The Application of Plant Growth-Promoting Rhizobacteria(PGPR) in Sustainable Agricultural Development
SU YingYing',ZHU WeiJie',XING YongXiu2*
('GuangxiKeyLaboratory of SugarcaneBiology/CollgeofAgriculture,Guangxi University,Nanning,Guangxi
530004,China; 2College of Agriculture,Guangxi University/NationalDemonstration Center for Experimental Plant Science Education,Nanning, Guangxi 530004, China)
Abstract: With growing global emphasis on sustainable agricultural development, efficient and environment-friendly approaches for stabilizing and enhancing crop production have become an important direction of currnt research. Plant growth-promoting rhizobacteria (PGPR), as a kind of microbial resources that can promote plant growth, increase crop yields, and improve soil conditions, have garnered significant attention due to their promising application prospects and more and more important role in agricultural production. This paper summarized the application potential and challenges associated with PGPR inoculants in sustainable agriculture, outlined future research directions and application prospects, so as to provide new insights for enhancing agricultural sustainability.By reviewing relevant literature,the paper analyzed the concept of PGPR,its growthpromoting mechanisms, and the factors influencing the effectiveness of PGPR inoculants.The results indicated that PGPR inoculants presented great application potential in promoting sustainable agriculture by virtue of multiple functions including nitrogen fixation, phosphorus dissolving, potassium release, secretion of phagocytosis, antibacterial agents and plant hormones, and improvement of soil physicochemical properties. However,multiple factors such as soil physicochemical status, soil biological properties, plant types, root exudates differences, PGPR compositions, inoculation methods,and climatic conditions would affct the application efect of PGPR.Future research should focus on optimizing these critical factors, in order to maximize the effects of PGPR inoculants. In particular, attention should be paid to screening and cultivating more PGPR strains with strong adaptability and stress tolerance, improve the inoculation technology, optimize the soil environment, regulate the competitive microbial community, clarify the interaction mechanisms between PGPR and their hosts and apply them in practice, so as to further improve the application effect of PGPR。
Keywords: Plant growth-promoting rhizobacteria (PGPR); stress resistance; growth promotion; influencing factor
0 引言
隨著全球人口的不斷增長(zhǎng)和環(huán)境問(wèn)題的日益嚴(yán)峻,農(nóng)業(yè)生產(chǎn)面臨著巨大的壓力。傳統(tǒng)的化學(xué)肥料和農(nóng)藥雖然能夠在短期內(nèi)提高作物產(chǎn)量,但長(zhǎng)期使用會(huì)導(dǎo)致土壤退化、環(huán)境污染和生態(tài)失衡等問(wèn)題。這些問(wèn)題不僅影響農(nóng)業(yè)生產(chǎn)的可持續(xù)性,還對(duì)人類健康和生態(tài)系統(tǒng)造成嚴(yán)重的威脅。因此,尋找可持續(xù)的農(nóng)業(yè)解決方案顯得尤為重要。
植物根際促生菌(plant growth-promoting rhizobacteria,PGPR)是指生活在植物根際環(huán)境中,能夠通過(guò)多種機(jī)制促進(jìn)植物生長(zhǎng)和發(fā)育的細(xì)菌。PGPR可通過(guò)多種機(jī)制,如固氮、溶解磷和其他礦物質(zhì)、產(chǎn)生植物激素以及抑制病原菌等,增強(qiáng)植物的健康,促進(jìn)作物生長(zhǎng)。同時(shí),PGPR還能改善土壤的物理結(jié)構(gòu),增加土壤的有機(jī)質(zhì)含量,提高土壤的透氣性和保水性,從而為植物提供一個(gè)更適宜的生長(zhǎng)環(huán)境。AGUNBIADE等(2024)的研究指出,PGPR的存在不僅對(duì)植物的生長(zhǎng)發(fā)育起到了積極的促進(jìn)作用,還能顯著改善土壤環(huán)境,進(jìn)而促進(jìn)整個(gè)生態(tài)系統(tǒng)的平衡。應(yīng)用PGPR接種劑不僅可以減少化學(xué)肥料和農(nóng)藥的使用,降低農(nóng)業(yè)生產(chǎn)成本,還可以改善土壤結(jié)構(gòu),提高土壤肥力,促進(jìn)生態(tài)平衡,展示了其在農(nóng)業(yè)生產(chǎn)中良好的應(yīng)用前景。
