趙雙 黃穎宏 郄紅麗
摘? ? 要:【目的】評(píng)價(jià)不同楊梅品種果實(shí)品質(zhì)的差異,建立楊梅果實(shí)品質(zhì)綜合評(píng)價(jià)體系?!痉椒ā恳?0個(gè)楊梅品種為試驗(yàn)材料,對(duì)果實(shí)外觀品質(zhì)、內(nèi)在品質(zhì)和礦質(zhì)元素指標(biāo)進(jìn)行測(cè)定和分析,并利用主成分分析法對(duì)30個(gè)楊梅品種果實(shí)品質(zhì)進(jìn)行綜合評(píng)價(jià)?!窘Y(jié)果】30個(gè)不同楊梅品種的果實(shí)各個(gè)品質(zhì)指標(biāo)之間存在較大差異,部分內(nèi)在品質(zhì)指標(biāo)和礦質(zhì)元素指標(biāo)存在顯著差異。綜合相關(guān)性分析和主成分分析篩選出可溶性固形物(TSS)、可滴定酸、抗壞血酸(AsA)、蘋(píng)果酸、總酚和硒(Se)礦質(zhì)元素含量作為楊梅果實(shí)品質(zhì)性狀評(píng)價(jià)的核心指標(biāo)?!窘Y(jié)論】采用相關(guān)性分析和主成分分析綜合評(píng)價(jià)方法可為優(yōu)良楊梅品種篩選提供參考依據(jù)。
關(guān)鍵詞:楊梅;果實(shí)品質(zhì);主成分分析;綜合評(píng)價(jià)
中圖分類(lèi)號(hào):S667.6 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)03-0392-11
Fruit quality analysis and comprehensive evaluation of 30 bayberry varieties
ZHAO Shuang1, 2, HUANG Yinghong 1, 3, QI Hongli1, 3 *
(1Jiangsu Taihu Evergreen Fruit Tree Technology Promotion Center, Suzhou 215107, Jiangsu, China; 2Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, Jiangsu, China; 3The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, Jiangsu, China)
Abstract: 【Objective】 There are differences in fruit quality among different bayberry varieties. Understanding fruit quality traits can provide valuable information and evaluation tools for breeding and developimg excellent bayberry varieties. Therefore, the purpose of this study was to explore the comprehensive quality traits and their differences of bayberry fruit, and to establish an efficient evaluation system for the quality of bayberry fruit. 【Methods】 In order to explore the fruit quality traits, the fruits of 30 bayberry varieties were collected in this study, and 20 indexes such as average weight, fruit shape index, edible rate, fruit hardness, total soluble solids content, titratable acid, glucose, sucrose, fructose, ascorbic acid (AsA), malic acid, citric acid, amino acid (AA), proanthocyanidin, flavonoid, total phenol, calcium (Ca), iron (Fe), zinc (Zn) and selenium (Se) were measured. The fruit quality of different bayberry varieties was analyzed and evaluated by using SPSS17.0 statistical software for coefficient of variation analysis, correlation analysis, principal component analysis and comprehensive score ranking. 【Results】 There were significant differences in the fruit quality indexes among 30 bayberry varieties, and the coefficient of variation ranged from 3.13% to 78.94%. The fruit shape index was between 0.92 and 1.06, and the edible rate was between 83% and 94%, indicating that the coefficient of variation of fruit shape index and edible rate was small. In terms of fruit internal quality, the content