JZ.1998.Experimental research and sta tistical analysis[M]. Xi'an: World Book Inc, 46.
陳海生,譚秋錦,韋媛榮,王文林,許鵬,宋海云,何銑揚(yáng),湯秀 華.2017.桂西南6個(gè)澳洲堅(jiān)果品種開(kāi)花結(jié)實(shí)率研究 [J].農(nóng)業(yè)研究與應(yīng)用,30(4):34-38. CHENHS,TANQJ,WEIYR,WANGWL,XU P, SONG HY, HE X Y, TANG XH. 2017. Study on the percentages of flowering and fruiting of 6 Macadamia cultivars in southeast Guangxi[J]. Agricultural Research and Application, 30(4): 34-38.
杜紅陽(yáng),常云霞,劉懷攀.2011.酸脅迫對(duì)玉米幼苗生理生化 指標(biāo)的影響[J].周口師范學(xué)院學(xué)報(bào),28(5):74-76. DU H Y, CHANG Y X, LIU H P.2011.Effects of acid stress on the index of physiology and biochemistry of maize seedlings[J]. Journal of Zhoukou Normal University,28(5): 74-76.doi:10.13450/j.cnki.jzknu.2011.05.020.
段蓉蓉,周錚榮,韓健,羅旭釗,馬先鋒,李大志,鄧子牛. 2022.7份積種質(zhì)耐酸堿性評(píng)價(jià)[J].中國(guó)南方果樹(shù),51 (5): 6-13. DUAN RR, ZHOU Z R, HAN J, LUO X Z, MA X F, LI D Z, DENG Z N. 2022. Evaluation of acid and alkaline tolerance of seven Poncirus trifoliata germplasms[J]. South China Fruits, 51(5): 6-13.doi: 10.13938/j.issn.1007- 1431.20220201.
丁京晶,羅嘉騰,黃家權(quán).2024.不同pH對(duì)菠蘿幼苗根系生 長(zhǎng)和葉片生理特性的影響[].分子植物育種,22(1): 222-229. DING J J, LUO J T, HUANG J Q. 2024.Effect of different pH on root growth and leaf physiological characteristics of pineapple seedlings[J]. Molecular Plant Breeding, 22(1): 222-229.doi: 10.13271/j.mpb.022.000222.
郭凌飛,彭靖茹,覃劍峰,文峰,曾黎明,張世明,劉曉靜. 2010.澳洲堅(jiān)果組織培養(yǎng)研究初報(bào)[J].中國(guó)農(nóng)學(xué)通報(bào),26 (22): 385-388. GUO L F,PENG JR,QIN JF,WEN F,ZENG L M, ZHANG S M, LIU X J. 2010. Preliminary report of tissue culture on Macadamia[J]. Chinese Agricultural Science Bulletin, 26(22): 385-388.
宮麗丹,馬靜,賀熙勇,柳覲,吳超,倪書邦.2019.澳洲堅(jiān)果 種質(zhì)資源光合特性的比較研究[J].西南農(nóng)業(yè)學(xué)報(bào),32 (5):1045-1050. GONGLD,MAJ,HEXY,LIUJ,WUC,NISB.209. Comparison study on photosynthetic characteristics of Macadamia germplasm resources[J]. Southwest China Journal of Agricultural Sciences, 32(5): 1045-1050. doi: 10.16213/j.cnki.scjas.2019.5.016.
宮兆寧,趙雅莉,趙文吉,林川,崔天翔.2014.基于光譜指數(shù) 的植物葉片葉綠素含量的估算模型[].生態(tài)學(xué)報(bào),34 (20):5736-5745. GONG Z N, ZHAO Y L, ZHAO W J, LIN C, CUI T X. 2014.Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinica,34(20):5736-5745.doi: 10.5846/stxb201301250160.
高俊鳳.2006.植物生理學(xué)實(shí)驗(yàn)技術(shù)[M].西安:世界圖書出 GAU J r. zuvo. Experimental iecnniques in riant rnysiology[M]. Xi'an: World Book Press.
