黎敏 龔堅(jiān) 吳偉偉 劉巧
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(81860848);江西省自然科學(xué)基金青年基金項(xiàng)目(20232BAB216108);江西省衛(wèi)生健康委科技計(jì)劃項(xiàng)目(202311334)
作者單位:1江西中醫(yī)藥大學(xué)(郵編330004);2江西省皮膚病??漆t(yī)院;3海南省第五人民醫(yī)院整形與皮膚外科
作者簡(jiǎn)介:黎敏(1996),女,博士在讀,主要從事中西醫(yī)結(jié)合診療皮膚病相關(guān)研究。E-mail:limin6816@yeah.net
△通信作者 E-mail:drliuqiao@163.com
摘要:銀屑病的發(fā)病機(jī)制復(fù)雜,探索其發(fā)病機(jī)制對(duì)于治療十分重要。核因子E2相關(guān)因子2(Nrf2)/血紅素加氧酶1(HO-1)通路對(duì)細(xì)胞具有保護(hù)作用,與氧化應(yīng)激、免疫、血管異常增生、表皮失衡以及細(xì)胞死亡等生理病理過(guò)程密切相關(guān)。目前已有研究證實(shí)Nrf2/HO-1通路對(duì)銀屑病皮損有抑制作用,可能通過(guò)多種途徑參與銀屑病發(fā)病。就Nrf2/HO-1通路在銀屑病中的作用機(jī)制及中醫(yī)藥通過(guò)干預(yù)該通路治療銀屑病的研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:NF-E2相關(guān)因子2;血紅素加氧酶-1;銀屑?。恢嗅t(yī)藥學(xué);氧化性應(yīng)激;細(xì)胞死亡
中圖分類號(hào):R758.63文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20231583
Research progress on the role of Nrf2/HO-1 pathway in psoriasis
LI Min1, GONG Jian2, WU Weiwei3, LIU Qiao1△
1 Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; 2 Jiangxi Provincial Clinical Research Center for Skin Diseases; 3 Department of Plastic and Dermatological Surgery, the Fifth Peoples Hospital of Hainan Province
△Corresponding Author E-mail: drliuqiao@163.com
Abstract: The pathogenesis of psoriasis is complex, so it is very important to explore the pathogenesis for the treatment of psoriasis. The Nrf2/HO-1 pathway has a protective effect on cells and is closely related to physiological and pathological aspects such as oxidative stress, immunity, abnormal proliferation of blood vessels, epidermal imbalance and cell death. Currently, some studies have confirmed that Nrf2/HO-1 pathway may have an inhibitory effect on psoriatic lesion, and it may be involved in psoriasis pathogenesis through multiple pathways. This paper reviews the mechanism of Nrf2/HO-1 pathway in psoriasis and the research progress in the treatment of psoriasis? through the intervention of traditional Chinese medicine.
Key words: NF-E2-related factor 2; heme oxygenase-1; psoriasis; traditional Chinese medicine and pharmacy; oxidative stress; cell death