of sucrose in bayberry fruit was the highest, followed by fructose and glucose. Among the organic acids, the content of malic acid varied greatly among different bayberry varieties, but the content of citric acid varied little. In terms of functional nutrients in fruits, the coefficient of variation of proanthocyanidins among different bayberry varieties was relatively high, and the coefficient of variation of AsA, flavonoids and total phenols was medium. Correlation analysis showed that there was a certain correlation between the quality indexes of different bayberry varieties, and some indexes were even highly correlated. Average fruit weight was significantly and positively correlated with malic acid, and significantly and negatively correlated with Fe and Zn contents in fruits. There was a significant positive correlation between fruit shape index and AsA content. There was a significant negative correlation between edible rate and titratable acid. Fruit hardness was significantly and positively correlated with glucose and significantly and negatively correlated with Ca contents. There was a significant correlation between glucose, sucrose, fructose and soluble solids. There was a significant positive correlation between AsA and citric acid and proanthocyanidin content. There was a significant positive correlation between citric acid and proanthocyanidin content. Total phenols were significantly and positively correlated with malic acid and proanthocyanidins, and extremely significantly and positively correlated with flavonoids content. In addition, the mineral elements in the fruit were significantly or extremely significantly and negatively correlated with some fruit nutrient elements. The principal component analysis of 17 traits of 30 different bayberry varieties was carried out by eliminating the sensory indexes with less variation, such as shape index, edible rate and fruit hardness. Six principal components with eigenvalues greater than 1 were extracted, and the cumulative contribution rate was 80.017%. The contribution rate of principal component 1 was 25.155%, and the first principal component was mainly determined by citric acid, AsA and proanthocyanidin. The contribution rate of principal component 2 was 20.085%, and the second principal component was mainly determined by soluble solids content and fructose. The contribution rate of principal component 3 was 13.048%, and the main components determining the size of the third principal component were flavonoids and total phenols. The contribution rate of principal component 4 was 8.483%, and the main factor determining