【摘要】背景 牙齦卟啉單胞菌(Pg.)是牙周炎的主要致病菌,研究發(fā)現(xiàn)Pg.能夠通過(guò)口腔-腸道途徑對(duì)2型糖尿?。═2DM)在內(nèi)的全身疾病產(chǎn)生影響,而其具體機(jī)制尚不完全明確。目的探究Pg.是否通過(guò)改變腸道機(jī)械屏障及免疫屏障對(duì)T2DM產(chǎn)生影響。方法 40只SPF級(jí)小鼠,隨機(jī)挑選24只構(gòu)建T2DM模型,建模成功小鼠中挑選16只分為模型組(DM組,n=8)和模型+Pg.組(PD組,n=8),其余16只小鼠分為空白對(duì)照組(N組,n=8)和Pg.組(n=8)。建模后觀察小鼠體質(zhì)量和空腹血糖(FPG),第5周進(jìn)行口服葡萄糖耐量試驗(yàn)(OGTT),繪制OGTT曲線并計(jì)算曲線下面積(AUC)。第7周起Pg.組和PD組灌飼Pg.菌液,連續(xù)灌飼5周。采用酶聯(lián)免疫吸附測(cè)定脂多糖(LPS),實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)腸緊密連接蛋白及炎癥因子,蘇木素-伊紅(HE)染色觀察小鼠結(jié)腸組織病變。采用Pearson相關(guān)性或Spearman秩相關(guān)分析探究小鼠FPG與結(jié)腸緊密連接蛋白mRNA表達(dá)及血清LPS含量的關(guān)系。結(jié)果 灌胃前第2~6周DM組體質(zhì)量高于N組、Pg.組,PD組體質(zhì)量高于N組,第3~6周PD組體質(zhì)量高于Pg.組(Plt;0.05)。第9~11周N組、Pg.組體質(zhì)量高于DM組、PD組,第11周PD組體質(zhì)量低于DM組(Plt;0.05)。第3~6周PD組FPG高于N組、Pg.組,第4~6周DM組高于N組、Pg.組(Plt;0.05)。第7~11周Pg.組FPG低于DM組、PD組,PD組高于N組,第10、11周PD組高于Pg.組(Plt;0.05)。DM組AUC高于N組、Pg.組,PD組高于N組、DM組、Pg.組,PD組LPS高于N組、DM組(Plt;0.05)。PD組緊密連接蛋白1(ZO-1)低于N組,DM組閉合蛋白低于N組,PD組閉合蛋白低于N組、DM組、Pg.組,PD組白介素(IL)-17A低于N組、Pg.組,N組IL-10高于DM組、Pg.組、PD組,PD組腫瘤壞死因子α高于N組、DM組、Pg.組,Pg.組、PD組Toll樣受體4高于N組(Plt;0.05)。相關(guān)性分析結(jié)果表明,F(xiàn)PG與LPS呈正相關(guān),與閉合蛋白、ZO-1呈負(fù)相關(guān)(Plt;0.05)。病理結(jié)果顯示Pg.組和DM組固有層可見(jiàn)結(jié)締組織增生,伴淋巴細(xì)胞灶性浸潤(rùn),PD組固有層伴淋巴細(xì)胞灶性浸潤(rùn)。結(jié)論 Pg.可能通過(guò)破壞腸道機(jī)械屏障及免疫屏障導(dǎo)致LPS入血,加重T2DM小鼠糖代謝紊亂。
【關(guān)鍵詞】 糖尿病,2型;葡萄糖代謝障礙;牙齦卟啉單胞菌;腸道緊密連接蛋白;腸道免疫
【中圖分類號(hào)】 R 587.1 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2023.0386
Effects of Irrigation of Porphyromonas Gingivalis on Colonic Mechanical and Immune Barriers in Type 2 Diabetic Mice
LI Xiaowen1,YAN Fuhua2,CHEN Wenwen1,HUANG Mingkun1,MO Chaolun3,ZHANG Junmei1*
1.College of Stomatolgy of Guizhou Medical University,Guiyang 550001,China
2.Nanjing University,Nanjing 210008,China
3.Stomatology Hospital of Guizhou Medical University,Guiyang 550001,China
*Corresponding author:ZHANG Junmei,Chief physician/Professor;E-mail:zjm46688@126.com
【Abstract】 Background Porphyromonas gingivalis(Pg.)is the main pathogen of periodontitis. Studies have found that Pg. can affect systemic diseases including type 2 diabetes mellitus (T2DM)through oral-intestinal pathway,but its specific mechanism remains unclear. Objective To explore whether Pg. has an effect on T2DM by changing intestinal mechanical and immune barriers. Methods A total of 24 among 40 SPF mice were randomly selected to construct T2DM models,among the successful models,16 mice were selected to be divided into the model group(DM group,n=8)and model+Pg. group(PD group,n=8),and the other 16 mice were divided into the control group(N group,n=8)and Pg. group(n=8). After modeling,body mass and fasting plasma glucose(FPG)of mice were observed,and oral glucose tolerance test(OGTT)was