丁琳 周燕 劉珊珊 劉南池 馬瑞霞
[摘要]目的探討煙酰胺腺嘌呤二核苷酸依賴(lài)的去乙酰化酶1(Sirt1)對(duì)高糖誘導(dǎo)的足細(xì)胞外泌體釋放的影響。方法將永生化小鼠足細(xì)胞MPC5分為正常糖組(5.5 mmol/L葡萄糖,A組)、高滲組(5.5 mmol/L葡萄糖+24.5 mmol/L甘露醇,B組)、高糖組(30.0 mmol/L葡萄糖,C組)、高糖+Sirt1過(guò)表達(dá)慢病毒轉(zhuǎn)染組(Sirt1過(guò)表達(dá)慢病毒轉(zhuǎn)染+30.0 mmol/L葡萄糖,D組)、高糖+陰性慢病毒轉(zhuǎn)染組(陰性慢病毒轉(zhuǎn)染+30.0 mmol/L葡萄糖,E組)、高糖+外泌體分泌抑制劑組(GW4869+30.0 mmol/L葡萄糖,F(xiàn)組)6組。采用免疫印跡法檢測(cè)各組細(xì)胞Sirt1、足細(xì)胞裂孔膜蛋白(Nephrin、Podocin)及CD63、CD81、Alix的表達(dá)水平,采用實(shí)時(shí)熒光定量PCR(RT-qPCR)檢測(cè)D、E組細(xì)胞Sirt1 mRNA表達(dá)水平,使用透射電子顯微鏡觀察足細(xì)胞外泌體形態(tài),采用納米粒子跟蹤分析技術(shù)檢測(cè)外泌體的粒徑和濃度。結(jié)果RT-qPCR結(jié)果顯示,D組足細(xì)胞Sirt1 mRNA相對(duì)表達(dá)量顯著高于E組(t=14.580,P<0.01)。納米粒子跟蹤分析及免疫印跡結(jié)果顯示,A~C組間足細(xì)胞Sirt1、Nephrin和Podocin蛋白相對(duì)表達(dá)量比較差異均具有顯著性(F=49.84~106.40,P<0.01);與A組相比,C組足細(xì)胞外泌體分泌顯著增加(t=14.550,P<0.01),Nephrin、Podocin、Sirt1相對(duì)表達(dá)量顯著減少(t=7.446~15.110,P<0.01);與E組相比,D組足細(xì)胞外泌體分泌顯著減少(t=74.610,P<0.01),Nephrin、Podocin、Sirt1相對(duì)表達(dá)量顯著增加(t=4.657~32.860,P<0.05);與C組相比,F(xiàn)組足細(xì)胞外泌體分泌顯著減少(t=16.300,P<0.05),Nephrin、Podocin相對(duì)表達(dá)量顯著增加(t=3.790、8.151,P<0.01),Sirt1表達(dá)水平無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05)。結(jié)論高糖誘導(dǎo)的足細(xì)胞Sirt1減少可促進(jìn)外泌體分泌及足細(xì)胞損傷。
[關(guān)鍵詞]糖尿病腎??;血糖;足細(xì)胞;外泌體;抗衰老酶1
[中圖分類(lèi)號(hào)]R587.24[文獻(xiàn)標(biāo)志碼]A
Effect of Sirt1 on high glucose-induced exosome release from podocytes? DING Lin, ZHOU Yan, LIU Shanshan, LIU Nanchi, MA Ruixia(Department of Nephrology, The Affiliated Hospital of Qingdao Univesity, Qingdao 266003, China)
[ABSTRACT]ObjectiveTo investigate the effect of nicotinamide adenine dinucleotide-dependent deacetylase 1 (Sirt1) on high glucose-induced exosome release from podocytes. MethodsImmortalized mouse podocytes MPC5 were divided into six groups: normal glucose group (5.5 mmol/L glucose, group A), high mannitol group (5.5 mmol/L glucose+24.5 mmol/L mannitol, group B), high glucose group (30.0 mmol/L glucose, group C), high glucose+Sirt1-overexpressed lentivirus transfection group (Sirt1-overexpressed lentivirus transfection+30.0 mmol/L glucose, group D), high glucose+negative lentivirus transfection group (negative lentivirus transfection+30.0 mmol/L glucose, group E), and high glucose+exosome secretion inhibitor group (GW4869+30.0 mmol/L glucose, group F). Western blot was used to analyze the expression levels of Nephrin, Podocin, Sirt1, CD63, CD81, and Alix in each group. Real-time quantitative polymerase chain reaction was used to analyze the expression level of Sirt1 mRNA in D and E group. The morphology of podocyte exosomes was observed by a transmission electron microscope. The particle size and concentration of exosomes were determined by nanoparticle tracking analysis. ResultsThe results of RT-qPCR showed that the relative expression of Sirt1 mRNA was significantly increased in group D compared with that in group E (t=14.580,P<0.01). The results of nanoparticle tracking analysis and Western blot showed that the relative expression of Sirt1, Nephrin, and Podocin proteins in podocytes among groups A to C was significantly different (F=49.84-106.40,P<0.01). Compared with group A, group C had significantly increased secretion of podocyte exosomes (t=14.550,P<0.01) and significantly reduced expression of Sirt1, Nephrin, and Podocin (t=7.446-15.110,P<0.01). Compared with group E, group D had significantly reduced release of podocyte exosomes (t=74.610,P<0.01) and significantly increased relative expression of Sirt1, Nephrin, and Podocin (t=4.657-32.860,P<0.05). Compared with group C, group F had significantly reduced release of podocyte exosomes (t=16.300,P<0.05) and significantly increased relative expression of Nephrin and Podocin (t=3.790,8.151,P<0.01), but showed no significant change in the expression level of Sirt1 (P>0.05). ConclusionLoss of Sirt1 in high glucose-treated podocytes promotes exosome secretion and podocyte injury.