the size of the fourth principal component was malic acid. The contribution rate of principal component 5 was 6.835%, and the main factor determining the size of the fifth principal component was titratable acid. The contribution rate of principal component 6 was 6.409%, and it was mainly Se mineral element that determined the size of the sixth principal component. The first and third principal components could mainly represent fruit function, the second, fourth and fifth principal components could represent fruit flavor, and the sixth principal component mainly could represent fruit mineral nutrition. Soluble solids content, titratable acid, ascorbic acid (AsA), malic acid, total phenols and Se mineral element were selected as the core indicators for the evaluation of fruit quality traits of bayberry by comprehensive correlation analysis and principal component analysis. By principal component analysis, Changshuzaohong, Muyemei, Xiaoheitou, Dayexidi, Xiaoyexidi, Zaoshuyihao and Xishanzaoshu got the higher scores. 【Conclusion】 Through the comprehensive analysis of the fruit quality of 30 bayberry varieties, the conclusions are as follows: soluble solids content, titratable acid, AsA, malic acid, total phenols and Se mineral element can be used as the core indicators for the quality evaluation of bayberry. Correlation analysis and principal component analysis can be used to provide a reference basis for the screening of excellent bayberry varieties.
Key words: Bayberry; Fruit quality; Principal component analysis; Comprehensive evaluation
楊梅(Morella rubra Lour.)屬于楊梅科楊梅屬常綠喬木,在長(zhǎng)江流域以南廣泛栽培,是我國(guó)南方特有的水果之一[1-2]。楊梅果實(shí)4—7月成熟,顏色多樣,富含豐富的糖、酸、維生素等營(yíng)養(yǎng)物質(zhì),且含有豐富的楊梅苷、類(lèi)黃酮等抗氧化類(lèi)物質(zhì),兼具藥用、食用價(jià)值,深受消費(fèi)者喜愛(ài)[3-4]。楊梅栽培品種面積最大的是浙江省,其次是江蘇和福建[5]。近年來(lái)江蘇楊梅產(chǎn)業(yè)發(fā)展迅速,成為提高農(nóng)民收入的一條重要途徑[6]。
果實(shí)品質(zhì)是影響果實(shí)價(jià)值的關(guān)鍵因素,由外觀品質(zhì)和內(nèi)在品質(zhì)組成。另外,礦質(zhì)元素對(duì)果實(shí)品質(zhì)有著重要的影響[7-8]。果實(shí)品質(zhì)性狀的評(píng)價(jià)是篩選優(yōu)異品種的重要依據(jù)。目前,有關(guān)楊梅果實(shí)品質(zhì)性狀評(píng)價(jià)報(bào)道較少,且對(duì)江蘇地區(qū)楊梅傳統(tǒng)品種和引進(jìn)品種的果實(shí)品質(zhì)的綜合評(píng)價(jià)未見(jiàn)報(bào)道。因此,筆者以30個(gè)楊梅品種為樣本,對(duì)楊梅果實(shí)品質(zhì)的相關(guān)指標(biāo)進(jìn)行測(cè)定分析,并進(jìn)行果實(shí)的綜合評(píng)價(jià),旨在為高效、科學(xué)評(píng)價(jià)楊梅果實(shí)品質(zhì)、選育和推廣優(yōu)良楊梅品種提供理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)材料
30個(gè)楊梅品種均是2023年從國(guó)家果梅楊梅種質(zhì)資源圃獲得。每個(gè)品種均隨機(jī)選擇3株楊梅植株,采集大小均一的成熟果實(shí)進(jìn)行果實(shí)品質(zhì)的測(cè)定,取其中一部分果實(shí)相同部位的果肉,并將其分為3次重復(fù),在液氮中快速冷凍后置于-80 ℃冰箱保存,用于果實(shí)內(nèi)在品質(zhì)的測(cè)定。
1.2 試驗(yàn)方法