performed at the 5th week,OGTT curve was plotted and the area under the curve(AUC)was calculated. Pg. group and PD group were gavaged with Pg. bacterial solution from the 7th week for 5 consecutive weeks. Lipopolysaccharide(LPS)was determined by enzyme-related immunosorbent assay(ELISA),colonic tight-junction protein and inflammatory factors were detected by real-time fluorescence quantitative PCR,and colonic tissue lesions were observed by hematoxylin-eosin(HE)staining. Pearson correlation or Spearman correlation analysis was used to investigate the relationship of FPG with colonic tight junction protein mRNA expression and serum LPS levels in mice. Results Body weight of DM group was higher than that of N group and Pg. group at 2nd to 6th weeks before irrigation(Plt;0.05),and body weight of PD group was higher than that of N group and body weight of PD group was higher than that of Pg. group at 3rd to 6th weeks before irrigation(Plt;0.05). The body weight of N group and Pg group was higher than that of DM group and PD group at 9th to 11th weeks,and the body weight of PD group was lower than that of DM group at 11th week(Plt;0.05). FPG in PD group was higher than that in the N and Pg. groups at 3rd to 6th weeks,and FPG in the DM group at 4th to 6th weeks was higher than that in N and Pg. groups. FPG of Pg. group was lower than that of the DM group and PD group at 7th to 11th weeks,PD group was higher than that of the N group,and PD group at week 10 and 11 was higher than the Pg. group(Plt;0.05). AUC in the DM group was higher than that in the N group and Pg. group,and PD group was higher than that in the N group,DM group and Pg. group(Plt;0.05). LPS of PD group was higher than that of N group and DM group(Plt;0.05). Tight junction protein 1(ZO-1)in the PD group was lower than that in the N group,occludin in the DM group was lower than that in the N group,occludin in the PD group was lower than that in the N group,DM group and Pg. group(Plt;0.05). The interleukin(IL)-17A in the PD group was lower than that in the N group and Pg. group,and IL-10 in the N group was higher than that in the DM group and Pg. group(Plt;0.05). Tumor necrosis factor α in the PD group was higher than that in the N group,DM group and Pg. group(Plt;0.05). Toll-like receptor 4 in the Pg. group and PD group was higher than that in N group(Plt;0.05). Correlation analysis showed that FPG was positively correlated with LPS,and negatively correlated with occludin,ZO-1(Plt;0.05). The pathological results showed connective tissue hyperplasia with focal lymphocyte infiltration in the lamina propria in the Pg. and DM groups,and the lamina propria with focal lymphocyte infiltration in the PD group. Conclusion Pg. may aggravate the glucose metabolism disorders of T2DM mice by disrupting the intestinal mechanical barrier and immune barrier leading to LPS entry into the bloodstream.
