作者單位:530000" 廣西省南寧市,廣西中醫(yī)藥大學附屬瑞康醫(yī)院胃腸外科
*通訊作者
【摘要】" 胃腸道腫瘤(如結直腸癌、胃癌)多發(fā)于中老年人群,不僅對患者的生活質量產(chǎn)生巨大影響,還給患者及其家屬帶來巨大的心理及經(jīng)濟負擔。目前其治療手段主要以手術和放化療為主,但仍存在復發(fā)的可能。雙硫死亡是一種全新的細胞程序性死亡方式,對胃腸道腫瘤的發(fā)生發(fā)展起關鍵作用,也為防治胃腸道腫瘤提供了新的契機。深入研究雙硫死亡與胃腸道腫瘤的關系,可為胃腸道腫瘤的治療提供新思路。
【關鍵詞】" 結直腸癌;胃癌;雙硫死亡
中圖分類號" R735.2" " 文獻標識碼" A" " 文章編號" 1671-0223(2024)08--03
Research progress of disulfide death in the gastrointestinal tract" Yan Kaiwen, Huang Lizhe. Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530000, China
【Abstract】" As a frequent disease in middle-aged and elderly people, gastrointestinal tumors(colorectal cancer and" gastric cancer) not only bring problems to patients, but also bring huge psychological and economic burdens to their families. At present, its treatment methods are mainly surgery and radiotherapy and chemotherapy, but there is still the possibility of recurrence. Disulfide death is a new pathway of programmed cell death, which plays a key role in the occurrence and development of gastrointestinal tumors and provides new opportunities for the prevention and treatment of gastrointestinal tumors. A further study of the relationship between disulfide death and gastrointestinal tumors could provide new ideas for the treatment of gastrointestinal tumors.
【Key words】" Colorectal cancer; Gastric cancer; Disulfide deaths
胃腸道腫瘤包括胃腺癌、結腸腺癌、直腸腺癌等。其中,結直腸癌是全球第三大常見癌癥,也是癌癥相關死亡的第四大原因[1-2],而胃癌是全球第五大常見癌癥,同時也是癌癥死亡的第三大原因[3]。近年來,我國胃腸道腫瘤的發(fā)病率逐年升高[4]。胃腸道腫瘤的發(fā)病大多與遺傳、不良的飲食習慣以及幽門螺桿菌感染有關[5]。最新研究表明,吸煙也是胃腸道腫瘤發(fā)生的危險因素之一[6]。目前,手術仍是胃腸道腫瘤的首選治療方法[7]。然而,高昂的費用和術后疼痛給胃腸道腫瘤患者帶來了巨大的負擔。此外,胃腸道腫瘤患者復發(fā)也較常見,因此,探索其他潛在的治療方案尤為必要。半胱氨酸是人體20種氨基酸中含硫氨基酸之一,是蛋白質功能(調節(jié)、催化或結合)位點內高度保守的殘基,因其獨特的化學性質賦予其特殊功能,如與高親和力金屬結合、形成二硫鍵的能力[8]。細胞代謝涉及一系列氧化還原反應,產(chǎn)生腫瘤生長所需的能量,細胞需要二硫鍵等多種含硫分子來促進這一過程。硫的代謝與惡性腫瘤密切相關[9]。近年關于雙硫死亡的報道逐漸增多,為癌癥治療提供了新的視角?,F(xiàn)就雙硫死亡在胃腸道腫瘤中的研究進展進行綜述。
1" 雙硫死亡的發(fā)現(xiàn)與產(chǎn)生機制