使用電子天平進(jìn)行楊梅果實(shí)單果質(zhì)量和果核質(zhì)量的稱(chēng)量,可食率/%=(單果質(zhì)量-果核質(zhì)量)/單果質(zhì)量×100。使用游標(biāo)卡尺測(cè)定楊梅果實(shí)的縱徑和橫徑,果形指數(shù)=果實(shí)縱徑/果實(shí)橫徑。使用數(shù)顯水果硬度計(jì)GY-4測(cè)定楊梅果實(shí)硬度,使用ATAGO數(shù)顯測(cè)糖儀PAL-1測(cè)定楊梅果實(shí)中可溶性固形物(TSS)含量。根據(jù)制造商的說(shuō)明書(shū),分別使用蔗糖含量試劑盒、果糖含量試劑盒和葡萄糖含量試劑盒測(cè)定楊梅果實(shí)的蔗糖、果糖和葡萄糖含量(試劑盒均購(gòu)自蘇州科銘生物技術(shù)有限公司)。使用NaOH標(biāo)準(zhǔn)液滴定法測(cè)定楊梅果實(shí)的可滴定酸含量[9]。根據(jù)制造商的說(shuō)明書(shū),分別使用抗壞血酸(AsA)含量測(cè)試盒、檸檬酸試劑盒、花色苷試劑盒、類(lèi)黃酮試劑盒、總酚試劑盒和氨基酸(AA)含量測(cè)試盒測(cè)定楊梅果實(shí)中AsA、檸檬酸、花色苷、類(lèi)黃酮、總酚和氨基酸含量(試劑盒均購(gòu)自蘇州科銘生物技術(shù)有限公司)[10]。使用Rigol L3000高效液相色譜儀測(cè)定楊梅果實(shí)中蘋(píng)果酸含量。楊梅果實(shí)中4種礦質(zhì)營(yíng)養(yǎng)元素鈣(Ca)、鐵(Fe)、鋅(Zn)、硒(Se)含量按照GB 5009.268—2016《食品安全國(guó)家標(biāo)準(zhǔn)食品》方法測(cè)定[8]。
1.3 數(shù)據(jù)分析
使用Excel 2019統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)與整理;使用Windows版本17.0的SPSS Statistics(SPSS Inc.,Chicago,IL)進(jìn)行統(tǒng)計(jì)分析、相關(guān)性分析以及主成分分析。
2 結(jié)果與分析
2.1 不同楊梅品種果實(shí)外觀品質(zhì)分析
如表1所示,紫晶的單果質(zhì)量最大,平均單果質(zhì)量為16.97 g;常熟早紅單果質(zhì)量最小,平均單果質(zhì)量為6.30 g。果形指數(shù)在0.92~1.06之間,可食率分布在83%~94%之間,表明果形指數(shù)和可食率的變異系數(shù)較小,分別為4.08%和3.13%。硬度是反映楊梅果實(shí)口感和商品價(jià)值的重要指標(biāo),其中螳螂子的果實(shí)硬度較大,而王二的果實(shí)硬度較小,變異程度較高,變異系數(shù)為32.64%。
2.2 不同楊梅品種果實(shí)內(nèi)在品質(zhì)分析
果實(shí)的內(nèi)在品質(zhì)方面,不同楊梅品種之間存在著較為豐富的變異。由表2可知,可溶性固形物和可滴定酸含量是影響果實(shí)風(fēng)味的重要因素,30個(gè)楊梅品種中可溶性固形物含量(w,后同)的變化范圍為7.87%~15.27%,可滴定酸含量的變化范圍為1.05%~1.72%,變異程度不高,其中,小黑頭的可溶性固形物含量最高,樹(shù)葉種的可溶性固形物含量最低;木葉梅的可滴定酸含量最高,早熟1號(hào)、荔枝頭和烏梅種的可滴定酸含量最低。葡萄糖、蔗糖和果糖是果實(shí)中主要的可溶性糖[11],其中,楊梅果實(shí)中蔗糖含量最多,其次是果糖和葡萄糖。與可溶性固形物、可滴定酸含量一樣,不同楊梅品種果實(shí)蔗糖和果糖含量的變異程度也不高,變異系數(shù)分別為18.19%和14.88%;葡萄糖含量的變異程度處在中等水平,變異系數(shù)為29.78%。檸檬酸和蘋(píng)果酸是果實(shí)可食用組織中最豐富的有機(jī)酸[11],不同楊梅品種間蘋(píng)果酸含量差異較大,檸檬酸含量差異較小,其中,王二蘋(píng)果酸含量最高,為762.27 μg·g-1,大葉早楊梅蘋(píng)果酸含量最低,為46.41 μg·g-1,檸檬酸含量在39.54~56.88 μmol·g-1之間。氨基酸是果實(shí)中重要的品質(zhì)成分,不同楊梅品種間氨基酸含量的變異程度較高,變異系數(shù)為77.37%,圓葉尖刺早紅的氨基酸含量最高,為1 686.19 μg·g-1,王二的含量最低,為129.15 μg·g-1。
果實(shí)中含有功能性營(yíng)養(yǎng)物質(zhì),對(duì)人體具有保健功能,包括AsA、類(lèi)黃酮、花色苷等酚類(lèi)物質(zhì)[12-14]。30個(gè)楊梅品種中AsA含量的分布范圍為302.41~ 693.09 μg·g-1;花色苷含量的分布范圍為3.64~1 296.42 μg·g-1,表明不同楊梅品種間花色苷的變異系數(shù)較高;類(lèi)黃酮和總酚含量的分布范圍分別為5.42~18.26 mg·g-1和9.29~21.02 mg·g-1。
2.3 不同楊梅品種果實(shí)礦質(zhì)營(yíng)養(yǎng)品質(zhì)分析
礦質(zhì)元素作為果實(shí)營(yíng)養(yǎng)的重要組成部分,對(duì)果實(shí)內(nèi)在品質(zhì)有著重要的影響。如表3所示,礦質(zhì)元素含量在30個(gè)楊梅品種中存在一定差異。果實(shí)的礦質(zhì)元素變異系數(shù)在20.518%~50.562%之間,差異較大,其中Se含量變異系數(shù)較大,Ca、Fe和Zn含量的變異系數(shù)較小。
2.4 不同楊梅品種果實(shí)品質(zhì)指標(biāo)的相關(guān)性分析