銀屑病是一種慢性炎癥性皮膚病,臨床表現(xiàn)以鱗屑性紅斑為主,病因不明,發(fā)病機(jī)制復(fù)雜[1]。銀屑病是由角質(zhì)形成細(xì)胞(keratinocytes,KCs)異常增殖,樹突狀細(xì)胞(dendritic cells,DCs)、中性粒細(xì)胞、肥大細(xì)胞和T細(xì)胞之間的相互作用而誘導(dǎo)發(fā)生的,與白細(xì)胞介素(IL)-21、IL-22、IL-17、腫瘤壞死因子(TNF)-α和γ-干擾素(IFN-γ)等細(xì)胞因子相關(guān)[2]。核因子E2相關(guān)因子2(nuclear factor erythroid 2-related factor 2,Nrf2)是協(xié)調(diào)細(xì)胞中外源物質(zhì)和氧化應(yīng)激反應(yīng)的主要轉(zhuǎn)錄因子,激活后能與其他轉(zhuǎn)錄因子和輔助因子相互作用,調(diào)控其靶基因和下游蛋白,參與機(jī)體抗氧化、解毒、代謝和炎癥等過(guò)程[3]。Nrf2能通過(guò)調(diào)節(jié)其下游蛋白血紅素加氧酶1(heme oxygenase 1,HO-1)參與動(dòng)脈粥樣硬化[4]、帕金森?。?]、骨關(guān)節(jié)炎[6]和急性肺損傷[7]等的發(fā)病。此外,Nrf2/HO-1通路能夠通過(guò)調(diào)節(jié)機(jī)體氧化應(yīng)激和免疫功能,抑制機(jī)體的炎癥反應(yīng)、細(xì)胞異常增殖以及調(diào)控細(xì)胞死亡等過(guò)程,參與銀屑病的發(fā)病[8]。本文對(duì)Nrf2/HO-1通路在銀屑病中的潛在作用以及中醫(yī)藥通過(guò)干預(yù)該通路治療銀屑病的研究進(jìn)展進(jìn)行簡(jiǎn)要綜述,以期為銀屑病的治療提出新思路。
1 Nrf2/HO-1通路概述
Nrf2屬堿性亮氨酸拉鏈(basic leucine zipper,bZIP)轉(zhuǎn)錄因子CNC亞家族。在正常生理狀態(tài)下,Nrf2通過(guò)與Kelch樣ech相關(guān)蛋白1(Kelch-like ECH-associated protein 1,Keap1)結(jié)合在細(xì)胞質(zhì)內(nèi)保持低活性狀態(tài),當(dāng)機(jī)體暴露于親電子物質(zhì)、活性氧(ROS)或其他活性物質(zhì)時(shí),Nrf2發(fā)生磷酸化并與Keap1解離,同時(shí)進(jìn)入細(xì)胞核與小肌肉筋膜纖維肉瘤蛋白(small musculoaponeurotic fibrosarcoma proteins,sMAF)形成異二聚體,隨后與抗氧化反應(yīng)元件(antioxidant response elements,ARE)序列結(jié)合,誘導(dǎo)HO-1、磷酸酰胺腺嘌呤二核苷酸醌氧化還原酶-1(NADPH quinone oxidoreductase 1,NQO1)等下游蛋白的表達(dá)[3,9-10]。研究發(fā)現(xiàn),Nrf2能夠參與機(jī)體的蛋白酶體合成、細(xì)胞自噬、細(xì)胞凋亡、氧化還原、血紅素代謝和鐵穩(wěn)態(tài)等病理生理過(guò)程,并調(diào)控相關(guān)轉(zhuǎn)錄因子以及DNA修復(fù)[11-12]。Nrf2依賴性細(xì)胞反應(yīng)的主要效應(yīng)因子HO-1是血紅素加氧酶的亞型之一,是血紅素降解為游離鐵、一氧化碳(CO)和膽綠素的限速酶[13]。在HO-1參與血紅素降解的過(guò)程中,膽綠素還原產(chǎn)生的膽紅素能夠調(diào)節(jié)炎癥反應(yīng)、免疫功能和內(nèi)皮細(xì)胞活性;CO能夠參與血管發(fā)育和血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的合成,促進(jìn)內(nèi)皮細(xì)胞增殖,還能作用于T細(xì)胞和抗原提呈細(xì)胞以減輕炎癥[14-15]。同時(shí),HO-1及其代謝產(chǎn)物能夠參與機(jī)體的氧化還原、細(xì)胞凋亡和炎癥反應(yīng)等病理生理過(guò)程。綜上,Nrf2/HO-1通路是在機(jī)體應(yīng)激條件下通過(guò)Nrf2誘導(dǎo)HO-1及其代謝產(chǎn)物表達(dá),從而發(fā)揮細(xì)胞保護(hù)作用的重要通路,在抗氧化、抗炎、抗凋亡和調(diào)節(jié)免疫方面均發(fā)揮重要的作用[16-17],可參與機(jī)體某些病理生理過(guò)程,且與許多疾病密切相關(guān)。該通路在銀屑病中的作用機(jī)制見圖1。
2 Nrf2/HO-1通路在銀屑病中的作用