二硫鍵是兩個半胱氨酸分子相互反應的產(chǎn)物,它們通過充當亞基間和亞基內交聯(lián)來維持蛋白質的二級、三級和四級結構并保持蛋白質物理和化學穩(wěn)定性。細胞內的氧化應激會導致二硫鍵積累,從而破壞細胞穩(wěn)定性,因此,更好地了解二硫鍵積累導致細胞死亡的機制具有重要意義。Liu等[10]揭示了一種新型的程序性細胞死亡方式——雙硫死亡,它不同于先前報道的細胞死亡形式,如細胞凋亡、壞死性凋亡、焦亡、自噬、鐵死亡和銅死亡[11],與二硫鍵積累有關。在葡萄糖饑餓條件下,溶質載體家族7成員11高表達的細胞內還原型煙酰胺腺嘌呤二核苷酸會迅速耗竭,使胱氨酸等二硫化物異常積累,從而導致雙硫死亡。雙硫死亡是一種新型的細胞死亡形式,具有特定的潛在機制[10]。
雙硫死亡的激活有以下三個特征。①溶質載體家族7成員11高表達:溶質載體家族5成員6將細胞外半胱氨酸轉運至細胞內,并將細胞內谷氨酸轉運至細胞外,導致細胞外半胱氨酸的高攝取和細胞內半胱氨酸的過度積累,從而有助于細胞代謝中的二硫應激[12-13];②葡萄糖饑餓條件:雙硫死亡可以阻斷葡萄糖代謝,從而對磷酸戊糖途徑產(chǎn)生還原性煙酰胺腺嘌呤二核苷酸磷酸造成影響[14];③肌動蛋白細胞骨架蛋白之間形成異常的二硫鍵。當滿足所有這些條件時,會發(fā)生二硫化物的過度積累,導致細胞骨架肌動蛋白之間的二硫鍵和肌動蛋白收縮并造成質膜分離,最終導致細胞收縮和死亡[10]。
2" 雙硫死亡與胃腸道腫瘤
2.1" 雙硫死亡與結直腸癌
長鏈非編碼RNA(long non-coding RNA,lncRNA)是一組非蛋白編碼轉錄本的異質性,長度大于200個核苷酸[15-17]。LncRNA是參與基因表達、多種生理和病理過程的新興調節(jié)因子[18-20]。越來越多的證據(jù)表明,lncRNA作為癌基因或腫瘤抑制因子在癌癥的發(fā)生發(fā)展中發(fā)揮復雜而精確的調節(jié)作用[21-22]。Xue等[23]基于雙硫死亡構建結腸腺癌雙硫死亡相關lncRNA的預后模型,并篩選出4個雙硫死亡相關lncRNA基因,分別為ZEB1-AS1、SNHG16、ALMS1-IT1、SATB2-AS1。多項研究證明,ZEB1-AS1可調節(jié)結腸癌細胞的增殖、凋亡、遷移和耐藥性[24-25]。Christensen等[26]證明SNHG16在結腸癌中表達上調,受Wnt信號傳導調節(jié)。此外,ALMS1-IT1已被證實與結腸癌中的免疫感染和鐵死亡有關。因此,lncRNA可作為結腸癌預后的生物標志物[27-28]。此外,SATB2-AS1通過DNA去甲基化激活SATB2來抑制結腸癌轉移到SATB2啟動子區(qū)域。LncRNA SATB2-AS1通過調節(jié)SATB2抑制結直腸癌的腫瘤轉移,影響腫瘤免疫細胞微環(huán)境,因此,SATB2-AS1可作為結腸癌進展及輔助性T細胞1型細胞和免疫細胞密度的重要調節(jié)因子[29]。
2.2" 雙硫死亡與胃癌
Tian等[30]構建了雙硫死亡相關lncRNA的胃腺癌預后評分模型,基于LASSO、單變量和多元Cox回歸分析,識別出6個預后相關lncRNA,包括TNFRSF10A-AS1、LINC02829、LINC00460、AL139147.1、IGFL2-AS1、AC104123.1。Wang等[31]發(fā)現(xiàn)AL139147.1是胃癌預后生物標志物。據(jù)報道,IGFL2-AS1下調可以抑制胃癌細胞的增殖、遷移和侵襲,并且通過對IGFL2-AS1/miR-802/ARPP19軸的處理也可以抑制胃癌進展[32]。研究發(fā)現(xiàn),LINC00460過表達可以促進胃癌細胞增殖、遷移和侵襲[33]。Sun等[34]發(fā)現(xiàn),TNFRSF10A-AS1的致癌功能取決于其直接下游效應物髓磷脂零樣蛋白1。TNFRSF10A-AS1可直接與髓磷脂零樣蛋白1結合,從而促進胃癌細胞的增殖、遷移和侵襲。因此,TNFRSF10A-AS1在胃癌中起關鍵致癌作用,是胃癌患者的獨立預后因素。目前,關于AC104123.1和LINC02829的報道較少,這兩種lncRNA與胃癌的預后及其在胃癌中的潛在機制有待進一步探索。
3" 總結與展望