為了明確楊梅果實(shí)品質(zhì)各個(gè)指標(biāo)之間的關(guān)系,對(duì)30個(gè)楊梅品種的20項(xiàng)果實(shí)品質(zhì)指標(biāo)進(jìn)行相關(guān)性分析。如表4所示,單果質(zhì)量與蘋(píng)果酸含量呈極顯著正相關(guān),與果實(shí)中Fe元素和Zn元素含量呈顯著負(fù)相關(guān)。果形指數(shù)與AsA含量呈顯著正相關(guān)??墒陈逝c可滴定酸含量呈顯著負(fù)相關(guān)。果實(shí)硬度與葡萄糖含量呈顯著正相關(guān),與Ca含量呈顯著負(fù)相關(guān)。可溶性固形物含量與葡萄糖、果糖和蔗糖含量呈極顯著正相關(guān),表明葡萄糖、果糖和蔗糖含量顯著影響可溶性固形物含量。AsA含量與檸檬酸和花色苷含量呈極顯著正相關(guān)。檸檬酸含量與花色苷含量呈極顯著正相關(guān)。總酚含量與蘋(píng)果酸和花色苷含量呈顯著正相關(guān),與類(lèi)黃酮含量呈極顯著正相關(guān)。Ca含量與果實(shí)硬度和蔗糖含量呈顯著負(fù)相關(guān),與可溶性固形物含量呈極顯著負(fù)相關(guān)。Fe含量與單果質(zhì)量和蔗糖、類(lèi)黃酮以及總酚含量呈顯著負(fù)相關(guān),與AsA、檸檬酸以及花色苷含量呈極顯著負(fù)相關(guān)。Zn含量與單果質(zhì)量、可溶性固形物以及花色苷含量呈顯著負(fù)相關(guān)。另外,Zn含量與Fe含量呈顯著負(fù)相關(guān)。以上分析結(jié)果表明,楊梅品種的各項(xiàng)品質(zhì)指標(biāo)間存在一定的相關(guān)性,且有些指標(biāo)高度相關(guān),因此,可以對(duì)高度相關(guān)的指標(biāo)進(jìn)行篩選,從而簡(jiǎn)化評(píng)價(jià)指標(biāo)體系。
2.5 不同楊梅品種果實(shí)指標(biāo)的主成分分析
依據(jù)以上分析結(jié)果,剔除變異程度較小的果實(shí)品質(zhì)指標(biāo),對(duì)30個(gè)不同楊梅品種的17個(gè)性狀,采用主成分分析法對(duì)17個(gè)指標(biāo)標(biāo)準(zhǔn)化后進(jìn)行降維處理(表5)。以主成分特征值大于1為標(biāo)準(zhǔn),共提取到6個(gè)主成分,主成分1貢獻(xiàn)率達(dá)25.155%,決定第1主成分大小的主要是檸檬酸、AsA和花色苷含量;主成分2貢獻(xiàn)率為20.085%,決定第2主成分大小的主要是可溶性固形物和果糖含量;主成分3貢獻(xiàn)率為13.048%,決定第3主成分大小的主要是類(lèi)黃酮和總酚含量;主成分4貢獻(xiàn)率為8.483%,決定第4主成分大小的主要是蘋(píng)果酸含量;主成分5貢獻(xiàn)率為6.835%,決定第5主成分大小的主要是可滴定酸含量;主成分6貢獻(xiàn)率為6.409%,決定第6主成分大小的主要是Se礦質(zhì)元素含量。第1和第3主成分主要代表果實(shí)功能性物質(zhì),第2、4、5主成分代表果實(shí)的風(fēng)味,第6主成分主要代表果實(shí)礦質(zhì)營(yíng)養(yǎng)。
結(jié)合主成分分析和相關(guān)性分析結(jié)果對(duì)果實(shí)品質(zhì)的核心評(píng)價(jià)指標(biāo)進(jìn)行篩選。在第1主成分中,AsA含量與檸檬酸和花色苷含量呈極顯著正相關(guān),相關(guān)性系數(shù)較高,分別為0.81和0.79(表4),且在第1個(gè)主成分中的權(quán)重最高,因此從第1個(gè)主成分中選擇AsA作為評(píng)價(jià)指標(biāo)。在第2個(gè)主成分中可溶性固形物含量與果糖含量呈極顯著正相關(guān),相關(guān)系數(shù)較高,為0.66(表4),且果糖屬于可溶性糖類(lèi),因此可以選擇可溶性固形物含量作為評(píng)價(jià)指標(biāo)。在第3個(gè)主成分中總酚含量與類(lèi)黃酮含量呈極顯著正相關(guān),相關(guān)系數(shù)較高,為0.89,且總酚含量在第3個(gè)主成分中的權(quán)重最高,因此選擇總酚含量作為評(píng)價(jià)指標(biāo)。在第4和第5個(gè)主成分中分別是蘋(píng)果酸和可滴定酸含量的權(quán)重高,且與其他風(fēng)味指標(biāo)相關(guān)性較低,因此從第4和第5個(gè)主成分中分別選擇蘋(píng)果酸和可滴定酸含量作為評(píng)價(jià)指標(biāo)。另外,第6個(gè)主成分中是Se礦質(zhì)元素含量的權(quán)重高,因此選擇Se含量作為果實(shí)礦質(zhì)元素的評(píng)價(jià)指標(biāo)。
2.6 不同楊梅品種果實(shí)品質(zhì)的綜合評(píng)價(jià)
將楊梅果實(shí)品質(zhì)指標(biāo)數(shù)值依次設(shè)為X1、X2、X3,…,X17,使用SPSS軟件對(duì)楊梅果實(shí)的各個(gè)品質(zhì)指標(biāo)進(jìn)行標(biāo)準(zhǔn)化。根據(jù)表6中的特征向量與各個(gè)相對(duì)應(yīng)指標(biāo)的標(biāo)準(zhǔn)化數(shù)據(jù)乘積再相加,可以得出6個(gè)主成分的得分表達(dá)式如下:F1=0.164 X1+0.208 X2+0.137 X3+ 0.060 X4+0.119 X5+0.260 X6+0.352 X7+0.188 X8+0.334 X9-0.148 X10+0.395 X11+0.221 X12+0.226 X13-0.030 X14-0.402 X15-0.337 X16-0.021 X17;F2=-0.150 X1+0.379 X2+0.005 X3+0.431 X4+0.371 X5+0.371 X6-0.071 X7-0.189 X8-0.036 X9-0.166 X10-0.060 X11-0.335 X12-0.349 X13-0.213 X14+0.025 X15-0.030 X16+0.135 X17;F3 =-0.368 