【Key words】 Diabetes Mellitus,type 2;Glucose metabolism disorders;Porphyromonas gingivalis;Intestinal tight junction protein;Intestinal immune
牙周炎是由菌斑微生物感染引起牙周組織的慢性炎癥性疾病,是導(dǎo)致成年人牙列缺損、缺失的重要原因,還與多種代謝性、炎癥性和自身免疫性疾病如2型糖尿病(T2DM)、高脂血癥、動(dòng)脈粥樣硬化性血管疾病和類風(fēng)濕關(guān)節(jié)炎等密切相關(guān)[1]。T2DM是發(fā)病率增長(zhǎng)最快的代謝性疾?。?],其主要特征是胰島素分泌相對(duì)不足和胰島素抵抗,其致死率僅次于心血管疾病和腫瘤。研究發(fā)現(xiàn),牙周炎與T2DM存在相互促進(jìn)的關(guān)系,T2DM是牙周炎的重要危險(xiǎn)因素,同時(shí)牙周炎也可能影響T2DM的發(fā)生發(fā)展[3-4]。
近年來(lái),多項(xiàng)研究證實(shí),牙周炎特異性菌群能通過(guò)腸道菌群及腸道屏障對(duì)全身多器官疾病產(chǎn)生影響,呈現(xiàn)“口-腸-多器官”模式,如結(jié)腸炎、關(guān)節(jié)炎、腦病、糖尿病、高脂血癥等[5-7]。牙齦卟啉單胞菌(Pg.)是牙周炎的主要致病菌,研究發(fā)現(xiàn),其能夠隨吞咽進(jìn)入腸道,引起腸道微生物區(qū)系組成發(fā)生改變,導(dǎo)致肝臟、脾臟、腸道等器官出現(xiàn)炎癥反應(yīng)[8]。結(jié)腸黏膜的厭氧和高pH環(huán)境更有利于Pg.的黏附[9],一旦發(fā)生菌群失調(diào),有害細(xì)菌占據(jù)主導(dǎo)地位,會(huì)引起宿主腸道免疫狀態(tài)以及腸道屏障功能受損,細(xì)菌毒素和代謝物等毒性物質(zhì)可能通過(guò)腸道進(jìn)入體循環(huán)中,導(dǎo)致身體遠(yuǎn)處各組織和器官受損[10],進(jìn)而增加了以低度炎癥為特征的其他系統(tǒng)性疾病的發(fā)病風(fēng)險(xiǎn),而Pg.引起腸道屏障破壞及免疫失衡的具體機(jī)制尚不完全明確。
本研究建立T2DM小鼠模型,通過(guò)灌胃的方式,模擬牙周炎患者唾液內(nèi)Pg.隨吞咽動(dòng)作進(jìn)入腸道,觀察腸道炎癥及緊密連接蛋白變化,以及其與血糖變化之間的關(guān)系,探索Pg.是否通過(guò)改變腸道免疫屏障和機(jī)械屏障功能影響糖代謝。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)動(dòng)物:2022年5月—2023年2月,40只6~8周齡C57BL/6J雄性小鼠,SPF級(jí),體質(zhì)量20~22 g,購(gòu)自北京華阜康生物科技股份有限公司(動(dòng)物許可證號(hào):110322220102485742)。實(shí)驗(yàn)小鼠適應(yīng)性喂養(yǎng)1周后進(jìn)行實(shí)驗(yàn),期間12 h光照和12 h黑暗交替循環(huán),溫度(24±1)℃,濕度(60±10)%,小鼠自由攝食、飲水。動(dòng)物實(shí)驗(yàn)于貴州醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心完成,通過(guò)貴州醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)(審批號(hào):2201457)。
1.1.2 主要試劑:鏈脲佐菌素(STZ)(索萊寶科技有限公司,貨號(hào):S8050);Pg.株(ATCC33277)(北納生物,貨號(hào):BNCC236547);小鼠脂多糖(LPS)酶聯(lián)免疫吸附測(cè)定(ELISA)試劑盒(華美生物,貨號(hào):CSB-E09308H);腦心浸液瓊脂(BHI)固體培養(yǎng)基(索萊寶科技有限公司,LA0360);Trizol(Takara,貨號(hào):9108);cDNA反轉(zhuǎn)錄試劑盒(Prime ScriptTM RT masters Mix,Takara,貨號(hào):RR036A);TB Green Premix Ex Taq(Takara,貨號(hào):RR820A);蘇木素-伊紅(HE)染色試劑盒(武漢賽維爾生物科技有限公司,貨號(hào):G1003)。主要儀器:羅氏卓越精采型血糖儀;實(shí)時(shí)熒光定量PCR儀(Bio-RAD);Infinite F50經(jīng)濟(jì)型光吸收酶標(biāo)儀(TECAN);無(wú)菌厭氧箱(AW500TG)(ELECTROTEK);低溫高速離心機(jī)(Thermo Fisher);高速低溫組織研磨機(jī)(武漢賽維爾生物科技有限公司)。
1.2 實(shí)驗(yàn)方法
1.2.1 實(shí)驗(yàn)分組與建模:適應(yīng)性喂養(yǎng)1周后,采用隨機(jī)數(shù)字表法隨機(jī)選取24只小鼠用于T2DM建模,采用高脂飲食(標(biāo)準(zhǔn)60%脂肪供能純化型飼料)連續(xù)飼養(yǎng)4周,期間自由攝食、飲水。其余16只小鼠隨機(jī)分為空白對(duì)照組(N組,n=8)和Pg.組(n=8),同期給予對(duì)照飼料(35%脂肪供能飼料)喂養(yǎng)。建模小鼠腹腔注射30 mg/kg的2% STZ,1周內(nèi)連續(xù)腹腔注射3次,N組腹腔注射相同體積的0.1 mmol/L(pH=4.5)的檸檬酸緩沖液,以2次空腹血糖(FPG)≥11.1 mmol/L或隨機(jī)血糖≥16.7 mmol/L為T2DM成模標(biāo)準(zhǔn),保留成功模型(21只),隨機(jī)選取16只分為模型組(DM組,n=8)和模型+Pg.組(PD組,n=8),建模成功后更換為35%脂肪供能飼料繼續(xù)飼養(yǎng)。