1PGPR概念的提出
早在1904年,HILNTER就界定了根際的概念,它是指植物根部周圍一個(gè)受到植物活動(dòng)影響,各方面特性與土壤有差異的微小地帶,定殖在這一地帶的微生物被稱為根際微生物(rhzospheremicroor-ganism)(張瑞福,2020)。根際微生物的存在及其對(duì)植物生長(zhǎng)的影響早在多年前就受到了科學(xué)家們的關(guān)注,然而,直到1978年,美國(guó)奧本大學(xué)的KLOEPPER才首次明確將一群定植于植物根際、能夠促進(jìn)植物生長(zhǎng)發(fā)育的有益微生物定義為PGPR(KLOEPPERandSCHROTH,1981)。隨著研究的深入,研究者們對(duì)PGPR的定義逐漸細(xì)化。PGPR的概念擴(kuò)大到包括能夠在根際定殖、對(duì)植物生長(zhǎng)有直接或間接促進(jìn)作用的真菌和放線菌等微生物(努蘭·拜都拉和恩特馬克·布拉提白,2023)。
2 PGPR的促生長(zhǎng)機(jī)制
2.1 生物固氮作用
氮素是植物生長(zhǎng)必需的大量元素,對(duì)植物蛋白質(zhì)合成、葉綠素形成和酶活性等生理生化過(guò)程至關(guān)重要??諝庵械?dú)饧s占 78% 左右,但植物不能直接利用氮?dú)膺M(jìn)行生長(zhǎng)。生物固氮作用是在微生物的參與下,通過(guò)還原反應(yīng)將氮?dú)廪D(zhuǎn)化為氨的過(guò)程。生物固氮作用主要分為共生固氮和聯(lián)合固氮。共生固氮是植物與微生物之間的一種共生關(guān)系,具有特殊的結(jié)構(gòu),如大豆的根瘤。常見(jiàn)的固氮菌包括與大豆共生的根瘤菌屬(Bradyrhizobi-um)以及與非豆科植物和灌木共生的弗蘭克氏菌屬(Frankia)等。根瘤菌能夠顯著提高大豆植物的氮含量(KHOSOetal.,2024)。
聯(lián)合固氮作用的固氮微生物與植株沒(méi)有形成特異組織結(jié)構(gòu),他們?cè)谥参锔?、根際土壤和植株體內(nèi)都可存在。目前報(bào)道的聯(lián)合固氮微生物主要有固氮菌屬(Azotobacter)、固氮螺菌屬(Azo-spirillum)、草螺菌屬(Herbaspirillum)、克雷伯氏菌屬(Klebsiella)、腸桿菌屬(Enterobacter)、假單胞菌屬(Pseudomonas)、類芽孢桿屬(Paeniba-cillus)等(艾超等,2024)。胡應(yīng)平等(2024)在水稻根系內(nèi)生固氮菌的試驗(yàn)中發(fā)現(xiàn)固氮菌的應(yīng)用顯著提升了土壤中的氮含量,促進(jìn)了水稻生長(zhǎng),可減少化學(xué)氮肥的用量。甘蔗(Saccharumoffici-narumL.)接種固氮菌RB867515和RB92579能夠促進(jìn)植株生長(zhǎng),增加土壤中氮的積累,減少氮肥的施用(MARTINSet al.,2020;GUOet al.,2021)。自由生活的固氮菌在土壤中廣泛存在,通過(guò)固氮作用提高土壤的氮含量,促進(jìn)植物的生長(zhǎng)發(fā)育(WAHABetal.,2024)。
2.2 溶磷作用
磷元素是植物生長(zhǎng)過(guò)程中不可或缺的一種營(yíng)養(yǎng)物質(zhì),它在植物的能量轉(zhuǎn)移、核酸合成以及細(xì)胞膜結(jié)構(gòu)等關(guān)鍵生理過(guò)程中扮演著重要角色。土壤中絕大部分磷素以難溶或螯合的形式存在于土壤中而不能被作物利用,只有小部分土壤磷被作物利用。溶磷菌是一類能夠溶解土壤中的難溶性磷酸鹽,釋放出植物可吸收磷的細(xì)菌。溶磷菌通過(guò)分泌有機(jī)酸、酶類等物質(zhì),將土壤中的難溶性磷酸鹽轉(zhuǎn)化為可溶性磷,從而被植物吸收利用(秦敬澤等,2024)。常見(jiàn)的溶磷菌包括假單胞菌屬(Pseudomonas)、芽孢桿菌屬(Bacillus)等(溫佳旭等,2023)。溶磷菌的應(yīng)用可以提高土壤中的磷含量,改善土壤的理化性質(zhì),促進(jìn)植物的生長(zhǎng)發(fā)育,提高作物產(chǎn)量。
周益帆等(2023)的研究表明,溶磷微生物通過(guò)分泌有機(jī)酸、酶類等物質(zhì)將難溶性的磷酸鹽轉(zhuǎn)化為可溶性的磷,從而顯著提高土壤中的磷含量,進(jìn)而促進(jìn)植物的生長(zhǎng)發(fā)育。王振龍等(2023)在若爾蓋高寒補(bǔ)播草地開(kāi)展的燕麥促生試驗(yàn)發(fā)現(xiàn),惡臭假單胞菌(Pseudomonasputida)通過(guò)分泌檸檬酸、蘋果酸等多種有機(jī)酸,有效地提高了土壤中的磷含量,促進(jìn)燕麥的生長(zhǎng)發(fā)育。芽孢桿菌屬(Bacillus)通過(guò)分泌磷酸酶等酶類物質(zhì)溶解磷酸鹽,既能供植物吸收利用又能提高土壤肥力(韓學(xué)東等,2023)。任智慧等(2024)的研究表明,PGPR通過(guò)多種機(jī)制與植物相互作用,為植物提供必需的營(yíng)養(yǎng)元素,抑制病原菌的生長(zhǎng),并增強(qiáng)植物的抗逆性。
2.3產(chǎn)生抑菌物質(zhì)
病原菌是導(dǎo)致植物病害的主要原因之一,嚴(yán)重影響植物的生長(zhǎng)發(fā)育和產(chǎn)量。PGPR通過(guò)產(chǎn)生抗生素、氫氰酸、揮發(fā)性有機(jī)化合物等物質(zhì),抑制病原菌的生長(zhǎng),減少植物病害的發(fā)生(王麗等,2024)。產(chǎn)生抗菌活性物質(zhì)的PGPR的應(yīng)用可以增強(qiáng)植物的抗病能力,既節(jié)約了生產(chǎn)成本,又提高了產(chǎn)量(伍國(guó)強(qiáng)等,2024)。PGPR中的較多細(xì)菌如醋桿菌屬(Acetobacter)、伯克霍爾德菌屬(Burk-holderia)、節(jié)桿菌屬(Arthrobacter)、Klebsiella、短狀桿菌屬(Azoarcus)、Azotobacter、Azospiril-lum、Enterobacter、拜葉林克氏菌屬(Beijerinck-ia)、Bacillus、葡糖醋桿菌屬(Gluconaceto-bacter)、嗜麥芽窄食單胞菌屬(Stenotrophomon-as)等都具有作為生防制劑的潛力(張亮等,2018;于文清等,2020)。
熒光假單胞菌(Pseudomonasfluorescens)通過(guò)產(chǎn)生抗生素、氫氰酸等物質(zhì),抑制病原菌的生長(zhǎng),減少植物病害的發(fā)生(陳夢(mèng)多等,2023)。Pfluorescens產(chǎn)生的抗生素2,4-二乙?;g苯三酚(2,4-DAPG)能夠有效抑制土傳病原菌鐮刀菌屬(Fusarium)和青霉菌屬(Penicillium)的生長(zhǎng),從而保護(hù)植物免受病菌侵害(劉守德等,2022)??莶菅挎邨U菌(Bacillussubtilis)通過(guò)產(chǎn)生脂肽類抗生素,如表面活性素(surfactin)和伊枯草素(iturin)抑制病原菌的生長(zhǎng)(劉曉婷和姚拓,2022)。解淀粉芽孢桿菌(B.amyloliquefaciens)和B.pumilus,在土壤中廣泛存在,通過(guò)分泌抗生素等物質(zhì),對(duì)病原菌的繁殖與生長(zhǎng)起到抑制作用(DUTTAetal.,2022)。