X1-0.125 X2+0.193 X3-0.034 X4-0.187 X5-0.072 X6+0.367 X7-0.333 X8+0.309 X9-0.317 X10+0.170 X11-0.126 X12-0.141 X13+0.411 X14+0.122 X15+0.163 X16+0.234 X17;F4 =-0.393 X1+0.148 X2+0.685 X3-0.206 X4+0.171 X5+0.043 X6-0.110 X7+0.159 X8-0.007 X9+0.109 X10+0.050 X11+0.173 X12+0.120 X13-0.261 X14+0.111 X15+0.305 X16-0.109 X17;F5 =-0.315 X1+0.086 X2-0.189 X3+ 0.345 X4-0.146 X5+0.055 X6-0.078 X7-0.450 X8+0.123 X9+0.438 X10+0.007 X11+0.335 X12+0.389 X13-0.091 X14-0.016 X15-0.024 X16+ 0.162 X17;F6 = 0.101 X1-0.281 X2-0.032 X3-0.017 X4+0.299 X5+0.058 X6-0.122 X7+0.168 X8-0.070 X9-0.249 X10-0.056 X11+0.234 X12+0.191 X13-0.068 X14+0.078 X15+0.096 X16+0.770 X17,以主成分方差貢獻(xiàn)率作為權(quán)數(shù),建立果實(shí)品質(zhì)的綜合評(píng)價(jià)方程:F綜=0.252 F1+0.201 F2+0.13 F3+0.085 F4+0.068 F5+0.064 F6,根據(jù)以上綜合評(píng)價(jià)方程可以計(jì)算出30個(gè)楊梅品種果實(shí)品質(zhì)的綜合得分,如表7所示,得分由高到低分別是常熟早紅、木葉梅、小黑頭、大葉細(xì)蒂、小葉細(xì)蒂、早熟1號(hào)、西山早熟、洞庭8號(hào)、紫晶、王二、螞蟻種、螳螂子、早紅、風(fēng)仙紅、烏梅種、荔枝頭、香楊梅、短柄甜山、早佳、桃紅、石家種、西山粉紅、葉一、東山浪蕩子、硬浪蕩子、樹(shù)葉種、馬山烏梅、圓葉尖刺早紅、大葉早楊梅、西山白楊梅。綜合得分越高,表明該楊梅品種的綜合品質(zhì)越好。
3 討 論
果實(shí)的大小等外觀品質(zhì),糖、酸等內(nèi)在品質(zhì),以及果實(shí)中的礦質(zhì)營(yíng)養(yǎng)元素共同影響了果實(shí)的綜合品質(zhì),果實(shí)品質(zhì)的好壞決定了其在市場(chǎng)上的競(jìng)爭(zhēng)力[15-17]。主成分分析是將多個(gè)指標(biāo)通過(guò)線性變換選出較少的綜合因子來(lái)代表眾多的因子。目前,主成分分析法是常用的果品評(píng)價(jià)方法,已廣泛應(yīng)用于多種水果品質(zhì)的綜合評(píng)價(jià)[18-19]。魏烈權(quán)等[18]通過(guò)主成分分析,篩選出了評(píng)價(jià)優(yōu)質(zhì)釀酒葡萄品種的參考指標(biāo)。趙瓊玲等[19]通過(guò)總糖、總酸含量等10項(xiàng)指標(biāo)來(lái)評(píng)價(jià)21份余甘子果實(shí)品質(zhì),通過(guò)主成分分析表明,果實(shí)橫徑及總酚、總酸和維生素C含量可以作為余甘子果實(shí)品質(zhì)的關(guān)鍵指標(biāo)。
筆者通過(guò)單果質(zhì)量、可溶性固形物和可滴定酸含量等20項(xiàng)指標(biāo)評(píng)價(jià)30個(gè)楊梅果實(shí)的品質(zhì)特性,發(fā)現(xiàn)楊梅果實(shí)品質(zhì)指標(biāo)間存在著較為豐富的變異,且存在一定的相關(guān)性,主成分分析表明,影響果實(shí)品質(zhì)的主要因素是檸檬酸、AsA、花色苷、可溶性固形物、果糖、類(lèi)黃酮、總酚、蘋(píng)果酸、可滴定酸和Se礦質(zhì)元素含量。結(jié)合相關(guān)性分析和主成分分析結(jié)果,可簡(jiǎn)化果實(shí)品質(zhì)評(píng)價(jià)指標(biāo)。主成分分析法中只涉及理化指標(biāo)對(duì)品質(zhì)綜合評(píng)價(jià)的影響,具有一定的局限性,在今后的楊梅品種果實(shí)品質(zhì)評(píng)價(jià)工作中,可采用多種評(píng)價(jià)方法對(duì)楊梅果實(shí)品質(zhì)指標(biāo)進(jìn)行不同權(quán)重的賦值,進(jìn)行更完整的綜合評(píng)價(jià),滿(mǎn)足消費(fèi)者多樣化的果品需求。
4 結(jié) 論
筆者在本研究中通過(guò)差異分析、相關(guān)性分析和主成分分析3種分析方法對(duì)30個(gè)楊梅品種果實(shí)品質(zhì)進(jìn)行綜合評(píng)價(jià),篩選出可溶性固形物、可滴定酸、抗壞血酸、蘋(píng)果酸、總酚和Se礦質(zhì)元素含量作為楊梅果實(shí)品質(zhì)性狀評(píng)價(jià)的核心指標(biāo),并對(duì)30個(gè)楊梅品種綜合品質(zhì)的優(yōu)劣進(jìn)行綜合得分排序,為消費(fèi)者選擇品質(zhì)優(yōu)良的楊梅品種提供了參考依據(jù)。
參考文獻(xiàn) References:
[1] 梁森苗. 楊梅栽培實(shí)用技術(shù)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2019:2.
LIANG Senmiao. Practical techniques for bayberry cultivation[M]. Beijing:China Agriculture Press,2019:2.