1.2.2 Pg.株用BHI固體培養(yǎng)板37 ℃厭氧環(huán)境(80% N2、10% H2、10% CO2)培養(yǎng)7 d。轉(zhuǎn)移至BHI液體培養(yǎng)基增菌16~18 h,于細(xì)菌生長(zhǎng)對(duì)數(shù)期時(shí),以3 500 r/min
離心5 min(離心半徑8.6 cm),棄上清液。用無(wú)菌磷酸緩沖鹽溶液(PBS)重懸細(xì)菌沉淀后,測(cè)量細(xì)菌懸液吸光度,調(diào)整濃度為1×109 CFU/mL。于第7周起Pg.組和PD組灌飼200 μL含1×109 CFU/mL Pg.的菌液,2次/周,DM組和N組灌飼等量無(wú)菌PBS,連續(xù)灌飼5周。
1.2.3 建模后和灌胃后每日(或者隔1日)觀察小鼠的精神狀態(tài)、活動(dòng)情況、毛發(fā)色澤變化、墊料干濕情況等一般狀態(tài)。檢測(cè)小鼠體質(zhì)量變化及FPG,1次/周。在5周末進(jìn)行口服葡萄糖耐量試驗(yàn)(OGTT):隔夜禁食12 h,對(duì)小鼠按2 g/kg劑量灌胃25%葡萄糖注射液,在0、30、60、90、120 min時(shí)間點(diǎn)尾靜脈采血,使用血糖計(jì)測(cè)定血糖值。繪制OGTT曲線,計(jì)算曲線下面積(AUC)。
1.2.4 灌胃5周后,1.25%阿佛丁(0.2 mL/10 g)腹腔注射麻醉小鼠后心臟取血收集血液,后用5%水合氯醛(0.2 mL/10 g)腹腔注射麻醉處死,收集結(jié)腸組織(近盲腸段),取部分置于4%多聚甲醛固定,部分加入RNA穩(wěn)定液置于-80 ℃冰箱用于后續(xù)檢測(cè)。
1.2.5 心臟取血收集于1.5 mL離心管中,4 ℃過(guò)夜后于2~8 ℃,1 000×g離心15 min,取上清液,按照小鼠LPS ELISA試劑盒說(shuō)明書步驟加樣,全自動(dòng)酶標(biāo)儀測(cè)定450 nm處的吸光度(OD值),繪制標(biāo)準(zhǔn)曲線計(jì)算得相應(yīng)濃度。
1.2.6 實(shí)時(shí)熒光定量PCR(qPCR)檢測(cè)結(jié)腸緊密連接蛋白及炎癥因子:稱取0.1 g結(jié)腸組織,低溫高速組織研磨機(jī)進(jìn)行研磨,Trizol法提取RNA,超微量核酸分析儀測(cè)量總RNA濃度。根據(jù)逆轉(zhuǎn)錄試劑盒,將提取的總RNA反轉(zhuǎn)錄為cDNA。以甘油醛-3-磷酸脫氫酶(GAPDH)為內(nèi)參基因,使用TB GreenTM Premix Ex TaqTM Ⅱ進(jìn)行qPCR檢測(cè),每樣本設(shè)置3個(gè)復(fù)孔并計(jì)算mRNA的相對(duì)表達(dá),引物由生工生物工程股份有限公司提供。引物序列見(jiàn)表1。
1.2.7 取固定好的結(jié)腸樣本進(jìn)行梯度乙醇脫水,常規(guī)石蠟包埋切片,HE染色,于光學(xué)顯微鏡下觀察小鼠結(jié)腸組織病變。
1.3 統(tǒng)計(jì)學(xué)分析
采用SPSS 27.0軟件進(jìn)行數(shù)據(jù)分析,采用GraphPad Prism 9.0軟件繪圖。符合正態(tài)分布的計(jì)量資料以(x-±s)表示,多組間均數(shù)比較采用重復(fù)測(cè)量方差分析或單因素方差分析,組間兩兩比較采用LSD檢驗(yàn)或Bonferroni法;不符合正態(tài)分布的計(jì)量資料以M(P25,P75)表示,組間兩兩比較采用Kruskal-Wallis H檢驗(yàn)。采用Pearson相關(guān)性或Spearman秩相關(guān)分析探究小鼠FPG與結(jié)腸緊密連接蛋白mRNA表達(dá)及血清LPS含量的關(guān)系。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 4組小鼠一般狀態(tài)及體質(zhì)量比較
N組和Pg.組小鼠充滿活力,毛發(fā)柔軟有光澤,墊料干燥,DM組和PD組精神低落,運(yùn)動(dòng)較少,墊料潮濕,毛發(fā)暗淡,有刺激性氣味,飲食及飲水量增加。灌胃前第2~6周小鼠體質(zhì)量比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);灌胃前第2~6周DM組體質(zhì)量高于N組、Pg.組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);PD組第2~6周體質(zhì)量高于N組,第3~6周PD組體質(zhì)量高于Pg.組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。第1周4組小鼠體質(zhì)量比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(Pgt;0.05),見(jiàn)表2。灌胃后重復(fù)測(cè)量方差分析結(jié)果表明,組別與時(shí)間對(duì)小鼠體質(zhì)量存在交互作用(P交互lt;0.01),組別與時(shí)間對(duì)小鼠體質(zhì)量主效應(yīng)均顯著(P組間lt;0.01,P時(shí)間lt;0.01)。第9~11周N組、Pg.組體質(zhì)量高于DM組、PD組,第11周PD組體質(zhì)量低于DM組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表3。
2.2 4組小鼠血糖情況