2.4產(chǎn)生植物激素
植物激素是調(diào)控植物生長(zhǎng)發(fā)育的重要信號(hào)分子,對(duì)植物的生長(zhǎng)、開(kāi)花、果實(shí)成熟等生理過(guò)程具有重要作用。PGPR通過(guò)產(chǎn)生生長(zhǎng)素、細(xì)胞分裂素、赤霉素等植物激素,促進(jìn)植物的生長(zhǎng)發(fā)育,提高作物產(chǎn)量(GOPALANetal.,2022)。分泌植物激素的PGPR的應(yīng)用可以顯著提高植物的生長(zhǎng)速率和產(chǎn)量,改善作物品質(zhì)(李笑淳等,2024)。SHAHWAR等(2023)的研究顯示,PGPR通過(guò)產(chǎn)生生長(zhǎng)素、細(xì)胞分裂素、赤霉素等植物激素,促進(jìn)植物的生長(zhǎng)發(fā)育,提高作物產(chǎn)量。劉艷霞等(2023)的煙草田間試驗(yàn)得出,P.putida產(chǎn)生的生長(zhǎng)素能夠促進(jìn)植物根系的生長(zhǎng),增加根系的吸收面積,從而提高植物對(duì)養(yǎng)分和水分的吸收能力。蠟樣芽孢桿菌(Bacilluscereus)通過(guò)產(chǎn)生赤霉素(GA)等植物激素促進(jìn)植物的生長(zhǎng)發(fā)育,提高作物產(chǎn)量,改善作物品質(zhì),提高農(nóng)業(yè)生產(chǎn)效益(楊立軍等,2024)。短小芽孢桿菌TUAT1通過(guò)調(diào)控水稻細(xì)胞分裂素的合成過(guò)程相關(guān)基因的表達(dá),加速植物細(xì)胞分裂,刺激水稻冠根的生長(zhǎng)(NGOet al.,2019)。接種具有ACC脫氨酶活性的芽孢桿菌PM16降低了植株乙烯水平且顯著增加了鹽堿土栽培小麥的總根長(zhǎng)、根表面、芽長(zhǎng)和鮮干重(李明源等,2023)。產(chǎn)ABA的巴西固氮螺菌Sp245處理擬南芥后,可以增加擬南芥體內(nèi)的ABA含量,增強(qiáng)植物耐旱性(勾宇春等,2023)。某些PGPR可將ABA當(dāng)作碳源利用,能夠降低接種植物的ABA濃度,但關(guān)于它們減少植物ABA含量的具體機(jī)制以及這一機(jī)制對(duì)植物生長(zhǎng)的影響尚不清楚(勾宇春等,2023)。
2.5改善土壤環(huán)境
植物的生長(zhǎng)發(fā)育與土壤的健康狀態(tài)均受土壤結(jié)構(gòu)的影響。良好的土壤結(jié)構(gòu)能夠顯著提升土壤的透氣性、保水性和保肥性,從而為植物根系的生長(zhǎng)發(fā)育提供更為有利的條件(葉曉娜等,2023)。PGPR通過(guò)分泌諸如多糖和蛋白質(zhì)等物質(zhì),有效地改善土壤結(jié)構(gòu),進(jìn)而提高土壤的肥力(BENAISSA,2024)。研究表明,Pseudomonasputida是一類在改善土壤結(jié)構(gòu)方面發(fā)揮重要作用的細(xì)菌(穆文強(qiáng)等,2022)。P.putida分泌的多糖能夠?qū)⑼寥李w粒黏結(jié)在一起,形成穩(wěn)定的團(tuán)粒結(jié)構(gòu),這不僅提高了土壤的透氣性和保水性,還進(jìn)一步促進(jìn)了植物根系的生長(zhǎng)發(fā)育(白潔等,2023)。PGPR的存在和活動(dòng),使得土壤變得更加疏松,透氣性更好,水分和養(yǎng)分的保持能力更強(qiáng),從而為植物的健康生長(zhǎng)提供了更為優(yōu)越的環(huán)境條件,進(jìn)而促進(jìn)了植物的健康生長(zhǎng)和產(chǎn)量的提高(BAHMANetal.,2023)。
3影響PGPR應(yīng)用效果的因素
3.1土壤理化性質(zhì)
土壤的物理、化學(xué)特性都會(huì)對(duì)PGPR的存活和活性產(chǎn)生顯著影響。土壤的質(zhì)地、結(jié)構(gòu)和孔隙度直接影響PGPR的擴(kuò)散和定殖。黏質(zhì)土壤由于孔隙度較低,不利于PGPR的擴(kuò)散和定殖;而砂質(zhì)土壤孔隙度較高,有利于PGPR的擴(kuò)散,但保水能力較差,影響PGPR的存活(唐璐,2023)。壤土或沙壤土具有良好的透氣性和保水性,有利于PGPR的存活和活性,是PGPR接種劑應(yīng)用的理想土壤類型(艾孜買提·阿不力孜等,2023)。
土壤的化學(xué)性質(zhì),如pH值、有機(jī)質(zhì)含量和養(yǎng)分狀況,對(duì)PGPR的活性和效果也有顯著影響。大多數(shù)PGPR適宜在中性至微酸性的土壤環(huán)境中生長(zhǎng),pH值在6.0\~7.5范圍內(nèi)最為適宜。過(guò)高的pH值(如石灰性土壤)或過(guò)低的pH值(如酸性土壤)都會(huì)抑制PGPR的活性(凡永杰等,2022)。此外,土壤中的有機(jī)質(zhì)含量對(duì)PGPR的存活和活性的影響也不能忽視。有機(jī)質(zhì)能夠提供PGPR所需的碳源和能量,促進(jìn)其生長(zhǎng)繁殖,有機(jī)質(zhì)含量較高的土壤,PGPR的存活率和活性更高(梁輝等,2022)。
3.2土壤生物學(xué)特性
土壤的生物學(xué)特性,如微生物群落組成和活性,也影響PGPR的效應(yīng)。土壤中的有益微生物如放線菌、真菌等可以與PGPR形成協(xié)同關(guān)系,促進(jìn)植物生長(zhǎng)(THWAINIetal.,2021)。這些有益微生物通過(guò)產(chǎn)生抗生素、植物激素等物質(zhì),抑制病原菌的生長(zhǎng),促進(jìn)PGPR的活性。土壤中的有害微生物如病原菌會(huì)與PGPR競(jìng)爭(zhēng)資源,抑制其活性或者通過(guò)產(chǎn)生抗生素、酶類等物質(zhì),抑制PGPR的生長(zhǎng),影響植物的生長(zhǎng)發(fā)育(SEENIVASAGAN andBABALOLA,2021)。健康的微生物群落結(jié)構(gòu)能夠?yàn)镻GPR提供良好的生存環(huán)境,促進(jìn)其生長(zhǎng)繁殖。土壤中微生物群落結(jié)構(gòu)的多樣性與PGPR的定殖率和活性呈正相關(guān)(霍佳慧等,2022)??梢?jiàn),通過(guò)施用生物肥料和生物農(nóng)藥,可以有效控制有害微生物的生長(zhǎng),提高PGPR的定殖率和活性。
3.3植物種類和根系分泌物
不同植物種類對(duì)PGPR接種劑的響應(yīng)存在差異。植物的根系結(jié)構(gòu)、分泌物組成和代謝活動(dòng)都會(huì)影響PGPR的定殖和活性(姬彥飛等,2021)。根系發(fā)達(dá)、分支多的植物,能夠?yàn)镻GPR提供更多的定殖位點(diǎn),有利于PGPR的定殖和效應(yīng)發(fā)揮。研究表明,豆科植物如大豆、豌豆等,對(duì)PGPR的響應(yīng)較為顯著,能夠顯著提高其生長(zhǎng)和產(chǎn)量,而根系較淺、分支少的植物,如小麥、玉米等,對(duì)PGPR的響應(yīng)相對(duì)較弱(舒健虹等,2021)。因此,生產(chǎn)中應(yīng)用PGPR時(shí)應(yīng)考慮物種特異性這一因素。