黃忠權(quán),莫熙宏,覃奎,李妍澆,王凌暉.2022.鉛脅迫對(duì)澳洲 堅(jiān)果幼苗生長(zhǎng)及生理特性的影響[J].廣西林業(yè)科學(xué),51 (1): 48-52. HUANG Z Q,MO X H, QIN K,LI Y J,WANG L H. 2022.Effects of plumbum stress on growth and physiological characteristics of Macadamia integrifolia seedlings [J].Guangxi Forestry Science, 51(1): 48-52. doi: 10.1969 2/j.issn.1006-1126.20220108.
韓天富,柳開(kāi)樓,黃晶,馬常寶,鄭磊,王慧穎,曲瀟林,任意, 于子坤,張會(huì)民.2020.近30年中國(guó)主要農(nóng)田土壤pH 時(shí)空演變及其驅(qū)動(dòng)因素[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),26 (12): 2137-2149. HAN T F, LIU K L,HUANG J,MA C B, ZHENG L, WANG HY, QU X L, REN Y, YU Z K, ZHANG H M. 2020.Spatio-temporal evolution of soil pHand its driving factors in the main Chinese farmland during past 30 years [J]. Journal of Plant Nutrition and Fertilizers, 26(12): 2137-2149.doi: 10.11674/zwyf.20399.
孔廣紅,柳覲,倪書邦,范秋紅,宮麗丹,陶亮,陶麗,陳麗蘭, 賀熙勇.2016.澳洲堅(jiān)果接穗 射線輻射誘變育種 適宜劑量的研究[J].西南農(nóng)業(yè)學(xué)報(bào),29(1):39-43. KONG GH,LIU J, NI SB, FAN QH, GONG LD, TAO L,TAO L, CHEN L L, HE X Y.2016. Research for proper dose of
ray in Macadamia branches radiation breeding[J]. Southwest China Journal of Agricultural Sciences,29(1):39-43. doi: 10.16213/j.cnki.scjas. 2016. 01.008.
李合生.2000.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高 等教育出版社,169-184. LI H S. 20o0. Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 169-184.
梁宏衛(wèi),PrakashLakshmanan,劉曉燕,黃柯鈞,顏睿,羅霆. 2022.具有固氮和耐酸特性甘蔗屬野生割手密的篩選與 鑒定[J].西南農(nóng)業(yè)學(xué)報(bào),35(12):2700-2707. LIANG H W, LAKSHMANAN P, LIU X Y, HUANG K J, YAN R,LUO T. 2022. Screening and identification of Saccharum spontaneum L.with nitrogen-fixing and acidtolerant properties[J]. Southwest China Journal of Agricultural Sciences,35(12):2700-2707. doi: 10.16213/j.cnki. scjas.2022.12.002.
劉錦宜,張翔,黃雪松.2018.澳洲堅(jiān)果仁的化學(xué)組成與其主 要部分的利用[J].中國(guó)食物與營(yíng)養(yǎng),24(1):45-49. LIU JY, ZHANG X, HUANG X S. 2018. Chemical composition of Macadamia nuts and utilization of its main components[J]. Food and Nutrition in China, 24(1): 45- 49. doi: 10.3969/j.issn.1006-9577.2018.01.011.
劉康懷,藍(lán)俊康,張力,李雋波.2000.廣西紅壤特征及其環(huán) 境影響分析[J].農(nóng)業(yè)環(huán)境保護(hù),19(1):32-34. LIU KH,L AN JK, ZHANG L,Li JB.200O. The features of red soil and their influences on natural environment in Guangxi Zhuang Autonomous Region[J]. Agro - environmental Protection, 19(1): 32-34.
劉紫艷,鄭誠(chéng),牛迎鳳,毛常麗,柳覲.2022.基于轉(zhuǎn)錄組測(cè)序 分析澳洲堅(jiān)果脂肪酸的合成[J].熱帶農(nóng)業(yè)科技,45(2): 12-18,23. LIU ZY,ZHENGC,NIU YF,MAOC L,LIU J.2022. Analysis of fatty acid biosynthesis in Macadamia nut by transcriptome sequencing[J]. Tropical Agricultural Science amp; Technology, 45(2): 12-18, 23.doi: 10.16005/j.cnki. tast.2022.02.003.