灌胃前第3~6周4組小鼠FPG比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),其中第3~6周PD組高于N組、Pg.組,第4~6周DM組高于N組、Pg.組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),第1~2周4組小鼠FPG比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表4。灌胃后重復(fù)測(cè)量方差分析結(jié)果表明,組別與時(shí)間對(duì)小鼠FPG存在交互作用(P交互=0.021),組別與時(shí)間對(duì)小鼠FPG主效應(yīng)均顯著(P組間lt;0.01,P時(shí)間lt;0.01)。第7~11周Pg.組FPG低于DM組、PD組,PD組高于N組,第10、11周PD組高于Pg.組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表5。
組別與時(shí)間對(duì)小鼠OGTT試驗(yàn)各時(shí)間點(diǎn)血糖存在交互作用(P交互=0.013),組別與時(shí)間對(duì)小鼠血糖主效應(yīng)均顯著(P組間lt;0.01,P時(shí)間lt;0.01)。0~120 min DM組高于N組、Pg.組,PD組高于N組、DM組、Pg.組,120 min Pg.組高于N組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表6。4組小鼠OGTT AUC及血清LPS含量比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.01),其中DM組AUC高于N組、Pg.組,PD組高于N組、DM組、Pg.組,PD組LPS高于N組、DM組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表7。
2.3 4組小鼠結(jié)腸緊密連接蛋白及炎癥因子mRNA表達(dá)水平
4組小鼠緊密連接蛋白1(ZO-1)、閉合蛋白、白介素(IL)-17A、IL-10、腫瘤壞死因子α(TNF-α)、Toll樣受體(TLR)4比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),其中PD組ZO-1低于N組,DM組閉合蛋白低于N組,PD組閉合蛋白低于N組、DM組、Pg.組,PD組IL-17A低于N組、Pg.組,N組IL-10高于DM組、Pg.組、PD組,PD組TNF-α高于N組、DM組、Pg.組,Pg.組、PD組TLR4高于N組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表8。
2.4 FPG與結(jié)腸緊密連接蛋白mRNA和血清LPS含量的相關(guān)性分析
相關(guān)性分析結(jié)果表明,F(xiàn)PG與LPS呈正相關(guān)(rs=0.635,Plt;0.01),與ZO-1(r=-0.377,P=0.034)、閉合蛋白呈負(fù)相關(guān)(rs=-0.746,Plt;0.01)。
2.5 4組小鼠結(jié)腸組織HE染色結(jié)果
結(jié)腸HE染色切片顯示,N組結(jié)腸隱窩深度及形態(tài)結(jié)構(gòu)正常,腸腺數(shù)量豐富,未見(jiàn)明顯炎性細(xì)胞。Pg.組和DM組固有層可見(jiàn)結(jié)締組織增生,伴淋巴細(xì)胞灶性浸潤(rùn),局部間質(zhì)也可見(jiàn)少量淋巴細(xì)胞浸潤(rùn);而PD組固有層伴淋巴細(xì)胞灶性浸潤(rùn);局部間質(zhì)可見(jiàn)少量淋巴細(xì)胞浸潤(rùn);黏膜下層輕度水腫,結(jié)締組織排列稀疏,伴少量淋巴細(xì)胞浸潤(rùn),結(jié)腸隱窩深度變淺,部分隱窩形態(tài)不典型,見(jiàn)圖1。
3 討論
每人每天可以分泌1.0~1.5 L的唾液。在生理?xiàng)l件下,由于受到胃酸和堿性膽汁的保護(hù),唾液菌群很少到達(dá)腸道。然而,牙周炎患者的唾液菌群與口腔健康者明顯不同[11-12]。牙周病患者的唾液中Pg.等有害菌豐度明顯更高[13]。21~23歲重度牙周炎患者每天吞咽1012~1013個(gè)Pg.[14]。Pg.由于其抗酸性可能會(huì)通過(guò)胃酸到達(dá)腸道,破壞腸道內(nèi)環(huán)境的平衡[10]。
在腸道內(nèi),腸道屏障由微生物屏障、黏液屏障、物理屏障和免疫屏障組成,構(gòu)成了腸道抵御外部病原體的第一道防線,無(wú)論是哪一層腸道屏障的破壞,均可能會(huì)導(dǎo)致“腸瘺”的形成,腸道內(nèi)細(xì)菌及代謝產(chǎn)物則可能通過(guò)腸道進(jìn)入血液,加重多種系統(tǒng)的疾病,如關(guān)節(jié)炎、肝病、腦病、T2DM、炎癥性腸?。↖BD)、肥胖等[7,15-17]。本研究發(fā)現(xiàn),Pg.灌胃后,腸道免疫屏障及機(jī)械屏障功能受損,T2DM小鼠的血糖調(diào)節(jié)能力和胰島素敏感性降低,在高血糖的基礎(chǔ)上,糖代謝紊亂進(jìn)一步加重。
腸道免疫屏障主要由免疫細(xì)胞及其細(xì)胞因子組成,腸道免疫調(diào)節(jié)細(xì)胞作為腸道菌群與糖尿病之間的“橋梁”,免疫平衡的破壞伴隨T淋巴細(xì)胞及細(xì)胞因子平衡紊亂,通過(guò)影響胰腺、肝臟等其他內(nèi)分泌器官,對(duì)機(jī)體免疫狀態(tài)、糖脂代謝和胰島素敏感性產(chǎn)生不利影響[18]。CD4+ T輔助細(xì)胞(Th)在維持腸道免疫中起著關(guān)鍵作用,CD4+ IL-17+Th17細(xì)胞和CD4+CD25+Foxp3+ T細(xì)胞(Th17/Treg細(xì)胞)之間的平衡是免疫穩(wěn)態(tài)的基礎(chǔ)。腸道免疫失衡時(shí)常表現(xiàn)為Th17/Treg細(xì)胞及相關(guān)細(xì)胞因子比例失衡,表現(xiàn)為Th17相關(guān)促炎因子IL-6、TNF-α、IL-17A和IL-17F濃度增加,而Treg相關(guān)抗炎因子轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)、IL-10則相應(yīng)減少。本研究發(fā)現(xiàn),灌胃Pg.