植物根系分泌的有機(jī)物在很大程度上影響PG-PR的生長(zhǎng)和活性。這些有機(jī)物包括糖類、氨基酸、有機(jī)酸等,它們?yōu)镻GPR提供了必要的碳源和能量,從而促進(jìn)了這些有益細(xì)菌的繁殖和生長(zhǎng)(邢起銘等,2022)。不同種類的植物根系分泌的有機(jī)物在組成和濃度上存在顯著差異,這也導(dǎo)致了它們對(duì)PGPR的響應(yīng)各不相同。例如,豆科植物的根系分泌物通常種類更多、濃度更高,因此能夠更有效地促進(jìn)PGPR的生長(zhǎng)。此外,植物的代謝活動(dòng)也在不同程度地影響著PGPR的活性。植物通過(guò)其代謝過(guò)程產(chǎn)生的各種氣體,如氧氣和二氧化碳,影響PGPR的生長(zhǎng)效應(yīng),在缺氧的條件下,PGPR的活性往往會(huì)受到抑制(楊倩等,2022)。
3.4 接種方法
接種方法在很大程度上決定了PGPR應(yīng)用成效。種子接種是常用的PGPR接種方法之一,通過(guò)將PGPR菌液噴灑在種子表面或者浸種處理,然后進(jìn)行播種。種子接種方法簡(jiǎn)單易行,適用于大規(guī)模農(nóng)業(yè)生產(chǎn),能夠提高PGPR的定殖率和活性。但種子接種方法也存在一些問(wèn)題,如菌液附著力差、易脫落等(張萬(wàn)通等,2021)。
土壤接種作為常用的PGPR接種手段之一,是把PGPR菌液或菌劑施于土壤,使PGPR定殖在植物根系周圍。土壤接種方法適用于各種作物,在根系發(fā)達(dá)作物上效果尤佳(楊婉秋等,2021)。當(dāng)然,土壤接種也有缺陷,如菌劑在土壤里擴(kuò)散與定殖不均衡,致使PGPR的應(yīng)用成效受影響。
根部浸漬是一種有效的PGPR接種方法,具體操作是把植物幼苗根部浸于含PGPR的溶液里,使PGPR定殖在根系表面。但其操作流程較為繁瑣,所需成本偏高,難以在大規(guī)模農(nóng)業(yè)生產(chǎn)中廣泛應(yīng)用。根際注射是一種將PGPR菌液精準(zhǔn)施入植物根部周圍土壤的接種技術(shù),它能確保PGPR有效定殖于根系附近。根際注射法適用于根系深的作物,在提升PGPR效能及促進(jìn)植物生長(zhǎng)方面有顯著作用(劉銀銀,2023)。
3.5 氣候條件
溫度、濕度、光照等氣候因素都會(huì)對(duì)PGPR的存活和活性產(chǎn)生影響。溫度是影響PGPR存活和活性的重要因素。大多數(shù)PGPR適宜在中溫環(huán)境下生長(zhǎng),最適溫度范圍為 。過(guò)高或過(guò)低的溫度都會(huì)抑制PGPR的活性。高溫(
)和低溫C
)都會(huì)顯著降低PGPR的存活率和活性,影響其促生效果(MORCILLOandMANZANE-RA,2021)。因而在高溫和低溫季節(jié),應(yīng)選擇耐高溫或耐低溫的PGPR菌株,以提高其存活率和應(yīng)用效果。
適宜的濕度能夠?yàn)镻GPR提供充足的水分,促進(jìn)其生長(zhǎng)繁殖。土壤濕度在 范圍內(nèi)最為適宜,過(guò)高或過(guò)低的濕度都會(huì)影響PGPR的活性,過(guò)高濕度會(huì)導(dǎo)致土壤通氣性下降,影響PGPR的呼吸作用;過(guò)低濕度會(huì)導(dǎo)致土壤干燥,影響PGPR的存活(呂景麗,2023)。在干旱季節(jié),應(yīng)適時(shí)適量地進(jìn)行灌溉,避免土壤過(guò)于干燥,導(dǎo)致PGPR無(wú)法存活;而在多雨季節(jié),則需要加強(qiáng)排水,防止土壤過(guò)于濕潤(rùn)甚至積水,以避免PGPR因缺氧而死亡(KARNWALetal.,2024)。
光照是影響PGPR存活和活性的又一因素。適宜的光照能夠促進(jìn)植物的光合作用,為PGPR提供充足的碳源和能量。光照強(qiáng)度在5000\~10000Lux范圍內(nèi)最為適宜,過(guò)強(qiáng)或過(guò)弱的光照強(qiáng)度都會(huì)影響PGPR的活性(SATIetal.,2023)。過(guò)強(qiáng)光照會(huì)導(dǎo)致土壤溫度升高,影響PGPR的存活;過(guò)弱光照會(huì)導(dǎo)致植物光合作用減弱,影響PGPR的活性(OUFetal.,2024)。所以在光照環(huán)境欠佳時(shí),應(yīng)采取適當(dāng)?shù)难a(bǔ)光措施來(lái)提高光照強(qiáng)度。
4總結(jié)與展望
生物肥料在農(nóng)業(yè)生產(chǎn)中的應(yīng)用越來(lái)越得到認(rèn)可。生物接種劑作為生物肥料可以通過(guò)減少對(duì)化肥的依賴和促進(jìn)土壤健康來(lái)促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展。PGPR接種劑憑借固氮、溶磷、抑菌、分泌植物激素及改良土壤理化特性等多重功效,顯著提升植物的生長(zhǎng)發(fā)育和產(chǎn)量,增強(qiáng)植物的抗逆性,減少對(duì)化肥和農(nóng)藥的依賴,降低生產(chǎn)成本,同時(shí)改善土壤質(zhì)量和生態(tài)環(huán)境,在推動(dòng)農(nóng)業(yè)可持續(xù)發(fā)展方面展現(xiàn)出廣闊的應(yīng)用潛力。然而,PGPR接種劑在實(shí)際應(yīng)用中面臨諸多挑戰(zhàn),土壤理化狀況、土壤生物學(xué)特性、植物類型及其根系分泌物差異、接種方式及氣候條件等多重因素都會(huì)影響其應(yīng)用效果,導(dǎo)致應(yīng)用效果不穩(wěn)定。因此,未來(lái)的研究應(yīng)著重于優(yōu)化這些關(guān)鍵要素,以增強(qiáng)PGPR接種劑的效用。具體而言,可以篩選和培育更多適應(yīng)性強(qiáng)、能耐受逆境的PGPR菌株,改良接種技術(shù),優(yōu)化土壤環(huán)境,調(diào)控競(jìng)爭(zhēng)微生物群落,明確其與寄主的互作機(jī)制并加以應(yīng)用,進(jìn)一步提升PGPR接種劑在農(nóng)業(yè)生產(chǎn)中的應(yīng)用效果。同時(shí),還需加強(qiáng)PGPR接種劑的大規(guī)模生產(chǎn)和推廣應(yīng)用,建立科學(xué)的田間管理體系。
隨著人們對(duì)綠色食品需求的不斷增加,PGPR接種劑有望逐步替代部分化肥和農(nóng)藥,在有機(jī)農(nóng)業(yè)、生態(tài)種植中發(fā)揮關(guān)鍵作用,助力解決糧食安全與環(huán)境保護(hù)的雙重問(wèn)題,為實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展提供有力的技術(shù)支撐。
參考文獻(xiàn)
艾超,趙遠(yuǎn)征,張儷予,張美玲,黃抒語(yǔ),王詩(shī)雨,周衛(wèi).2024. 禾本科作物聯(lián)合固氮研究進(jìn)展[J].植物營(yíng)養(yǎng)與肥料學(xué) 報(bào),30(7):1307-1321. AI C, ZHAO Y Z,ZHANG L Y, ZHANG ML,HUANG S Y, WANG S Y, ZHOU W. 2024. Research progress on associative nitrogen fixation of gramineous crops[J]. Journal of Plant Nutrition and Fertilizers, 30(7): 1307-1321. doi:10.11674/zwyf.2024228.