2.1 抑制氧化應(yīng)激 銀屑病的發(fā)病與氧化應(yīng)激密切相關(guān),其發(fā)病受到內(nèi)源性和外源性因素的影響,中性粒細(xì)胞增加是銀屑病的特征性表現(xiàn),中性粒細(xì)胞的長(zhǎng)期聚集可引起周圍組織損傷,此時(shí)機(jī)體出現(xiàn)的全身炎癥反應(yīng)會(huì)提高機(jī)體的氧化活性,破壞氧化還原穩(wěn)態(tài),導(dǎo)致氧化應(yīng)激[18-20]。目前,IL-17和IL-23已被證明是銀屑病的強(qiáng)相關(guān)因子[1]。Medovic等[20]研究發(fā)現(xiàn)氧化應(yīng)激在輔助性T(T helper,Th)17細(xì)胞相關(guān)銀屑病樣皮膚炎癥的IL-23/IL-17軸中起著至關(guān)重要的作用。有研究發(fā)現(xiàn),尋常型銀屑病出現(xiàn)的氧化應(yīng)激狀態(tài)與Nrf2和HO-1水平升高相關(guān)[18]。在動(dòng)物實(shí)驗(yàn)中,間充質(zhì)干細(xì)胞來(lái)源的外泌體(MSC-Exo)能夠通過(guò)調(diào)節(jié)Nrf2/HO-1軸降低過(guò)氧化氫(H2O2)刺激的KCs和紫外線照射的小鼠皮膚中ROS的產(chǎn)生,減輕炎癥和氧化應(yīng)激,改善氧化應(yīng)激誘導(dǎo)的皮膚損傷[21]。由此推測(cè),在銀屑病中Nrf2/HO-1通路能夠作用于氧化損傷的KCs和過(guò)量的ROS來(lái)抑制氧化應(yīng)激。此外,Sangaraju等[22]發(fā)現(xiàn)在咪喹莫特誘導(dǎo)的銀屑病小鼠模型中利用高良姜能夠上調(diào)HO-1的表達(dá),增強(qiáng)Nrf2的核轉(zhuǎn)位,改善銀屑病皮損,提示高良姜能夠通過(guò)Nrf2/HO-1通路促進(jìn)抗氧化酶的防御系統(tǒng)來(lái)改善咪喹莫特誘導(dǎo)的銀屑病。
2.2 調(diào)節(jié)免疫 銀屑病是由T細(xì)胞介導(dǎo)的炎癥性免疫性疾病,包括淋巴細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞等在內(nèi)的多種免疫細(xì)胞均參與其發(fā)?。?,23]。目前研究發(fā)現(xiàn),HO-1不僅可以調(diào)節(jié)ROS的產(chǎn)生,還可以通過(guò)極化巨噬細(xì)胞中具有抗炎作用的M2表型,調(diào)節(jié)IL-1β、TNF-α和IL-6等炎性因子,發(fā)揮細(xì)胞保護(hù)作用[24]。Rajendiran等[25]研究發(fā)現(xiàn),Nrf2能夠激活CD4+ T細(xì)胞,減少細(xì)胞中IFN-γ的分泌。Van Nguyen等[26]研究發(fā)現(xiàn),通過(guò)激活Nrf2/HO-1信號(hào)通路能夠減少促炎細(xì)胞因子TNF-α、IL-1β、IL-6、IL-8的分泌。由此可知,Nrf2和HO-1能夠調(diào)節(jié)機(jī)體免疫,調(diào)控部分炎性因子的釋放。在銀屑病中,1型免疫與3型免疫可以共同發(fā)生,其中3型免疫主要由CD8+細(xì)胞毒性T(CD8+ cytotoxic T,TC)17細(xì)胞和Th17細(xì)胞介導(dǎo),主要產(chǎn)生IL-17和IL-22,以保護(hù)皮膚免受細(xì)胞外細(xì)菌和真菌的侵襲[27]。Ogawa等[28]研究發(fā)現(xiàn),Nrf2能通過(guò)抑制IL-1β調(diào)控3型免疫反應(yīng)。另一項(xiàng)研究發(fā)現(xiàn)激活Nrf2通路能促進(jìn)Nrf2和HO-1的核內(nèi)轉(zhuǎn)移,從而在一定程度上抑制IL-1β誘導(dǎo)的炎癥反應(yīng)[29]。此外,Chen等[30]發(fā)現(xiàn)Nrf2/HO-1通路能夠逆轉(zhuǎn)Th17細(xì)胞向Treg細(xì)胞的分化,從而抑制炎性細(xì)胞浸潤(rùn)和炎性因子的產(chǎn)生。
2.3 抑制血管生成 血管異常增生與銀屑病發(fā)病密切相關(guān),真皮血管擴(kuò)張突出是銀屑病組織病理特征之一[31]。朱玉婷等[32]研究發(fā)現(xiàn),川芎嗪能夠通過(guò)下調(diào)銀屑病小鼠皮損組織中TNF-α、IL-17和VEGF的表達(dá)水平,改善小鼠銀屑病樣皮損的炎癥表現(xiàn)。多項(xiàng)研究發(fā)現(xiàn)Nrf2/HO-1軸能夠通過(guò)靶向VEGF,調(diào)控機(jī)體的血管異常增生[16,33]。此外,新證據(jù)表明皮膚血管內(nèi)皮細(xì)胞(vascular endothelial cells,VECs)通過(guò)調(diào)節(jié)炎性細(xì)胞浸潤(rùn)參與銀屑病的發(fā)生發(fā)展[34]。VECs中的芳香族碳?xì)涫荏w(AHR)能夠通過(guò)調(diào)節(jié)中性粒細(xì)胞募集參與銀屑病的發(fā)病,然而進(jìn)一步研究發(fā)現(xiàn)AHR的配體能夠激活Nrf2的轉(zhuǎn)錄因子,上調(diào)HO-1和NQO1等多種抗氧化酶的基因表達(dá)來(lái)發(fā)揮細(xì)胞保護(hù)作用[34-35]。可見Nrf2、HO-1與導(dǎo)致銀屑病血管擴(kuò)張和增殖的因素密切相關(guān),推測(cè)Nrf2/HO-1通路能調(diào)節(jié)VECs和KCs中的生長(zhǎng)因子、細(xì)胞因子和轉(zhuǎn)錄因子,抑制血管異常增生和炎癥反應(yīng),從而對(duì)銀屑病皮損起到改善作用。