后,T2DM小鼠結(jié)腸內(nèi)促炎因子TNF-α的表達(dá)增加,而抗炎因子IL-10的基因表達(dá)進(jìn)一步減少,HE染色結(jié)果顯示,PD組結(jié)腸固有層及間質(zhì)內(nèi)炎癥性病理變化較DM組和Pg.組更為明顯,表明結(jié)腸內(nèi)可能存在Th17/Treg比例失調(diào),腸道免疫穩(wěn)態(tài)破壞更加顯著。其中IL-10不僅在免疫反應(yīng)中起抗炎作用,近年來(lái)多項(xiàng)研究發(fā)現(xiàn),其在糖尿病發(fā)展中也發(fā)揮一定保護(hù)作用。YUAN等[19]發(fā)現(xiàn),T2DM患者外周血中Th17/Treg細(xì)胞百分率及相關(guān)細(xì)胞因子(主要是IL-10和TGF-β)水平顯著降低。STZ誘導(dǎo)的非肥胖型糖尿病小鼠在接受攜帶有編碼IL-4和IL-10質(zhì)粒的細(xì)菌株聯(lián)合治療后,可以有效降低高血糖以及胰島的破壞[20]。推測(cè)灌胃Pg.后IL-10的減少可能不僅通過(guò)影響腸道免疫影響血糖,還有可能是IL-10本身對(duì)血糖的直接影響。
腸道Th17/Treg存在免疫失衡時(shí)通常伴有IL-17A的增加。在膠原蛋白誘導(dǎo)的關(guān)節(jié)炎模型中,口服Pg.可誘導(dǎo)腸道免疫模式向Th17優(yōu)勢(shì)方向轉(zhuǎn)變,并伴隨腸道微生物區(qū)系的改變,加重小鼠膠原蛋白誘導(dǎo)的關(guān)節(jié)炎癥狀[21]。但也有研究發(fā)現(xiàn),IL-17A可在多種組織中具有誘導(dǎo)促炎和抗炎反應(yīng)兩種作用[22],在腸道中還可以促進(jìn)上皮細(xì)胞增殖,上調(diào)抗菌肽和緊密連接蛋白的表達(dá),從而保護(hù)腸黏膜免受各種病原體的感染[23]。應(yīng)用IL-17A抑制劑或IL-17A受體(IL-17RA)抑制劑可削弱結(jié)腸炎小鼠腸道屏障,加重腸道炎癥[24]。此外,有研究發(fā)現(xiàn),高脂飲食小鼠其腸道內(nèi)Th17/IL-17的減少與體質(zhì)量增加,糖耐量減少及胰島素抵抗具有相關(guān)性[25]。證明胰島素敏感性降低在內(nèi)的代謝性疾病早期與腸道微生物群多樣性降低,以及IL-17/IL-22下降相關(guān)[26]。腸道中除Th17細(xì)胞外,自然殺傷細(xì)胞(NK細(xì)胞)、γδT細(xì)胞、CD8+ T細(xì)胞等多種細(xì)胞也參與IL-17的分泌,本研究中,灌胃Pg.后的糖尿病小鼠結(jié)腸IL-17A呈現(xiàn)減少趨勢(shì),并與緊密連接蛋白變化相一致。提示Pg.可能通過(guò)影響其他免疫細(xì)胞分泌IL-17進(jìn)而對(duì)結(jié)腸緊密連接蛋白產(chǎn)生影響,而其具體機(jī)制有待進(jìn)一步探索。
TLR是病原體相關(guān)分子模式識(shí)別受體,不僅表達(dá)在天然免疫細(xì)胞和特化抗原提呈細(xì)胞表面,也表達(dá)在CD4+ T細(xì)胞表面。其中TLR4可以識(shí)別并結(jié)合革蘭氏細(xì)菌的LPS,激活核因子κB信號(hào)通路,引起腸道Th17/Treg細(xì)胞比例失調(diào)和胰島素抵抗[27-28],進(jìn)而影響糖尿病的發(fā)展。
閉合蛋白、ZO-1是構(gòu)成腸道緊密連接的主要蛋白因子[29],常作為腸道機(jī)械屏障功能的檢測(cè)指標(biāo)。本研究發(fā)現(xiàn),與N組小鼠對(duì)比,DM組和PD組結(jié)腸閉合蛋白的mRNA表達(dá)量均降低,而PD組的兩種緊密連接蛋白的降低更為明顯。表明無(wú)論是糖尿病還是單純灌胃Pg.均可能對(duì)腸道機(jī)械屏障和免疫屏障產(chǎn)生一定影響。而在T2DM基礎(chǔ)上進(jìn)行Pg.灌胃后,腸道機(jī)械屏障和免疫平衡的破壞更為明顯,并且血清內(nèi)LPS含量顯著增加;小鼠血糖變化與閉合蛋白、ZO-1的mRNA表達(dá)呈負(fù)相關(guān),與LPS含量變化呈正相關(guān),進(jìn)一步證明,腸道屏障破壞導(dǎo)致的LPS入血可能是引起血糖變化的關(guān)鍵因素。
4 小結(jié)
綜上所述,Pg.灌胃處理后,對(duì)結(jié)腸機(jī)械屏障及免疫屏障的破壞,在高血糖背景下更為顯著,可能導(dǎo)致腸道內(nèi)LPS入血,進(jìn)一步加重糖尿病小鼠血糖調(diào)節(jié)及胰島素敏感性受損。體外研究發(fā)現(xiàn),LPS可以通過(guò)X盒結(jié)合蛋白1調(diào)控脂肪細(xì)胞胰島素受體底物1、磷酸肌醇依賴性蛋白激酶1、蛋白激酶B信號(hào)通路,影響胰島素信號(hào)的傳導(dǎo)[30],因此,LPS可能是Pg.通過(guò)腸道引起遠(yuǎn)端器官糖脂代謝損害的重要靶點(diǎn)。對(duì)于Pg.對(duì)腸道屏障的破壞,推測(cè)一方面可能是由于灌胃Pg.后引起腸道微生物及代謝物變化的直接作用[31];另一方面可能與腸道免疫平衡打破,如IL-17A、IL-10減少,TLR4、TNF-α等免疫因子增加有關(guān)。本研究進(jìn)一步驗(yàn)證了Pg.可以通過(guò)口-腸途徑影響糖尿病的發(fā)展,而其引起腸道免疫屏障、機(jī)械屏障破壞的潛在機(jī)制,以及LPS入血后對(duì)全身糖脂代謝的具體機(jī)制有待進(jìn)一步探索。
作者貢獻(xiàn):李蕭紋提出主要研究目標(biāo),負(fù)責(zé)研究的構(gòu)思與設(shè)計(jì),研究的實(shí)施,撰寫論文;陳文文、黃明坤進(jìn)行數(shù)據(jù)收集與整理,統(tǒng)計(jì)學(xué)處理,圖、表的繪制與展示;閆福華、莫朝倫進(jìn)行論文的修訂;李蕭紋、張軍梅負(fù)責(zé)最終版本修訂,對(duì)論文負(fù)責(zé)。
本文無(wú)利益沖突。
參考文獻(xiàn)
閆福華. 牙周炎對(duì)全身疾病和健康影響的研究進(jìn)展[J]. 口腔醫(yī)學(xué),2018,38(7):577-581. DOI:10.13591/j.cnki.kqyx.2018.07.001.