艾孜買提·阿不力孜,王旭東,賈紹雷,蔡露,高坦坦,趙曉 燕.2023.pH對(duì)解淀粉芽胞桿菌TR2生長(zhǎng)和在土壤中 定殖的影響[J].北京農(nóng)學(xué)院學(xué)報(bào),38(1):7-12. AZMAT A,WANG X D,JIA S L,CAI L,GAO TT, ZHAO X Y. 2023.Effect of different pH on the growth and soil colonization of B. amyloliquefaciens TR2[J]. Journal of Beijing University of Agriculture, 38(1): 7-12. doi:10.13473/j.cnki.issn.1002-3186.2023.0102.
白潔,姚拓,雷楊,王辛有,王占軍,馬亞春.2023.歐李多功能 PGPR菌株篩選、鑒定及促生防病特性研究[J].草原與 草坪,43(1):20-28. BAIJ,YAOT,LEIY,WANGXY,WANGZJ,MAYC. 2023.Isolation and identification of multifunctional PGPR and characterization of growth-promoting and diseaseprevention of Cerasus humilis[J]. Grassland and Turf, 43 (1):20-28.doi: 10.13817/j.cnki.cyycp.2023.01.003.
陳夢(mèng)多,胡春艷,馬肖靜,何夢(mèng)菡,沈虎生,王藝茹,樸鳳植,申 順善.2023.植物根際細(xì)菌HQ1-2的根際定殖與土壤微 生態(tài)調(diào)節(jié)及枯萎病防治[J].中國(guó)生物防治學(xué)報(bào),39(4): 924-932. CHENMD,HUCY,MAXJ,HEMH,SHENH S, WANG Y R,PIAO F Z,SHEN S S.2023.Rhizosphere colonization of plant growth promoting rhizobacteria HQ1-2 and regulation effects of soil microecology and control effects on the Fusarium wilt[J]. Chinese Journal of Biological Control,39(4): 924- 932.doi: 10.16409 / j. cnki.2095-039x.2023.02.034.
凡永杰,何星杰,楊寧,蔣秋艷,徐兆豐,余雅婷,唐筱茸,肖 明.2022.植物根際促生菌作用機(jī)制及在辣椒栽培中的 應(yīng)用[J].上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版),51(6): 715-722. FANYJ,HEXJ,YANGN,JIANGQY,XUZF,YUY T, TANG X R, XIAO M. 2022. Mechanism of plant growth promoting rhizobacteria and its application in pepper cultivation[J]. Journal of Shanghai Normal University (Natural Sciences),51(6): 715 - 722. doi: 10.3969 /J. ISSN.1000-5137.2022.06.001.
勾宇春,王宗抗,張志鵬,魏浩,孟品品,曾艷華,鄧祖科,周 進(jìn).2023.植物根際促生菌作用機(jī)制研究進(jìn)展[J].應(yīng)用與 環(huán)境生物學(xué)報(bào),29(2):495-506. GOU Y C, WANG Z K, ZHANG Z P, WEI H, MENG P P, ZENG Y H, DENG Z K, ZHOU J.2023.Advance in role mechanisms of plant growth promoting rhizobacteria[J]. Chinese Journal of Applied and Environmental Biology, 29(2):495 - 506.doi: 10.19675 / j.cnki.1006-687x.2021. 12024.
韓學(xué)東,杜春梅,董錫文.2023.植物根際促生菌研究綜述[J] 鄉(xiāng)村科技,14(5):87-90. HAN X D, DU C M, DONG X W. 2023. Research summary on plant growth promoting rhizobacteria[J]. Rural Science and Technology, 14(5): 87-90. doi:10.19345/j. cnki.1674-7909.2023.05.002.
霍佳慧,畢少杰,于欣卉,馬爽,王文中,王欣悅,王彥杰. 2022.植物根際促生菌作用機(jī)制研究進(jìn)展[J].現(xiàn)代農(nóng)業(yè) 科技(9):90-96. HUOJH,BISJ,YUXH,MAS,WANGWZ,WANGX Y, WANG Y J. 2022. Research progress on the mechanism of plant growth promoting rhizobacteria[J]. Modern Agricultural Science and Technology, (9): 90- 96.doi: 10.3969/j.issn.1007-5739.2022.09.027.
胡應(yīng)平,林冬梅,胡弘正,吳穎,林佳麗,林占嬉,劉斌.2024. 一株旱稻聯(lián)合固氮菌株的分離鑒定及促生作用[]西南 農(nóng)業(yè)學(xué)報(bào),37(4):780-788. HU Y P, LIN D M, HU H Z, WU Y, LIN J L, LIN Z X, LIU B. 2024.Isolation, identification and growth-promoting characteristics of endophytic nitrogen-fixing bacteria in upland rice roots[J]. Southwest China Journal of Agricultural Sciences, 37(4): 780-788.doi: 10.16213/j.cnki.scjas.2024.4.011.
姬彥飛,董欣欣,田野,張杰,楊洪一.2021.根際促生菌的生 防機(jī)理及用作生防制劑的潛能[J].中國(guó)農(nóng)學(xué)通報(bào),37 (14): 141-149 JI Y F, DONG X X, TIAN Y, ZHANG J, YANG H Y. 2021. PGPR: The biological control mechanism and potential as biological control agent[J]. Chinese Agricultural ScienceBulletin,37(14):141-149.
梁輝,王勇,陳玉藍(lán),羅琳,梁錦鵬,陳強(qiáng),辜運(yùn)富.2022.PGPR 菌劑對(duì)植煙土壤理化性狀及phoD基因群落結(jié)構(gòu)的影 響[J].中國(guó)煙草科學(xué),43(5):61-67. LIANGH,WANGY, CHENY L,LUOL,LIANGJP, CHEN Q,GU Y F.2022.Effects of PGPR inoculants on physical and chemical properties of tobacco planting soil and composition of bacterial community containing phoD [J].Chinese Tobacco Science, 43(5): 61-67.doi: 10.13496/ j.issn.1007-5119.2022.05.010.