2.4 維持表皮平衡 表皮增殖和失衡與銀屑病關(guān)系密切,也是銀屑病組織病理的典型特征之一。表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)與銀屑病發(fā)病密切相關(guān)。一方面,EGFR活化能介導(dǎo)KCs增殖,參與銀屑病中的表皮棘層增生[36];另一方面,EGFR是參與銀屑病表皮平衡的主要因素。有學(xué)者發(fā)現(xiàn)非典型轉(zhuǎn)錄因子IκBζ能通過(guò)影響IL-17介導(dǎo)的Th17細(xì)胞的發(fā)育參與銀屑病的發(fā)?。?7]。此外,IκBζ的表達(dá)受轉(zhuǎn)錄因子Nrf2的調(diào)控[38]。EGFR配體可通過(guò)促進(jìn)KCs中IκBζ和B-細(xì)胞淋巴瘤因子3(Bcl-3)的表達(dá),增強(qiáng)局部銀屑病標(biāo)志性基因的生成,從而參與銀屑病的進(jìn)展[39]。此外,Kim等[40]通過(guò)沉默EGFR基因表達(dá),證實(shí)了人參皂苷對(duì)HO-1的作用是EGFR介導(dǎo)的。
2.5 調(diào)控細(xì)胞死亡 近年來(lái),壞死性凋亡、細(xì)胞焦亡和鐵死亡等調(diào)節(jié)性細(xì)胞死亡在銀屑病中的研究日漸增多。Duan等[41]通過(guò)使用壞死性凋亡相關(guān)的相互作用蛋白激酶(RIPK)-1抑制劑(R-7-Cl-O-Necrostatin-1,Nec-1s)和混交激酶域蛋白(MLKL)抑制劑(MLKL-inhibitor necrosulfonamide,NSA)有效地阻斷咪喹莫特誘導(dǎo)的銀屑病炎癥反應(yīng),并顯著降低IL-1β、IL-6、IL-17A等炎性因子的產(chǎn)生。Zhao等[42]研究發(fā)現(xiàn)激活Nrf2/HO-1通路能夠抑制小膠質(zhì)細(xì)胞的氧化應(yīng)激和壞死性凋亡水平。另外,Deng等[43]研究發(fā)現(xiàn)環(huán)黃芪醇能通過(guò)抑制核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(NLRP3)介導(dǎo)的細(xì)胞焦亡,調(diào)節(jié)巨噬細(xì)胞功能,從而改善銀屑病小鼠的皮膚炎癥。此外,Shou等[44]發(fā)現(xiàn)KCs中TNF-α、IL-6、IL-1α、IL-1β、IL-17、IL-22和IL-23的表達(dá)在鐵死亡激動(dòng)劑(erastin)刺激后顯著增加,而在鐵死亡抑制劑(Fer-1)處理后減少,且在進(jìn)一步實(shí)驗(yàn)中發(fā)現(xiàn)Fer-1減輕了銀屑病小鼠的皮損。Dong等[45]研究發(fā)現(xiàn)Nrf2可通過(guò)調(diào)控溶質(zhì)載體家族7成員11(solute carrier family 7 member 11,SLC7A11)和HO-1抑制鐵死亡。
3 中藥干預(yù)Nrf2/HO-1通路在銀屑病中的研究
近年來(lái),臨床上中醫(yī)藥治療銀屑病取得了一定的成效。一些中藥的抗氧化、抗炎和調(diào)節(jié)免疫等特性對(duì)治療銀屑病具有一定療效,但其作用靶點(diǎn)尚不清楚?,F(xiàn)嘗試從Nrf2/HO-1通路出發(fā),解釋部分中藥及其有效成分治療銀屑病的潛在作用靶點(diǎn)。
3.1 高良姜素 高良姜具有抗凝血、改善微循環(huán)、抗氧化、抗菌和抗炎等作用,其主要成分是高良姜素[46]。目前研究發(fā)現(xiàn)高良姜素能激活Nrf2-ARE信號(hào),拮抗藍(lán)光誘導(dǎo)的KCs損傷和凋亡,進(jìn)而發(fā)揮抗氧化作用[47-48]。此外,有研究表明高良姜能通過(guò)調(diào)控Nrf2/HO-1通路上調(diào)銀屑病相關(guān)的抗氧化標(biāo)志物,從而減輕咪喹莫特誘導(dǎo)的銀屑?。?2]。
3.2 沒食子酸 五倍子和山茱萸在皮膚科中運(yùn)用廣泛,二者有效成分中均有沒食子酸,該成分具有抗氧化[49]、抗炎[49]、抗微生物[50]等作用。張金衛(wèi)[51]研究發(fā)現(xiàn)沒食子酸能通過(guò)激活Nrf2抑制角蛋白6、16、17的表達(dá)來(lái)治療銀屑病。
3.3 款冬花酮 款冬花具有抗炎、神經(jīng)保護(hù)和抗氧化作用,其有效成分為款冬花酮[52]。Lee等[53]研究發(fā)現(xiàn)款冬花酮可通過(guò)激活Nrf2進(jìn)而抑制核因子(NF)-κB和轉(zhuǎn)錄活化因子3(STAT3),同時(shí)款冬花酮能降低咪喹莫特誘導(dǎo)的銀屑病相關(guān)炎癥細(xì)胞因子和抗菌肽的mRNA水平,并有效減少表皮的過(guò)度增殖。