馬英姿,王平,王海霞.2008.酸堿脅迫對(duì)蜆殼花椒組培苗內(nèi) 源激素的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),28(5):59-63. MAY Z,WANGP,WANGH X.2008.Effects of acid and alkali stress on the contents of endogenous hormones in Zanthoxylum dissitum Hemsl[J]. Journal of Central South University of Forestry amp; Technology, 28(5): 59-63. doi: 10.3969/j.issn.1673-923X.2008.05.012.
農(nóng)江飛.2018.柑橘砧木耐酸性評(píng)價(jià)及對(duì)酸性逆境的適應(yīng)性 研究[D].重慶:西南大學(xué). NONG J F.2018.Evaluation of acid resistance and studies on adaptability to acid stress of citrus rootstocks[D]. Chongqing: Southwest University.
倪書邦,賀熙勇,宮麗丹,岳海,陶麗,陳麗蘭,孔廣紅.2011. 不同澳洲堅(jiān)果品種抗旱性的綜合評(píng)價(jià)[J].中國(guó)農(nóng)學(xué)通 報(bào),27(13):8-13. NI S B, HE X Y, GONG L D, YUE H, TAO L, CHEN L L, KONG G H. 2011. Comprehensive evaluation of drought resistance of different macadamia varieties[J]. Chinese Agricultural Science Bulletin, 27(13): 8-13.
史玉煒,王燕凌,李文兵,高述民,李霞.2007.水分脅迫對(duì)剛 毛柳可溶性蛋白、可溶性糖和脯氨酸含量變化的影 響[J].新疆農(nóng)業(yè)大學(xué)學(xué)報(bào),30(2):5-8. SHI YW, WANG YL, LI WB,GAO SM, LI X. 2007. Effects of water stresson soluble protein, soluble sugar and proline content in Tamarix hispida[J]. Journal of Xinjiang Agricultural University, 30(2): 5-8. doi: 10.3969/j. issn.1007-8614.2007.02.002.
譚秋錦,韋媛榮,黃錫云,張濤,許鵬,宋海云,王文林,鄭樹(shù) 芳.2021.10份澳洲堅(jiān)果種質(zhì)果實(shí)性狀與營(yíng)養(yǎng)成分分析 [J].果樹(shù)學(xué)報(bào),38(5):672-680. TAN Q J,WEI Y R,HUANG X Y, ZHANG T, XU P, SONG HY, WANG W L, ZHENG S F.2021.Analysis of fruit characteristics and nutrients of 10 accessions of Macadamia integrifolia[J]. Journal of Fruit Science, 38(5): 672-680.doi: 10.13925/j.cnki.gsxb.20200372.
萬(wàn)繼鋒,曾輝,鄒明宏,宋喜梅,楊玉春,楊倩,白海東.2024. 澳洲堅(jiān)果種質(zhì)資源耐熱性調(diào)查與分析[J].中國(guó)南方果 樹(shù),53(3):80-86,95. WAN JF, ZENG H, ZOU M H, SONG X M,YANG Y C, YANG Q, BAI H D. 2024. Investigation and analysis on heat tolerance of Macadamia germplasm resources[J]. South China Fruits, 53(3): 80-86, 95. doi: 10.13938/j.issn. 1007-1431.20230061.
王文林,譚秋錦,陳海生.2018.廣西澳洲堅(jiān)果產(chǎn)業(yè)現(xiàn)狀·優(yōu) 勢(shì)與發(fā)展對(duì)策[J].安徽農(nóng)業(yè)科學(xué),46(35):199-201. WANG W L, TAN Q J, CHEN H S.2018. Industry status, advantages and development countermeasures of Guangxi Macadamia nut[J]. Journal of Anhui Agricultural Sciences, 46(35):199-201.doi:10.13989/j.cnki.0517-6611.2018. 35.061.