李明源,王繼蓮,田世梅.2023.鹽爪爪根際產(chǎn)ACC脫氨酶 菌株篩選及促生特性研究[J].核農(nóng)學(xué)報(bào),37(11):2151- 2157. LI M Y, WANG J L, TIAN S M. 2023. Isolation of ACC deaminase producing strains from the rhizosphere soil of Kalidium foliatum and identification of their growth-promoting characteristics[J]. Journal of Nuclear Agricultural Sciences,37(11): 2151-2157. doi: 10.11869/j.issn.1000- 8551.2023.11.2151.
劉守德,劉華梅,周莉,黃芳,徐廣,武若楠,王小華,胡國(guó)元. 2022.多粘類芽孢桿菌的研究進(jìn)展[J].武漢工程大學(xué)學(xué) 報(bào),44(3):237-24. LIU S D, LIU HM, ZHOU L,HUANG F, XU G, WU R N, WANG X H, HU G Y. 2022. Research progress of Paenibacillus polymyxa [J]. Journal of Wuhan Institute of Technology,44(3): 237-24.doi:10.19843/j.cnki.CN42-1779/ TQ.202202013.
劉曉婷,姚拓.2022.高寒草地耐低溫植物根際促生菌的篩選 鑒定及特性研究[J].草業(yè)學(xué)報(bào),31(8):178-187. LIU X T, YAO T. 2022. Screening, identification and characteristics of low -temperature-tolerant plant growth promoting rhizobacteria in alpine meadow[J]. Acta Prataculturae Sinica, 31(8): 178-187.doi: 10.11686/cyxb2021311.
劉艷霞,陶正朋,李想,張恒,朱經(jīng)偉,王豐,焦劍,王克敏,徐 健,汪維維,李寒.2023.抗青枯病型根際促生菌(PGPR) 菌群構(gòu)建及其生物防控機(jī)制[J].微生物學(xué)報(bào),63(3): 1099-1114. LIU Y X, TAO Z P, LIX, ZHANG H, ZHU J W, WANG F, JIAO J,WANG K M, XU J,WANG W W,LIH. 2023. Construction of bacterial wilt-resistant and plant growthpromoting rhizobacteria(PGPR) and the mechanism of biocontrol [J]. Acta Microbiologica Sinica, 63(3): 1099- 1114.doi: 10.13343/j.cnki.wsxb.20220527.
劉銀銀.2023.生防假單胞菌FD6的定殖能力及CbrA/B雙 組分調(diào)控系統(tǒng)功能鑒定[D].江蘇:揚(yáng)州大學(xué),33-34. LIU Y Y. 2024. Colonization ability of Pseudomonas protegens FD6 and functional identification of the CbrA/B two-component regulatory system [D].Jiangsu: Yangzhou University:33-34.doi:10.27441/d.cnki.gyzdu.2023.00 0121.
李笑淳,宋凱,陳博,江連,何亞文.2024.植物根際促生菌:作 用機(jī)制與未來(lái)[J].激光生物學(xué)報(bào),33(3):193-200. LI X C, SONG K,CHEN B, JIANG L,HE Y W. 2024. Plant growth -promoting rhizobacteria: Mechanisms and perspectives[J]. Acta Laser Biology Sinica, 33(3): 193 - 200.
呂景麗.2023.紅光促進(jìn)根際促生細(xì)菌普城沙雷菌A21-4在 番茄根際定殖的作用機(jī)理[D].鄭州:河南農(nóng)業(yè)大學(xué). LYU J L. 2023. Mechanism of red light in promoting the colonization of rhizosphere-promoting bacterium Serratia plymuthica A21 - 4 in the rhizosphere of tomato [D]. Zhengzhou: Henan Agricultural University. doi:10.27117/ d.cnki.ghenu.2000684.
穆文強(qiáng),康慎敏,李平蘭.2022.根際促生菌對(duì)植物的生長(zhǎng)促 進(jìn)作用及機(jī)制研究進(jìn)展[J].生命科學(xué),34(2):118-127. MU W Q,KANG S M,LI P L.2022.Advances in rhizosphere growth-promoting bacteria function on plant growth facilitation and their mechanisms[J]. Chinese Bulletin of Life Sciences, 34(2): 118-127. doi: 10.13376/j. cbls/2022014.
努蘭·拜都拉,恩特馬克·布拉提白.2023.植物根際微生物與 農(nóng)作物生長(zhǎng)發(fā)育之間關(guān)系的研究進(jìn)展[J].種子科技,41 (22):142-144. NURAN B, ENTMARK B. 2023. Research progress on the relationship between rhizosphere microorganisms and crop growth and development[J]. Seed Science amp; Technology,41(22): 142-144. doi: 10.19904/j.cnki.cn14-1160/ s.2023.22.045.
秦敬澤,秦澤峰,倪剛,謝沐希,周大樸,王光州,張俊伶. 2024.AMF 和PGPR單獨(dú)或\"跨界\"互作促進(jìn)植物耐鹽 性的研究進(jìn)展[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),30(7):1354- 1366. QIN JZ,QIN Z F,NI G,XIE MX,ZHOU D P,WANG G Z, ZHANG J L.2024.Advances in the separate functions or cross-Kingdom interactions of AMF and PGPR in enhancing plant salt tolerance[J]. Journal of Plant Nutrition and Fertilizers,30(7): 1354-1366.
任智慧,于喬,高士孔,王家駒,牛德鵬,劉美麗,呼天明,付娟 娟.2024.垂穗披堿草根際促生菌的分離鑒定及促生作 用研究[J].草地學(xué)報(bào),32(6):1693-1701. REN Z H, YU Q, GAO S K, WANG J J, NIU D P, LIU M L, HU T M, FU J J. 2024. Screening and promoting effects of plant growth-promoting bacteria from rhizosphere of Campeiostachys nutans Griseb[J]. Acta Agrestia Sinica, 32(6): 1693-1701.
舒健虹,劉曉霞,王子苑,李安,蒙正兵,王小利.2021.減施肥 料配施根際促生菌對(duì)大豆-玉米間作根際土壤與作物生 長(zhǎng)的影響[J].貴州農(nóng)業(yè)科學(xué),49(8):65-73. SHU J H, LIU X X, WANG Z Y, LI A, MENG Z B, WANG X L. 2021.Effect of reduced fertilizer and applying growth-promoting bacteria (PGPR)on growth of soybean and corn under the intercropping pattern[J]. Guizhou AgriculturalSciences, 49(8): 65 - 73.doi: 10.3969 / j.issn. 1001-3601.2021.08.010.