LING C,BACOS K,R?NN T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine?[J]. Nat Rev Endocrinol,2022,18(7):433-448. DOI:10.1038/s41574-022-00671-w.
ST?HR J,BARBARESKO J,NEUENSCHWANDER M,et al. Bidirectional association between periodontal disease and diabetes mellitus:a systematic review and meta-analysis of cohort studies[J]. Sci Rep,2021,11(1):13686. DOI:10.1038/s41598-021-93062-6.
MIRNIC J,DJURIC M,GUSIC I,et al. Effects of nonsurgical periodontal therapy on salivary 8-hydroxy-deoxyguanosine levels and glycemic control in diabetes mellitus type 2 patients[J]. Biomedicines,2022,10(9):2269. DOI:10.3390/biomedicines10092269.
KITAMOTO S,NAGAO-KITAMOTO H,JIAO Y Z,et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis[J]. Cell,2020,182(2):447-462.e14. DOI:10.1016/j.cell.2020.05.048.
FENG Y K,WU Q L,PENG Y W,et al. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice[J]. J Neuroinflammation,2020,17(1):347. DOI:10.1186/s12974-020-02027-5.
ZHOU N,ZOU F G,CHENG X,et al. Porphyromonas gingivalis induces periodontitis,causes immune imbalance,and promotes rheumatoid arthritis[J]. J Leukoc Biol,2021,110(3):461-473. DOI:10.1002/JLB.3MA0121-045R.
LIU Y M,HUANG W K,DAI K,et al. Inflammatory response of gut,spleen,and liver in mice induced by orally administered Porphyromonas gingivalis[J]. J Oral Microbiol,2022,14(1):2088936. DOI:10.1080/20002297.2022.2088936.
DONALDSON G P,LEE S M,MAZMANIAN S K. Gut biogeography of the bacterial microbiota[J]. Nat Rev Microbiol,2016,14(1):20-32. DOI:10.1038/nrmicro3552.
MULHALL H,HUCK O,AMAR S. Porphyromonas gingivalis,a long-range pathogen:systemic impact and therapeutic implications[J]. Microorganisms,2020,8(6):869. DOI:10.3390/microorganisms8060869.
BAO J,LI L L,ZHANG Y H,et al. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota[J]. Int J Oral Sci,2022,14(1):32. DOI:10.1038/s41368-022-00183-3.
SHI C,CAI L T,XUN Z,et al. Metagenomic analysis of the salivary microbiota in patients with caries,periodontitis and comorbid diseases[J]. J Dent Sci,2021,16(4):1264-1273. DOI:10.1016/j.jds.2020.12.002.
MA J L,KAGEYAMA S,TAKESHITA T,et al. Clinical utility of subgingival plaque-specific bacteria in salivary microbiota for detecting periodontitis[J]. PLoS One,2021,16(6):e0253502. DOI:10.1371/journal.pone.0253502.
HE J Y,HUANG W J,PAN Z W,et al. Quantitative analysis of microbiota in saliva,supragingival,and subgingival plaque of Chinese adults with chronic periodontitis[J]. Clin Oral Investig,2012,16(6):1579-1588. DOI:10.1007/s00784-011-0654-4.
NASCIMENTO J C,MATHEUS V A,OLIVEIRA R B,et al. High-fat diet induces disruption of the tight junction-mediated paracellular barrier in the proximal small intestine before the onset of type 2 diabetes and endotoxemia[J]. Dig Dis Sci,2021,66(10):3359-3374. DOI:10.1007/s10620-020-06664-x.
JIN R,NING X Q,LIU X,et al. Porphyromonas gingivalis-induced periodontitis could contribute to cognitive impairment in Sprague-Dawley rats via the P38 MAPK signaling pathway[J]. Front Cell Neurosci,2023,17:1141339. DOI:10.3389/fncel.2023.1141339.