胃腸道腫瘤是臨床中常見的消化道腫瘤,其致病因素復雜多樣。目前其治療方法主要為手術+化療,但常有復發(fā)和轉移。隨著雙硫死亡的出現(xiàn),為胃腸道腫瘤的治療開擴了新領域,如p53、生長分化因子15等成為治療胃腸道腫瘤的新切入點。雙硫死亡的研究經(jīng)歷了從外在小分子到信號通路的探討再到基因靶點的研究,為研究者提供了一些科學理論支撐。但目前對于雙硫死亡治療胃腸道腫瘤研究欠完善,一些相關性研究尚處于動物實驗階段,缺乏臨床試驗的證實。因此,未來需要持續(xù)的研究為胃腸道腫瘤的治療提供可行的方法和更多的循證醫(yī)學依據(jù)。
4" 參考文獻
[1] Sung H,F(xiàn)erlay J,Siegel RL,et al.Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
[2] Miller KD,Ortiz AP,Pinheiro PS,et al.Cancer statistics for the US Hispanic/Latino population, 2021[J].CA Cancer J Clin,2021,71(6):466-487.
[3] Smyth EC,Nilsson M,Grabsch HI,et al.Gastric cancer[J].Lancet,2020,396(10251):635-648.
[4] Xia C,Dong X,Li H,et al.Cancer statistics in China and United States, 2022:Profiles, trends, and determinants[J].Chin Med J (Engl),2022,135(5):584-590.
[5] Thrift AP,Wenker TN,El-Serag HB.Global burden of gastric cancer:Epidemiological trends, risk factors, screening and prevention[J].Nat Rev Clin Oncol,2023,20(5):338-349.
[6] Popp S,Mang T,Scharitzer M.Influence of smoking on the gastrointestinal tract:Range of findings[J].Radiologie (Heidelb),2022,62(9):772-780.
[7] Mihmanli M,Ilhan E,Idiz UO,et al.Recent developments and innovations in gastric cancer[J].World J Gastroenterol,2016,22(17):4307-4320.
[8] Giles NM,Giles GI,Jacob C.Multiple roles of cysteine in biocatalysis[J].Biochem Biophys Res Commun,2003,300(1):1-4.
[9] Ward NP,DeNicola GM.Sulfur metabolism and its contribution to malignancy[J].Int Rev Cell Mol Biol,2019,347:39-103.
[10] Liu X,Nie L,Zhang Y,et al.Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis[J].Nat Cell Biol,2023,25(3):404-414.
[11] Tsvetkov P,Coy S,Petrova B,et al.Copper induces cell death by targeting lipoylated TCA cycle proteins[J].Science,2022,375(6586):1254-1261.
[12] Koppula P,Zhuang L,Gan B.Cystine transporter SLC7A11/xCT in cancer:Ferroptosis, nutrient dependency, and cancer therapy[J].Protein Cell,2021,12(8):599-620.
[13] Machesky LM.Deadly actin collapse by disulfidptosis[J].Nat Cell Biol,2023,25(3):375-376.