3.4 黃芩提取物 黃芩是治療銀屑病的常用藥物,其成分有黃芩苷、黃芩素等。Ibrahim等[54]研究發(fā)現(xiàn)黃芩苷能誘導(dǎo)Nrf2、HO-1和VEGF表達(dá)下降,推測(cè)其可能是通過(guò)調(diào)控銀屑病的氧化應(yīng)激和血管生成從而改善銀屑病樣皮損。Wang等[55]發(fā)現(xiàn)黃芩提取物能激活Nrf2/HO-1信號(hào)級(jí)聯(lián)反應(yīng),激活其抗氧化和細(xì)胞保護(hù)能力,阻止KCs的增殖,從而改善銀屑病患者的皮損。
3.5 靛玉紅和芍藥苷 青黛和赤芍是治療銀屑病常用的清熱涼血藥物,二者的有效成分為靛玉紅和芍藥苷。榮光莉[56]研究發(fā)現(xiàn)靛玉紅和芍藥苷均能通過(guò)抑制Nrf2、HO-1和IL-6的表達(dá),減輕銀屑病小鼠的皮損。
3.6 白藜蘆醇 虎杖、覆盆子、大黃中的有效成分白藜蘆醇已被證明具有抗癌、抗微生物和抗炎的作用[57]。有研究發(fā)現(xiàn)白藜蘆醇可通過(guò)調(diào)節(jié)HO-1的表達(dá),保護(hù)H2O2誘導(dǎo)的HaCaT細(xì)胞免受氧化損傷[58]。
4 小結(jié)
綜上,Nrf2/HO-1通路在銀屑病的發(fā)病機(jī)制中發(fā)揮了重要作用,該通路能夠通過(guò)抑制氧化應(yīng)激、調(diào)節(jié)免疫、抑制血管生成、維持表皮平衡以及調(diào)控細(xì)胞死亡等參與銀屑病的發(fā)病進(jìn)程;同時(shí),部分中藥也能通過(guò)介導(dǎo)Nrf2/HO-1通路作用于銀屑病。但是,Nrf2/HO-1通路對(duì)銀屑病具體的作用機(jī)制以及在各種銀屑病相關(guān)治療方法中的干預(yù)作用還需深入探索。此外,目前Nrf2/HO-1通路在銀屑病中的研究多局限于基礎(chǔ)研究階段,仍需開展更多相關(guān)臨床研究為銀屑病的精準(zhǔn)治療提供參考依據(jù)。
參考文獻(xiàn)
[1] GRIFFITHS C E M,ARMSTRONG A W,GUDJONSSON J E,et al. Psoriasis[J]. Lancet,2021,397(10281):1301-1315. doi:10.1016/S0140-6736(20)32549-6.
[2] RENDON A,SCHAKEL K. Psoriasis pathogenesis and treatment[J]. Int J Mol Sci,2019,20(6):1475. doi:10.3390/ijms20061475.
[3] HE F,RU X,WEN T. NRF2,a transcription factor for stress response and beyond[J]. Int J Mol Sci,2020,21(13):4777. doi:10.3390/ijms21134777.
[4] ZHANG Q,LIU J,DUAN H,et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res,2021,34:43-63. doi:10.1016/j.jare.2021.06.023.
[5] WANG Y,GAO L,CHEN J,et al. Pharmacological modulation of Nrf2/HO-1 signaling pathway as a therapeutic target of Parkinsons disease[J]. Front Pharmacol,2021,12:757161. doi:10.3389/fphar.2021.757161.
[6] CHEN Z,ZHONG H,WEI J,et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis[J]. Arthritis Res Ther,2019,21(1):300. doi:10.1186/s13075-019-2085-6.
[7] LI J,LU K,SUN F,et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med,2021,19(1):96. doi:10.1186/s12967-021-02745-1.
[8] ZHANG A,SUZUKI T,ADACHI S,et al. Distinct regulations of HO-1 gene expression for stress response and substrate induction[J]. Mol Cell Biol,2021,41(11):e0023621. doi:10.1128/MCB.00236-21.
[9] MANSOURI A,REINER Z,RUSCICA M,et al. Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases[J]. J Clin Med,2022,11(5):1313. doi:10.3390/jcm11051313.