唐璐.2023.PGPR對(duì)鹽堿脅迫下紫花首根際土壤微生態(tài) 的影響研究[D].哈爾濱:哈爾濱師范大學(xué),4-5. TANG L.2023. Study on the influence of PGPR on the rhizosphere soil microecology of alfalfa under salt-alkali stress [D]. Harbin: Harbin Normal University: 4-5.doi: 10.27064/d.cnki.ghasu.2023.000008.
王麗,王劍峰,孔鑫,陳顯磊,陳蘭蘭,吳亞娟,乙引,劉杰,龔 記熠.2024.PGPR促進(jìn)植物生長(zhǎng)及增強(qiáng)植物耐鎘機(jī)制 研究進(jìn)展[J].種子,43(6):73-85. WANG L, WANG JF, KONG X, CHEN X L, CHEN L L, WU Y J, YI Y, LIU J, GONG JY. 2024. Progress on the mechanism of PGPR to promote plant growth and enhance cadmium tolerance in plants[J]. Seed, 43(6): 73-85. doi: 10.16590/j.cnki.1001-4705.2024.06.073.
王振龍,杜江,牛勇,姚拓.2023.若爾蓋高寒補(bǔ)播草地燕麥根 際促生菌的篩選及促生特性研究[J].草地學(xué)報(bào),31(5): 1406-1413. WANG Z L, DU J, NIU Y, YAO T. 2023. Screening and growth-promoting characteristics of plant growth-promoting rhizobacteria of oat rhizosphere in alpine reseeding grassland of zoige[J]. Acta Agrestia Sinica, 31(5): 1406- 1413.doi: 10.11733/j.issn.1007-0435.2023.05.015.
溫佳旭,陳雪麗,肖洋,萬(wàn)書明,孫磊,方海瑞.2023.土壤中主 要溶磷菌種類及其作用機(jī)制[J].北方園藝(14):139-145. WEN J X, CHEN X L,XIAO Y,WAN S M, SUN L, FANG H R. 2023. Major phosphorus-dissolving bacteria species in soils and mechanisms of action[J]. Northern Horticulture,(14):139-145.doi: 10.11937/bfyy.20224156.
伍國(guó)強(qiáng),于祖隆,魏明.2024.PGPR調(diào)控植物響應(yīng)逆境脅迫 的作用機(jī)制[J].草業(yè)學(xué)報(bào),33(6):203-218. WU G Q,YU Z L, WEI M. 2024.The mechanism of PGPR regulating plant response to abiotic stress[J]. Acta Prataculturae Sinica, 33(6): 203 -218.doi: 10. 11686/ cyxb2023276.
邢起銘,金文杰,周利斌,李文建,劉瑞媛,馬建忠.2022.植物 根際促生菌提高植物耐鹽性的研究進(jìn)展[J].中國(guó)農(nóng)學(xué)通 報(bào),38(11): 46-52. XINGQM,JINWJ,ZHOULB,LIWJ,LIURY,MAJ Z.2022. Salt tolerance of plant increased by plant growth promoting rhizobacteria: Research progress[J]. Chinese Agricultural Science Bulletin, 38(ll): 46-52.
楊立軍,李少剛,曹倩,黃豫皖,陳瓊,汪金萍.2024.植物內(nèi)生 菌促生機(jī)制及應(yīng)用研究進(jìn)展[J].江蘇農(nóng)業(yè)科學(xué),52(9): 35-41. YANG L J, LI S G, CAO Q, HUANG Y W, CHEN Q, WANG J P. 2024. Research progress on growth promoting mechanism and application of plant endogenous bacteria [J]. Jiangsu Agricultural Sciences, 52(9): 35-41. doi: 10.1 5889/j.issn.1002-1302.2024.09.005.
楊倩,薛璐,郭慧,付瑞珂,張濤,申順善,杜南山,樸鳳植. 2022.植物根際促生菌防治黃瓜枯萎病的研究進(jìn)展[J]. 中國(guó)瓜菜,35(1):1-8. YANG Q, XUE L, GUO H, FU R K, ZHANG T, SHEN S S, DU N S, PIAO F Z. 2022. Research progress in the control of cucumber Fusarium wilt by plant growth-promoting rhinoacteria[J]. China Cucurbits and Vegetables, 35(1): 1-8.doi: 10.16861/j.cnki.zggc.20220119.001.
楊婉秋,敬潔,朱靈,高永恒.2021.川西北高寒草甸植物根際 促生菌篩選及其特性研究[J].草地學(xué)報(bào),29(6):1174- 1182. YANG W Q, JING J, ZHU L, GAO Y H. 2021. Screening and characteristics of plant growth-promoting rhizobacteria from alpine meadow plants in northwestern Sichuan [J].Acta Agrestia Sinica, 29(6): 1174-1182. doi: 10.11733/ j.issn.1007-0435.2021.06.006.
葉曉娜,陳壽明,楊鵬,閆芳芳,韓猛,姚峰,何文勤,李斌,安 德榮.2023.PGPR對(duì)土壤根際微生物菌群特性影響的 研究進(jìn)展及應(yīng)用[J].現(xiàn)代農(nóng)業(yè)研究,29(4):1-6. YE XN, CHEN SM, YANGP, YANFF,HAN M,YAO F, HE W Q, LI B, AN D R. 2023. Research progress on the effect of PGPR on soil rhizosphere microflora and its application[J]. Modern Agriculture Research, 29(4): 1-6. doi: 10.19704/j.cnki.xdnyyj.2023.04.008.
于文清,丁洪勝,閆鳳超,鄭桂萍,劉文志.2020.植物根際促 生菌促生及御病研究進(jìn)展[J].現(xiàn)代化農(nóng)業(yè)(8):53-56. YU W Q, DING H S, YAN F C, ZHENG G P,LIU W Z. 2020. Research progress of promoting growth and preventing diseases in plant growth promoting rhizobacteria [J]. Modernizing Agriculture, (8): 53-56. doi: 10.3969/j . issn.1001-0254.2020.08.027.
張亮,盛浩,袁紅,周清,張楊珠,李華興.2018.根際促生菌防 控土傳病害的機(jī)理與應(yīng)用進(jìn)展[J].土壤通報(bào),49(1): 220-225. ZHANG L, SHENG H, YUAN H, ZHOU Q, ZHANG Y Z, LI H X. 2018. Applications and mechanisms of plantgrowth-promoting rhizobacteria used for controling soilborne diseases: A review[J]. Chinese Journal of Soil Science,49(1): 220-225.doi: 10.19336/j.cnki.trtb.2018.01.30.
張瑞福.2020.根際微生物:農(nóng)業(yè)綠色發(fā)展中大有作為的植物 第二基因組[J].生物技術(shù)通報(bào),36(9):1-2. ZHANG R F. 2020. Rhizosphere microorganism: The second genome of plants with great potential in agricultural green development[J]. Biotechnology Bulletin, 36(9): 1-2.