CHOPYK D M,GRAKOUI A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology,2020,159(3):849-863. DOI:10.1053/j.gastro.2020.04.077.
LI Q W,GAO Z Z,WANG H,et al. Intestinal immunomodulatory cells(T lymphocytes):a bridge between gut microbiota and diabetes[J]. Mediators Inflamm,2018,2018:9830939. DOI:10.1155/2018/9830939.
YUAN N,ZHANG H F,WEI Q,et al. Expression of CD4+CD25+Foxp3+ regulatory T cells,interleukin 10 and transforming growth factor β in newly diagnosed type 2 diabetic patients[J]. Exp Clin Endocrinol Diabetes,2018,126(2):96-101. DOI:10.1055/s-0043-113454.
PREISSER T M,DA CUNHA V P,SANTANA M P,et al. Recombinant Lactococcus lactis carrying IL-4 and IL-10 coding vectors protects against type 1 diabetes in NOD mice and attenuates insulitis in the STZ-induced model[J]. J Diabetes Res,2021,2021:6697319. DOI:10.1155/2021/6697319.
SATO K,TAKAHASHI N,KATO T,et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system[J]. Sci Rep,2017,7(1):6955. DOI:10.1038/s41598-017-07196-7.
FENG Y,CHEN Z,TU S Q,et al. Role of interleukin-17A in the pathomechanisms of periodontitis and related systemic chronic inflammatory diseases[J]. Front Immunol,2022,13:862415. DOI:10.3389/fimmu.2022.862415.
CHEN L,RUAN G C,CHENG Y,et al. The role of Th17 cells in inflammatory bowel disease and the research progress[J]. Front Immunol,2022,13:1055914. DOI:10.3389/fimmu.2022.1055914.
DENG Z Z,WANG S F,WU C F,et al. IL-17 inhibitor-associated inflammatory bowel disease:a study based on literature and database analysis[J]. Front Pharmacol,2023,14:1124628. DOI:10.3389/fphar.2023.1124628.
HONG C P,PARK A,YANG B G,et al. Gut-specific delivery of T-helper 17 cells reduces obesity and insulin resistance in mice[J]. Gastroenterology,2017,152(8):1998-2010. DOI:10.1053/j.gastro.2017.02.016.
ZHOU X,JOHNSON J S,SPAKOWICZ D,et al. Longitudinal analysis of serum cytokine levels and gut microbial abundance links IL-17/IL-22 with Clostridia and insulin sensitivity in humans[J]. Diabetes,2020,69(8):1833-1842. DOI:10.2337/db19-0592.
GEORGE L,RAMASAMY T,SIRAJUDEEN K,et al. LPS-induced apoptosis is partially mediated by hydrogen sulphide in RAW 264.7 murine macrophages[J]. Immunol Invest,2019,48(5):451-465. DOI:10.1080/08820139.2019.1566355.
JIA L,WU R Q,HAN N N,et al. Porphyromonas gingivalis and Lactobacillus rhamnosus GG regulate the Th17/Treg balance in colitis via TLR4 and TLR2[J]. Clin Transl Immunology,2020,9(11):e1213. DOI:10.1002/cti2.1213.
KUO W T,ODENWALD M A,TURNER J R,et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival[J]. Ann N Y Acad Sci,2022,1514(1):21-33. DOI:10.1111/nyas.14798.
陸佳藝,伍倩琪,陳伊燕,等. 牙齦卟啉單胞菌來(lái)源的脂多糖通過(guò)X盒結(jié)合蛋白1調(diào)控脂肪細(xì)胞胰島素信號(hào)通路的機(jī)制研究[J]. 華西口腔醫(yī)學(xué)雜志,2022,40(2):148-154. DOI:10.7518/hxkq.2022.02.004.
READ E,CURTIS M A,NEVES J F. The role of oral bacteria in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol,2021,18(10):731-742. DOI:10.1038/s41575-021-00488-4.
(本文編輯:鄒琳)
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(81970939);貴州省衛(wèi)生健康委項(xiàng)目(gzwkj2023-61)
引用本文:李蕭紋,閆福華,陳文文,等. 灌胃牙齦卟啉單胞菌對(duì)2型糖尿病小鼠結(jié)腸機(jī)械屏障及免疫屏障影響的研究[J]. 中國(guó)全科醫(yī)學(xué),2024,27(18):2225-2232. DOI:10.12114/j.issn.1007-9572.2023.0386. [www.chinagp.net]
LI X W,YAN F H,CHEN W W,et al. Effects of irrigation of porphyromonas gingivalis on colonic mechanical and immune barriers in type 2 diabetic mice[J]. Chinese General Practice,2024,27(18):2225-2232.
? Editorial Office of Chinese General Practice. This is an open access article under the CC BY-NC-ND 4.0 license.
1.550001貴州省貴陽(yáng)市,貴州醫(yī)科大學(xué)口腔醫(yī)學(xué)院
2.210008江蘇省南京市,南京大學(xué)
3.550001貴州省貴陽(yáng)市,貴州醫(yī)科大學(xué)附屬口腔醫(yī)院
*通信作者:張軍梅,主任醫(yī)師/教授;E-mail:zjm46688@126.com