[10] 田亞靜,楊雪,汪靜,等. 芒柄花素對(duì)妊娠期糖尿病大鼠氧化應(yīng)激損傷的影響[J]. 天津醫(yī)藥,2023,51(7):734-739. TIAN Y J,YANG X,WANG J,et al. Influence of formononetin on oxidative stress injury in gestational diabetes mellitus rats[J]. Tianjin Med J,2023,51(7):734-739. doi:10.11958/20221450.
[11] DODSON M,DE LA VEGA M R,CHOLANIANS A B,et al. Modulating NRF2 in disease:timing is everything[J]. Annu Rev Pharmacol Toxicol,2019,59(2019):555-575. doi:10.1146/annurev-pharmtox-010818-021856.
[12] SCHMIDLIN C J,SHAKYA A,DODSON M,et al. The intricacies of NRF2 regulation in cancer[J]. Semin Cancer Biol,2021,76:110-119. doi:10.1016/j.semcancer.2021.05.016.
[13] FACCHINETTI M M. Heme-oxygenase-1[J]. Antioxid redox signal,2020,32(17):1239-1242. doi:10.1089/ars.2020.8065.
[14] NITTI M,IVALDO C,TRAVERSO N,et al. Clinical significance of heme oxygenase 1 in tumor progression[J]. Antioxidants(Basel),2021,10(5):789. doi:10.3390/antiox10050789.
[15] CHEN S,WANG X,NISAR M F,et al. Heme oxygenases: cellular multifunctional and protective molecules against UV-Induced oxidative stress[J]. Oxid Med Cell Longev,2019,2019:5416728. doi:10.1155/2019/5416728.
[16] HUANG Y,YANG Y,XU Y,et al. Nrf2/HO-1 axis regulates the angiogenesis of gastric cancer via targeting VEGF[J]. Cancer Manag Res,2021,13:3155-3169. doi:10.2147/CMAR.S292461.
[17] LI B,NASSER M I,MASOOD M,et al. Efficiency of traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway[J]. Biomed Pharmacother,2020,26:110074. doi:10.1016/j.biopha.2020.110074.
[18] AMBROZEWICZ E,WOJCIK P,WRONSKI A,et al. Pathophysiological alterations of redox signaling and endocannabinoid system in granulocytes and plasma of psoriatic patients[J]. Cells,2018,7(10):159. doi:10.3390/cells7100159.
[19] JAGANJAC M,CIPAK A,SCHAUR R J,et al. Pathophysiology of neutrophil-mediated extracellular redox reactions[J]. Front Biosci(Landmark Ed),2016,21(4):839-855. doi:10.2741/4423.
[20] MEDOVIC M V,JAKOVLJEVIC V L,ZIVKOVIC V I,et al. Psoriasis between autoimmunity and oxidative stress:changes induced by different therapeutic approaches[J]. Oxid Med Cell Longev,2022,2022:2249834. doi:10.1155/2022/2249834.
[21] WANG T,JIAN Z,BASKYS A,et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system[J]. Biomaterials,2020,257:120264. doi:10.1016/j.biomaterials.2020.120264.
[22] SANGARAJU R,ALAVALA S,NALBAN N,et al. Galangin ameliorates imiquimod-induced psoriasis-like skin inflammation in BALB/c mice via down regulating NF-κB and activation of Nrf2 signaling pathways[J]. Int Immunopharmacol,2021,96:107754. doi:10.1016/j.intimp.2021.107754.
[23] GRAN F,KERSTAN A,SERFLING E,et al. Current developments in the immunology of psoriasis[J]. Yale J Biol Med,2020,93(1):97-110.
[24] SHEN K,JIA Y,WANG X,et al. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages[J]. Free Radic Biol Med,2021,165:54-66. doi:10.1016/j.freeradbiomed.2021.01.023.
[25] RAJENDIRAN A,SUBRAMANYAM S H,KLEMM P,et al. NRF2/itaconate axis regulates metabolism and inflammatory properties of T cells in children with JIA[J]. Antioxidants(Basel),2022,11(12):2426. doi:10.3390/antiox11122426.
[26] VAN NGUYEN T,PIAO C H,F(xiàn)AN Y J,et al. Anti-allergic rhinitis activity of alpha-lipoic acid via balancing Th17/Treg expression and enhancing Nrf2/HO-1 pathway signaling[J]. Sci Rep,2020,10(1):12528. doi:10.1038/s41598-020-69234-1.
[27] ANNUNZIATO F,ROMAGNANI C,ROMAGNANI S. The 3 major types of innate and adaptive cell-mediated effector immunity[J]. J Allergy Clin Immunol,2015,135(3):626-635. doi:10.1016/j.jaci.2014.11.001.