王文林,陳海生,鄭樹(shù)芳,樊松樂(lè),王立豐,譚秋錦,覃振師,黃 錫云,賀鵬,湯秀華,許鵬.2020.澳洲堅(jiān)果MiMYB2基 因克隆及結(jié)構(gòu)與功能分析[J].植物研究,40(6):913-922. WANG WL, CHEN HS, ZHENG SF,F(xiàn)AN S L,WANG L F,TAN Q J,QIN Z S,HUANG XY, HE P, TANG X H, XU P. 2020. Cloning, structure and function analysis of MiMYB2 gene from Macadamia integrifolia[J]. Bulletin of Botanical Research, 40(6): 913-922. doi: 10.7525/j. issn.1673-5102.2020.06.014.
王文林,張濤,湯秀華,許鵬,韋媛榮,韋哲君,陸宇明.2022. 中國(guó)澳洲堅(jiān)果產(chǎn)業(yè)概況與發(fā)展模式探索[J].農(nóng)業(yè)研究與 應(yīng)用,35(4):44-50. WANG W L,ZHANG T, TANG X H, XU P,WEI Y R, WEI Z J,LU Y M.2022.Overview and development model exploration of Macadamia industry in China[J]. Agricultural Research and Application, 35(4): 44-50. doi: 10.3969/j.issn.2095-0764.2022.04.007.
王敬國(guó).1995.植物營(yíng)養(yǎng)的土壤化學(xué)[M].北京:北京農(nóng)業(yè)大 學(xué)出版社. WANG J G. 1995. Soil chemistry of plant nutrition[M]. Beijing: Beijing Agricultural University Press.
王光濤.2021.酸堿脅迫對(duì)冬小麥幼苗生長(zhǎng)及生理特性的影 響[D].新鄉(xiāng):河南科技學(xué)院. Wang G T. 2021.Effects of acid and alkali stress on the growth and physiological characteristics of winter wheat seedlings[D]. Xinxiang: Henan Institute of Science and Technology. doi: 10.27704/d.cnki.ghnkj.2021.000086
王卓遠(yuǎn).2015.基于高光譜的蘋果樹(shù)葉片葉綠素與氮素含量 估測(cè)[D].泰安:山東農(nóng)業(yè)大學(xué). WANG Z Y. 2015. Estimating chlorophyll and nitrogen contents of apple tree leaf based on hyperspectrum [D]. Tai'an: Shandong Agricultural University. doi: 10.7666/ d.0774524. 2014.播種重和肥水平對(duì)春播喬元合特性及廣重的 影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),20(4):1021-1029. WANG C, WANG S X, LI M, YANG H, HU D,RUAN R W, YUAN X H, YI Z L. 2014.Effects of seeding rate and fertilizer on photosynthetic characteristics and yield of spring Fagopyrum esculentum[J]. Journal of Plant Nutrition and Fertilizer, 20(4): 1021-1029. doi: 10.11674/zwyf. 2014.0426.
徐開(kāi)杰,史麗麗,王勇鋒,李毛,孫風(fēng)麗,劉曙東,奚亞軍. 2015.水培條件下pH值對(duì)柳枝稷幼苗生長(zhǎng)發(fā)育的影響 [J].生態(tài)學(xué)報(bào),35(23):7690-7698. XUKJ,SHILL,WANGYF,LIM,SUNFL,LIUSD, XI Y J. 2015.Effect of the pH value on switchgrass seedling growth and development in hydroponics[J]. Acta Ecologica Sinica,35(23): 7690-7698.doi: 10.5846 /stxb20140 5040877
岳海,李國(guó)華,李國(guó)偉,陳麗蘭,孔廣紅,梁國(guó)平.2010.澳洲 堅(jiān)果不同品種耐寒特性的研究[J].園藝學(xué)報(bào),37(1): 31-38. YUE H, LIG H, LI G W, CHEN L L, KONG G H, LIANG G P. 2010. Studies on cold resistance of different Macadamia cultivars[J]. Acta Horticulturae Sinica, 37(1): 31-38.doi: 10.16420/j.issn.0513-353x.2010.01.029.