[2] 朱奕凡,王妍,汪國(guó)云,周超超,焦云,甘可欣,孫德利,朱長(zhǎng)青,賈惠娟,高中山. 不同楊梅品種果實(shí)游離氨基酸組成分析[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2021,47(6):736-742.
ZHU Yifan,WANG Yan,WANG Guoyun,ZHOU Chaochao,JIAO Yun,GAN Kexin,SUN Deli,ZHU Changqing,JIA Huijuan,GAO Zhongshan. Analysis of free amino acid composition in fruits of different bayberry (Morella rubra) varieties[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2021,47(6):736-742.
[3] 李偉,郜海燕,陳杭君,吳偉杰,房祥軍. 基于主成分分析的不同品種楊梅果實(shí)綜合品質(zhì)評(píng)價(jià)[J]. 中國(guó)食品學(xué)報(bào),2017,17(6):161-171.
LI Wei,GAO Haiyan,CHEN Hangjun,WU Weijie,F(xiàn)ANG Xiangjun. Evaluation of comprehensive quality of different varieties of bayberry based on principal components analysis[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(6):161-171.
[4] 張淑文,梁森苗,鄭錫良,任海英,朱婷婷,戚行江. 楊梅優(yōu)株果實(shí)品質(zhì)的主成分分析及綜合評(píng)價(jià)[J]. 果樹(shù)學(xué)報(bào),2018,35(8):977-986.
ZHANG Shuwen,LIANG Senmiao,ZHENG Xiliang,REN Haiying,ZHU Tingting,QI Xingjiang. Principal component analysis and comprehensive evaluation of fruit quality in some advanced selections of Chinese bayberry[J]. Journal of Fruit Science,2018,35(8):977-986.
[5] 陳慧,唐威,費(fèi)艷. 楊梅種質(zhì)資源遺傳多樣性研究進(jìn)展[J]. 現(xiàn)代園藝,2016(3):5-7.
CHEN Hui,TANG Wei,F(xiàn)EI Yan. Progress on genetic diversity of bayberry germplasm resources[J]. Contemporary Horticulture,2016(3):5-7.
[6] 黃穎宏,郄紅麗,王鵬凱. 8個(gè)優(yōu)良楊梅品種在江蘇蘇州引種表現(xiàn)[J]. 安徽農(nóng)業(yè)科學(xué),2020,48(1):55-56.
HUANG Yinghong,QIE Hongli,WANG Pengkai. Introduction performance of eight excellent Myrica rubra varieties in Suzhou,Jiangsu Province[J]. Journal of Anhui Agricultural Sciences,2020,48(1):55-56.
[7] 郭清云,陳哲,吳鳳芝,王祥和,范鴻雁,馮學(xué)杰,胡福初. 5份榴蓮蜜種質(zhì)果實(shí)品質(zhì)的主成分分析及綜合評(píng)價(jià)[J]. 中國(guó)南方果樹(shù),2022,51(1):106-111.
GUO Qingyun,CHEN Zhe,WU Fengzhi,WANG Xianghe,F(xiàn)AN Hongyan,F(xiàn)ENG Xuejie,HU Fuchu. Principal component analysis and comprehensive evaluation of the fruit quality of five cempedak germplasm[J]. South China Fruits,2022,51(1):106-111.
[8] 馬玉娥,李靜,朱寧,朱靖蓉,劉河疆. 基于灰色關(guān)聯(lián)度及因子分析法的新疆葡萄礦質(zhì)營(yíng)養(yǎng)評(píng)價(jià)[J]. 陜西林業(yè)科技,2023,51(2):1-5.
MA Yue,LI Jing,ZHU Ning,ZHU Jingrong,LIU Hejiang. Grey correlation degree and factor analysis of grape mineral nutrient elements in Xinjiang[J]. Shaanxi Forest Science and Technology,2023,51(2):1-5.
[9] 王學(xué)奎. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 3版. 北京:高等教育出版社,2015.
WANG Xuekui. Principles and techniques of plant physiological biochemical experiment[M]. 3nd ed. Beijing:Higher Education Press,2015.
[10] 孫佩光,程志號(hào),孫長(zhǎng)君,吳瓊,郭素霞,郭剛,李洪立. 16份火龍果種質(zhì)資源果實(shí)營(yíng)養(yǎng)品質(zhì)分析[J]. 分子植物育種,2022,20(19):6585-6592.
SUN Peiguang,CHENG Zhihao,SUN Changjun,WU Qiong,GUO Suxia,GUO Gang,LI Hongli. Analysis of fruit nutritional quality of 16 pitaya germplasm resources[J]. Molecular Plant Breeding,2022,20(19):6585-6592.
[11] 趙永紅,李憲利. 果實(shí)中糖酸積累機(jī)理研究進(jìn)展[J]. 農(nóng)業(yè)科技通訊,2009(8):110-112.