[28] OGAWA T,ISHITSUKA Y. The role of KEAP1-NRF2 system in atopic dermatitis and psoriasis[J]. Antioxidants(Basel),2022,11(7):1397. doi:10.3390/antiox11071397.
[29] GUO Z,LIN J,SUN K,et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway[J]. Front Pharmacol,2022,13:791376. doi:10.3389/fphar.2022.791376.
[30] CHEN X,SU W,WAN T,et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway[J]. Biochem Pharmacol,2017,142:111-119. doi:10.1016/j.bcp.2017.06.136.
[31] TOKUYAMA M,MABUCHI T. New treatment addressing the pathogenesis of psoriasis[J]. Int J Mol Sci,2020,21(20):7488. doi:10.3390/ijms21207488.
[32] 朱玉婷,晏文,應(yīng)理晟,等. 川芎嗪對(duì)銀屑病小鼠皮損內(nèi)TNF-α、IL-17、VEGF表達(dá)的影響[J]. 天津醫(yī)藥,2023,51(6):590-595. ZHU Y T,YAN W,YING L S,et al. Effects of tetramethylpyrazine on expression levels of TNF-α,IL-17 and VEGF in skin lesions of psoriatic mice[J]. Tianjin Med J,2023,51(6):590-595. doi:10.11958/20221433.
[33] HUANG Z,NG T K,CHEN W,et al. Nattokinase attenuates retinal neovascularization via modulation of Nrf2/HO-1 and glial activation[J]. Invest Ophthalmol Vis Sci,2021,62(6):25. doi:10.1167/iovs.62.6.25.
[34] ZHU Z,CHEN J,LIN Y,et al. Aryl hydrocarbon receptor in cutaneous vascular endothelial cells restricts psoriasis development by negatively regulating neutrophil recruitment[J]. J Invest Dermatol,2020,140(6):1233-1243. doi:10.1016/j.jid.2019.11.022.
[35] FURUE M,HASHIMOTO-HACHIYA A,TSUJI G. Aryl hydrocarbon receptor in atopic dermatitis and psoriasis[J]. Int J Mol Sci,2019,20(21):5424. doi:10.3390/ijms20215424.
[36] KELEL M,YANG R B,TSAI T F,et al. FUT8 remodeling of EGFR regulates epidermal keratinocyte proliferation during psoriasis development[J]. J Invest Dermatol,2021,141(3):512-522. doi:10.1016/j.jid.2020.07.030.
[37] GAUTAM P,MAENNER S,CAILOTTO F,et al. Emerging role of IκBζ in inflammation: emphasis on psoriasis[J]. Clin Transl Med,2022,12(10):e1032. doi:10.1002/ctm2.1032.
[38] ZHANG Y,TANG J,ZHOU Y,et al. Short-term exposure to dimethyl fumarate (DMF)inhibits LPS-induced IκBζ expression in macrophages[J]. Front Pharmacol,2023,14:1114897. doi:10.3389/fphar.2023.1114897.
[39] DAI X,MURAKAMI M,SHIRAISHI K,et al. EGFR ligands synergistically increase IL-17A-induced expression of psoriasis signature genes in human keratinocytes via IκBζ and Bcl3[J]. Eur J Immunol,2022,52(6):994-1005. doi:10.1002/eji.202149706.
[40] KIM E N,KAYGUSUZ O,LEE H S,et al. Simultaneous quantitative analysis of ginsenosides isolated from the fruit of panax ginseng C.A. meyer and regulation of HO-1 expression through EGFR signaling has anti-inflammatory and osteogenic induction effects in HPDL cells[J]. Molecules,2021,26(7):2092. doi:10.3390/molecules26072092.
[41] DUAN X,LIU X,LIU N,et al. Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation[J]. Cell Death Dis,2020,11(2):134. doi:10.1038/s41419-020-2328-0.
[42] ZHAO P,WEI Y,SUN G,et al. Fetuin-A alleviates neuroinflammation against traumatic brain injury-induced microglial necroptosis by regulating Nrf-2/HO-1 pathway[J]. J Neuroinflammation,2022,19(1):269. doi:10.1186/s12974-022-02633-5.
[43] DENG G,CHEN W,WANG P,et al. Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice[J]. Int Immunopharmacol,2019,74:105682. doi:10.1016/j.intimp.2019.105682.
[44] SHOU Y,YANG L,YANG Y,et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation[J]. Cell Death Dis,2021,12(11):1009. doi:10.1038/s41419-021-04284-5.
[45] DONG H,QIANG Z,CHAI D,et al. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1[J]. Aging,2020,12(13):12943-12959. doi:10.18632/aging.103378.
[46] 穆利萍,王吉,邱成省,等. 高良姜中具有神經(jīng)保護(hù)作用的化學(xué)成分研究[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2023,38(4):627-635. MU L P,WANG J,QIU J C,et al. Study on chemical constituents with neuroprotective effects from alpinia officinarum hance[J]. Journal of Yunnan Agricultural University(Natural Science),2023,38(4):627-635. doi:10.12101/j.issn.1004-390X(n).202211027.