[14] Xia N,Guo X,Guo Q,et al.Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii[J].PLoS Pathog,2022,18(9):e1010864.
[15] Nair L,Chung H,Basu U.Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery[J].Nat Rev Mol Cell Biol,2020,21(3):123-136.
[16] Kopp F,Mendell JT.Functional classification and experimental dissection of long noncoding RNAs[J].Cell,2018,172(3):39-407.
[17] Berger AC,Korkut A,Kanchi RS,et al.A comprehensive pan-cancer molecular study of gynecologic and breast cancers[J].Cancer Cell,2018,33(4):690-705.e9.
[18] Ransohoff JD,Wei Y,Khavari PA.The functions and unique features of long intergenic non-coding RNA[J].Nat Rev Mol Cell Biol,2018,19(3):143-157.
[19] Li Y,Zhang J,Huo C,et al.Dynamic organization of lncRNA and circular RNA regulators collectively controlled cardiac differentiation in humans[J].EBioMedicine,2017,24:137-146.
[20] Li Y,Jiang T,Zhou W,et al.Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers[J].Nat Commun,2020,11(1):1000.
[21] Esposito R,Bosch N,Lanzos A,et al.Hacking the cancer genome:Profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening[J].Cancer Cell,2019,35(4):545-557.
[22] Kim J,Piao HL,Kim BJ,et al.Long noncoding RNA MALAT1 suppresses breast cancer metastasis[J].Nat Genet,2018,50(12):1705-1715.
[23] Xue W,Qiu K,Dong B,et al.Disulfidptosis-associated long non-coding RNA signature predicts the prognosis, tumor microenvironment, and immunotherapy and chemotherapy options in colon adenocarcinoma[J].Cancer Cell Int,2023,23(1):218.
[24] Jin Z,Chen B.LncRNA ZEB1-AS1 regulates colorectal cancer cells by MiR-205/YAP1 axis[J].Open Med (Wars),2020,15:175-184.
[25] Chen S,Shen X.Long noncoding RNAs:Functions and mechanisms in colon cancer[J].Mol Cancer,2020,19(1):167.
[26] Christensen LL,True K,Hamilton MP,et al.SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism[J].Mol Oncol,2016,10(8):1266-1282.
[27] Lin Y,Li Y,Chen Y,et al.LncRNA ALMS1-IT1 is a novel prognostic biomarker and correlated withimmune in ltrates in colon adenocarcinoma[J].Med (Baltim),2022,101(42):e31314.
[28] Li N,Shen J,Qiao X,et al.Long non-coding RNA signatures associated with ferroptosis predict prognosis in colorectal cancer[J].Int J Gen Med,2022,15:33-43.
[29] Xu M,Xu X,Pan B,et al.LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2[J].Mol Cancer,2019,18(1):135.
[30] Tian Y,Wang G,Li R,et al.A novel prognostic risk model construction and immune landscape analysis of gastric cancer based on disulfidptosis-related lncRNAs[EB/OL].(2023-04-18).https://doi.org/10.21203/rs.3.rs-2791945/v1.
[31] Wang Y,Zhu GQ,Tian D,et al.Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer[J].BMC Cancer,2022,22(1):1-19.
[32] Ma Y,Liu Y,Pu YS,et al.LncRNA IGFL2-AS1 functions as a ceRNA in regulating ARPP19 through competitive bidding to miR-802 in gastric cancer[J].Mol Carcinog,2020,59(3):311-322.
[33] Wang F,Liang S,Liu X,et al.LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer[J].Onco Targets Ther,2018,11:6383-6394.
[34] Sun D,Gou H,Wang D,et al.LncRNA TNFRSF10A-AS1 promotes gastric cancer by directly binding to oncogenic MPZL1 and is associated with patient outcome[J].Int J Biol Sci,2022,18(8):3156-3166.
[2023-11-12收稿]