ZHAO Yonghong,LI Xianli. Progress on the mechanism of sugar-acid accumulation in fruits[J]. Bulletin of Agricultural Science and Technology,2009(8):110-112.
[12] 陳衛(wèi)芳,袁偉玲,劉志雄,嚴(yán)承歡,陳磊夫,張文格. 植物抗壞血酸合成調(diào)控研究進(jìn)展[J]. 植物生理學(xué)報(bào),2023,59(3):481-489.
CHEN Weifang,YUAN Weiling,LIU Zhixiong,YAN Chenghuan,CHEN Leifu,ZHANG Wenge. Research progress on regulation of ascorbic acid synthesis in plant[J]. Plant Physiology Journal,2023,59(3):481-489.
[13] 司誠(chéng),楊世鵬,孫祝,張廣楠,鐘啟文. 基于轉(zhuǎn)錄組和代謝組解析香瓜茄果實(shí)類(lèi)黃酮代謝差異[J]. 華北農(nóng)學(xué)報(bào),2023,38(1):53-62.
SI Cheng,YANG Shipeng,SUN Zhu,ZHANG Guangnan,ZHONG Qiwen. Analysis of flavonoid metabolism in different cultivated pepino fruits based on transcriptome and metabolome[J]. Acta Agriculturae Boreali-Sinica,2023,38(1):53-62.
[14] 趙益梅,劉偉強(qiáng),崔萍,張曉煜,夏永秀,劉旭. 賀蘭山東麓‘馬瑟蘭葡萄果實(shí)花色苷和原花色素特性分析[J]. 西北植物學(xué)報(bào),2023,43(10):1683-1693.
ZHAO Yimei,LIU Weiqiang,CUI Ping,ZHANG Xiaoyu,XIA Yongxiu,LIU Xu. Analysis of anthocyanin and proanthocyanidin characteristics of Marselan wine grapes in the eastern foot of Helan Mountain[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(10):1683-1693.
[15] 林媚,吳韶輝. 浙江省12個(gè)柑橘品種果實(shí)品質(zhì)分析與評(píng)價(jià)[J]. 浙江農(nóng)業(yè)科學(xué),2019,60(6):963-966.
LIN Mei,WU Shaohui. Analysis and evaluation on fruit quality of 12 citrus varieties[J]. Journal of Zhejiang Agricultural Sciences,2019,60(6):963-966.
[16] 王思威,孫海濱,常虹,鐘聲,趙俊生,王瀟楠. 基于主成分分析綜合評(píng)價(jià)白糖罌荔枝果實(shí)品質(zhì)[J]. 果樹(shù)學(xué)報(bào),2022,39(4):610-620.
WANG Siwei,SUN Haibin,CHANG Hong,ZHONG Sheng,ZHAO Junsheng,WANG Xiaonan. Comprehensive evaluation of fruit quality of Baitangying litchi based on principal component analysis[J]. Journal of Fruit Science,2022,39(4):610-620.
[17] 樸哲虎,石巖,程金良,劉冰雁,楊林先,李雄. 蘋(píng)果梨果實(shí)礦質(zhì)元素含量與品質(zhì)的相關(guān)性分析[J]. 安徽農(nóng)業(yè)科學(xué),2018,46(20):159-161.
PIAO Zhehu,SHI Yan,CHENG Jinliang,LIU Bingyan,YANG Linxian,LI Xiong. Correlation analysis of mineral element content and quality of apple pear fruit[J]. Journal of Anhui Agricultural Sciences,2018,46(20):159-161.
[18] 魏烈權(quán),盧世雄,馬宗桓,郭銳,毛娟. 基于主成分分析法的嘉峪關(guān)10種釀酒葡萄品種品質(zhì)評(píng)價(jià)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,55(3):90-96.
WEI Liequan,LU Shixiong,MA Zonghuan,GUO Rui,MAO Juan. Quality evaluation of 10 wine grape varieties in Jiayuguan based on principal component analysis[J]. Journal of Gansu Agricultural University,2020,55(3):90-96.
[19] 趙瓊玲,韓學(xué)琴,沙毓滄,羅會(huì)英,錢(qián)坤建,鄧紅山,金杰. 21份余甘子果實(shí)品質(zhì)性狀的分析和評(píng)價(jià)[J]. 中國(guó)熱帶農(nóng)業(yè),2021(6):27-32.
ZHAO Qiongling,HAN Xueqin,SHA Yucang,LUO Huiying,QIAN Kunjian,DENG Hongshan,JIN Jie. Analysis and evaluation of the fruit quality characters of 21 Phyllanthus emblica L.[J]. China Tropical Agriculture,2021(6):27-32.