[47]PARK J Y,PARK S H,OH S W,et al. Yellow chaste weed and its components,apigenin and galangin,affect proliferation and oxidative stress in blue light-irradiated HaCaT cells[J]. Nutrients,2022,14(6):1217. doi:10.3390/nu14061217.
[48] LEE J J,NG S C,HSU J Y,et al. Galangin reverses H2O2-induced dermal fibroblast senescence via SIRT1-PGC-1α/Nrf2 signaling[J]. Int J Mol Sci,2022,23(3):1387. doi:10.3390/ijms23031387.
[49] 張婷,姜?;郏T石卜,等. 山茱萸果核不同產(chǎn)地間的抗氧化活性研究[J]. 陜西中醫(yī)藥大學(xué)學(xué)報(bào),2023,46(2):23-26. ZHANG T,JIANG H H,F(xiàn)ENG S B,et al. Study on antioxidant activity of fructus corni fruit core from different places of origin[J]. Journal of Shaanxi University of Chinese Medicine,2023,46(2):23-26. doi:10.13424/j.cnki.jsctcm.2023.02.004.
[50] 朱君,張?chǎng)螑?,崔敏,? 4種中草藥提取液的工藝優(yōu)化及抗菌效果對(duì)比研究[J]. 常熟理工學(xué)院學(xué)報(bào)(自然科學(xué)),2023,37(2):65-71. ZHU J,ZHANG X Y,CUI M,et al. Comparative study on process optimization and antibacterial effects of 4 kinds of Chinese herbal medicine extracts[J]. Journal of Changshu Institute of Technology(Natural Sciences),2023,37(2):65-71. doi:10.16101/j.cnki.cn32-1749/z.2023.02.011.
[51] 張金衛(wèi). 沒食子酸通過(guò)Nrf2調(diào)控角蛋白6、16、17治療銀屑病的研究[D]. 廣州:廣州中醫(yī)藥大學(xué),2019. ZHANG J W. Gallic acid inhibites the expressioin of keratin 6,16,17 throught Nrf2 in psoriasis-like disease[D]. Guangzhou:Guangzhou University of Chinese Medicine,2019.
[52] CHEN S,DONG L,QUAN H,et al. A review of the ethnobotanical value,phytochemistry,pharmacology,toxicity and quality control of tussilago farfara L.(coltsfoot)[J]. J Ethnopharmacol,2021,267:113478. doi:10.1016/j.jep.2020.113478.
[53] LEE J,SONG K,HIEBERT P,et al. Tussilagonone ameliorates psoriatic features in keratinocytes and imiquimod-induced psoriasis-like lesions in mice via NRF2 activation[J]. J Invest Dermatol,2020,140(6):1223-1232. doi:10.1016/j.jid.2019.12.008.
[54] IBRAHIM A,ABDEL G S,F(xiàn)AWZI K M,et al. Baicalin lipid nanocapsules for treatment of glioma:characterization,mechanistic cytotoxicity,and pharmacokinetic evaluation[J]. Expert Opin Drug Deliv,2022,19(11):1549-1560. doi:10.1080/17425247.2022.2139370.
[55] WANG P W,LIN T Y,YANG P M,et al. Therapeutic efficacy of scutellaria baicalensis georgi against psoriasis-like lesions via regulating the responses of keratinocyte and macrophage[J]. Biomed Pharmacothe,2022,155:113798. doi:10.1016/j.biopha.2022.113798.
[56] 榮光莉. AZT、芍藥苷和靛玉紅對(duì)小鼠銀屑病模型的作用及機(jī)制比較[D]. 廣州:廣州中醫(yī)藥大學(xué),2019. RONG G L. Comparison of the effects and mechanisms of AZT, paeoniflorin and indirubin on psoriasis mouse model[D]. Guangzhou:Guangzhou University of Chinese Medicine,2019.
[57] CHHABRA G,SINGH C K,AMIRI D,et al. Recent advancements on immunomodulatory mechanisms of resveratrol in tumor microenvironment[J]. Molecules,2021,26(5):1343. doi:10.3390/molecules26051343.
[58] 高進(jìn)濤,何榮安,莫文飛,等. 白藜蘆醇對(duì)H2O2誘導(dǎo)的HaCaT細(xì)胞氧化應(yīng)激損傷的保護(hù)作用[J]. 長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,16(5):88-92. GAO J T,HE R A,MO W F,et al. Resveratrol on H2O2-induced oxidative stress in HaCaT cells damage protection[J]. Journal of Yangtze University(Natural Science Edition),2019,16(5):88-92. doi:10.16772/j.cnki.1673-1409.2019.05.018.
(2023-10-27收稿 2023-11-16修回)
(本文編輯 李鵬)