曾詩(shī)媛.2018.臨安山核桃對(duì)酸鋁脅迫的耐性研究[D].杭 州:浙江農(nóng)林大學(xué). ZENG S Y. 2018. Responses of Chinese hickory (Carya cathayensis) to soil acidification and aluminum stress[D]. Hangzhou: Zhejiang Agricultural and Forestry University. doi:CNKI:CDMD:2.1018.283157.
張冰冰,葉艷英,周勁松,湯泳萍,尹玉玲,羅紹春.2022.括 樓主要農(nóng)藝性狀與產(chǎn)量的相關(guān)性及主成分分析[J].江西 農(nóng)業(yè)學(xué)報(bào),34(1):29-35. ZHANG BB, YE Y Y, ZHOU J S, TANG YP, YIN Y L, LUO S C. 2022. Correlation and Principal Component Analysis of Main Agronomic Characters and Yield of Trichosanthes kirirowii[J].Acta Agriculturae Jiangxi,34 (1):29-35.doi:10.19386/j.cnki.jxnyxb.2022.01.005
趙明德,李惠梅,馬靜,劉晶.2021.堿脅迫對(duì)燕麥幼苗生理 指標(biāo)的響應(yīng)[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),43(10): 58-65. ZHAOMD,LI HM,MAJ,LIUJ.2021.Responseof alkali stress to physiological indexes of oat seedlings[J]. Journal of Southwest University (Natural Science Edition),43(10):58-65.doi:10.13718/j.cnki.xdzk.2021.10.008.
周高峰,李碧嫻,管冠,姚鋒先,劉桂東.2018.酸、堿脅迫對(duì) HB 柚生長(zhǎng)、光合特性及礦質(zhì)營(yíng)養(yǎng)的影響[J].熱帶農(nóng)業(yè) 科學(xué),38(11): 24-31. ZHOU G F,LIB X, GUAN G, YAO F X, LIU GD. 2018. Effects of acid and alkaline stresses on the growth, photosynthetic characteristics and mineral nutrition of pummelo 'HB'[J]. Chinese Journal of Tropical Agriculture, 38(11): 24-31.doi: 10.12008/j.issn.1009-2196.2018.11.006.
鄒琦.2000.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:中國(guó)農(nóng)業(yè)出版 社,62-174. ZOU Q.20o0. Guidelines for plant physiology experiments[M].Beijing: China Agriculture Press, 62-174.
鄭樹(shù)芳,許鵬,譚秋錦,陳海生,王文林,莫慶道,賀鵬,李海 碧.2021.土壤養(yǎng)分與澳洲堅(jiān)果果實(shí)內(nèi)含物間的相關(guān)性 分析[J].農(nóng)業(yè)研究與應(yīng)用,34(4):10-16. ZHENGSF,XUP,TANQJ,CHENHS,WANGWL, MOQD,HEP,LIH B.2021.Correlation between soil nutrients and fruit contents of Macadamia[J].Agricultural Research and Application,34(4): 10-16. doi: 10.3969/j issn.2095-0764.2021.04.002.
MUBARAKSHINAMM,IVANOVBN.2010.Theproduction and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes[J]. Physiologia Plantarum,140(2): 103-110. doi: 10.1111/ j.1399-3054.2010.01391.x.
SCHRODER JL,ZHANG H L,GIRMA K,RAUN W R, PENN C J,PAYTONM E.2011.Soil acidification from long-term use of nitrogen fertilizers on winter wheat[J]. Soil Science Society of America Journal, 75(3): 957-964. doi:10.2136/sssaj2010.0187.
SRIKANTH A,SCHMID M. 2011. Regulation of flowering time: All roads lead to Rome[J]. Cellular and Molecular Life Sciences,68(12):2013-2037.doi: 10.1007/s00018- 011-0673-y.
(責(zé)任編輯 謝紅輝)