張萬(wàn)通,李超群,于露,邵新慶.2021.植物根際促生菌菌肥在 高寒草甸替代化肥效應(yīng)研究[J].草地學(xué)報(bào),29(7):1423- 1429. ZHANG W T, LI C Q,YU L, SHAO X Q.2021. Study on the effect of the plant growth-promoting rhizobacteria biofertilizer instead of chemical fertilizer in alpine meadow [J].Acta Agrestia Sinica, 29(7): 1423-1429.doi: 10.11733/ j.issn.1007-0435.2021.07.006.
周益帆,白寅霜,岳童,李慶偉,黃艷娜,蔣瑋,何川,王金斌. 2023.植物根際促生菌促生特性研究進(jìn)展[J].微生物學(xué) 通報(bào),50(2):644-666. ZHOU YF, BAI Y S, YUE T, LI Q W, HUANG Y N, JIANG W, HE C, WANG J B. 2023.Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria[J]. Microbiology China, 50(2): 644- 666.doi: 10.13344/j.microbiol.china.220446.
AGUNBIADEVF,F(xiàn)ADIJIAE,AGBODJATONA,BABALOLA O O. 2024. Isolation and characterization of plantgrowth-promoting, drought-tolerant rhizobacteria for improved maize productivity[J].Plants, 13(10): 1298. doi: 10.3390/plants13101298.
BAHMANK,DEBASISM,KULDEEPJ,PRIYANKAA,ISLAM R S, EMMANUEL F A,MEHRDAD A, ANKITA P,ANSUMAN S, REZA S M, PERIYASAMY P, DAS M P K,SVETLANA S, TATIANA M, CHETAN K.2023. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants[J].Heliyon, 9(3): e13825.doi: 10.1016 / j.heliyon.2023.e13825.
BENAISSA A.2024. Rhizosphere: Role of bacteria to manage plant diseases and sustainable agriculture: A review[J]. Journal of Basic Microbiology, 64(3): 2300361. doi: 10.1002/jobm.202300361.
DUTTA P, MUTHUKRISHNAN G, KUTALINGAM GOPALASUBRAMAIAM S, DHARMARAJ R, KARUPPAIAH A,LOGANATHAN K, PERIYASAMY K, ARUMUGAM PILLAI M, UPAMANYA G K, BORUAH S, DEB L,KUMARI A,MAHANTA M, HEISNAM P, MISHRA A K. 2022. Plant growth-promoting rhizobacteria (PGPR) and its mechanisms against plant diseases for sustainable agriculture and better productivity[J]. Biocell, 46(8): 1843-1859.doi: 10.32604/biocell.2022.019291.
GOPALAN N S R, SHARMA R,MOHAPATRA S. 2022. Probing into the unique relationship between a soil bacterium, Pseudomonas putida AKMP7 and Arabidopsis thaliana: a case of \"conditional pathogenesis\"[J]. Plant Physiology and Biochemistry,183: 46-55. doi: 10.1016/j.plaphy.2022.05.003.
GUO D J, LI D P, SINGHR K, SINGH P, SHARMA A, VERMA K K, QIN Y, KHAN Q, LU Z, MALVIYA M K, SONG X P, XING Y X, LI Y R. 2021. Differential protein expression analysis of two sugarcane varieties in response to diazotrophic plant growth-promoting endophyte Enterobacter roggenkampii ED5[J].Frontiers in Plant Science, 12:727741. doi: 10.3389/fpls.2021.727741.
KARNWAL A,SHRIVASTAVA S,AL-TAWAHA A R M S, KUMAR G, KUMAR A, KUMAR A. 2024.PGPR-mediated breakthroughs in plant stress tolerance for sustainable farming[J]. Journal of Plant Growth Regulation, 43 (9):2955-2971.doi: 10.1007/s00344-023-11013-z.
KHOSO M A, WAGAN S,ALAM I, HUSSAIN A, ALI Q, SAHA S, POUDEL T R, MANGHWAR H, LIU F. 2024. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective[J]. Plant Stress, 11: 100341. doi: 10.1016/j. stress.2023.100341.
KLOEPPER J W and SCHROTH M N. 1981. Plant growthpromoting rhizobacteria and plant growth under gnotobiotic conditions[J]. Phytopathology, 71(6): 642. doi: 10.1094/ phyto-71-642.
MARTINS D S, REIS V M, SCHULTZ N, ALVES B J R, URQUIAGA S, PEREIRA W, SOUSA J S, BODDEY R M.2020.Both the contribution of soil nitrogen and of biological fixation to sugarcane can increase with the inoculation of diazotrophic bacteria[J]. Plant and Soil, 454(1): 155-169. doi: 10.1007/s11104-020-04621-1.
MORCILLO R J L,MANZANERA M. 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites, 11(6): 337. doi: 10.3390/metabo11060337.
NGO N P, YAMADA T, HIGUMA S, UENO N, SAITO K, KOJIMAK,MAEDAM,YAMAYA-ITOH, OHKAMAOHTSU N, KANEKATSU M, YOKOYAMA T. 2019. Spore inoculation of Bacillus pumilus TUAT1 strain, a biofertilizer microorganism, enhances seedling growth by promoting root system development in rice[J]. Soil Science and Plant Nutrition, 65(6): 598-604. doi: 10.1080/ 00380768.2019.1689795.
OUF S A,EL-AMRITI F A,EL-YASERGY K F,ABU-ELGHAIT M, EL-HUSSEIN A, MOHAMED M S M. 2024. Enhancing Zea mays L. seedling growth with HeNe laserirradiated Alcaligenes sp.E1 to mitigate salinity stress[J]. South African Journal of Botany, 173: 208-216. doi: 10.1016/j.sajb.2024.08.008.
SATID,PANDEV,PANDEYSC,SAMANTM.2023.Recent advances in PGPR and molecular mechanisms involved in drought stress resistance[J]. Journal of Soil Science and Plant Nutrition,23(1):106-124.doi:10.1007/ s42729-021-00724-5.
SEENIVASAGANR,BABALOLAOO.2021.Utilizationof microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product[J]. Biology, 10(11):1111.doi: 10.3390/biology10111111.
SHAHWARD,MUSHTAQZ,MUSHTAQH,ALQARAWIA A,PARKY,ALSHAHRANITS,F(xiàn)AIZANS.2023.Role of microbial inoculants as bio fertilizers for improving crop productivity: A review[J].Heliyon,9(6): el6134. doi:10.1016/j.heliyon.2023.e16134.
THWAINIQS,ABEDIA,ALRAWIAA.2021.Evaluationof the efficiency of date seeds as a carrier of PGPR inoculants under different storage temperature[J].IOP Conference Series: Earth and Environmental Science, 761(1): 012021.doi: 10.1088/1755-1315/761/1/012021.
WAHABA,BIBIH,BATOOLF,MUHAMMADM,ULLAH S, ZAMAN W, ABDI G. 2024. Plant growth-promoting rhizobacteria biochemical pathways and their environmental impact: a review of sustainable farming practices[J]. Plant Growth Regulation,104(2):637-662.doi: 10.1007/ s10725-024-01218-x.
(責(zé)任編輯 謝紅輝)