[KEY WORDS]Diabetic nephropathies; Blood glucose; Podocytes; Exosomes; Sirtuin
糖尿病腎?。╠iabetic nephropathy,DN)是糖尿病最常見(jiàn)并發(fā)癥,已成為導(dǎo)致慢性腎臟病和終末期腎病的首要原因[1]。DN以腎小球肥大、腎小球基底膜增厚、系膜區(qū)擴(kuò)張、足細(xì)胞損傷為特征性表現(xiàn),其中足細(xì)胞損傷是DN發(fā)病的中心環(huán)節(jié)[2]。外泌體是細(xì)胞主動(dòng)分泌的直徑約為50~150 nm的均一膜性囊泡結(jié)構(gòu),其可攜帶豐富的生物活性分子,能夠在可溶性分子之外介導(dǎo)細(xì)胞間新型對(duì)話(huà)[3]。既往研究發(fā)現(xiàn)在高糖環(huán)境刺激下,足細(xì)胞分泌外泌體增加,但其具體機(jī)制尚不清楚[4]。煙酰胺腺嘌呤二核苷酸依賴(lài)的去乙?;?(Sirt1)是去乙?;讣易宄蓡T,可促進(jìn)高糖環(huán)境下腎臟細(xì)胞穩(wěn)態(tài),對(duì)DN發(fā)病時(shí)的腎細(xì)胞氧化應(yīng)激、細(xì)胞凋亡、腎組織炎癥、腎臟纖維化等有改善作用[5]。但Sirt1是否影響DN足細(xì)胞外泌體分泌目前尚無(wú)研究報(bào)道。本研究擬通過(guò)體外實(shí)驗(yàn)闡明Sirt1在DN足細(xì)胞外泌體分泌中的作用。
1材料與方法
1.1細(xì)胞、試劑與儀器
永生化小鼠足細(xì)胞MPC5由東南大學(xué)腎臟病研究所惠贈(zèng)。ECL化學(xué)發(fā)光底物購(gòu)買(mǎi)于北京Biosharp公司,IFN-γ購(gòu)自美國(guó)PeproTech公司,慢病毒購(gòu)買(mǎi)于上海吉瑪基因,直標(biāo)抗體GAPDH、β-actin購(gòu)買(mǎi)于上海Abway公司,Sirt1、Nephrin抗體購(gòu)自英國(guó)Abcam公司,Podocin抗體購(gòu)自美國(guó)Invitrogen公司,CD63、CD81、Alix抗體購(gòu)買(mǎi)于上海Santa Cruz公司。Nano-drop 2000購(gòu)買(mǎi)于美國(guó)Thermo Fisher公司,逆轉(zhuǎn)錄儀購(gòu)自德國(guó)Eppendorf公司。
1.2足細(xì)胞分組與處理
足細(xì)胞MPC5復(fù)蘇后以Mundel法[6]培養(yǎng),分為以下6組:①正常糖組(A組):在含5.5 mmol/L葡萄糖的RPMI 1640培養(yǎng)基當(dāng)中培養(yǎng)48 h;②高滲組(B組):在含5.5 mmol/L葡萄糖和24.5 mmol/L甘露醇的RPMI 1640培養(yǎng)基中培養(yǎng)48 h;③高糖組(C組):在含30.0 mmol/L葡萄糖的RPMI 1640培養(yǎng)基中培養(yǎng)48 h;④高糖+Sirt1過(guò)表達(dá)慢病毒轉(zhuǎn)染組(D組):足細(xì)胞轉(zhuǎn)染Sirt1過(guò)表達(dá)慢病毒后,在含30.0 mmol/L葡萄糖的RPMI 1640培養(yǎng)基中培養(yǎng)48 h;⑤高糖+陰性慢病毒轉(zhuǎn)染組(E組):足細(xì)胞轉(zhuǎn)染陰性慢病毒后在含30.0 mmol/L葡萄糖的RPMI 1640培養(yǎng)基中培養(yǎng)48 h;⑥高糖+外泌體分泌抑制劑組(F組):在含有30.0 mmol/L葡萄糖的RPMI 1640培養(yǎng)基中加GW4869后培養(yǎng)48 h。
1.3足細(xì)胞外泌體提取與鑒定
將A、C、D、E、F組足細(xì)胞在不含胎牛血清的培養(yǎng)基中培養(yǎng)48 h后,分別收集等量細(xì)胞上清液,使用差速離心法[7]分離足細(xì)胞外泌體。使用透射電子顯微鏡觀察外泌體形態(tài),然后使用納米粒子跟蹤分析(NTA)技術(shù)檢測(cè)外泌體粒徑和濃度。
1.4免疫印跡法檢測(cè)各組足細(xì)胞Nephrin、Podocin、Sirt1及外泌體相關(guān)標(biāo)記蛋白相對(duì)表達(dá)量
RIPA裂解液、PMSF、堿性磷酸酶抑制劑按照100∶1∶1比例配置后用于提取各組培養(yǎng)48 h的足細(xì)胞總蛋白,采用BCA法測(cè)定蛋白的濃度,在提取的總蛋白中加入上樣緩沖液和雙蒸水,制成等濃度等體積的蛋白樣本,充分混勻,100 ℃水浴加熱5 min。將處理好的蛋白樣本經(jīng)聚丙烯酰胺凝膠電泳后轉(zhuǎn)移至聚偏氟乙烯膜上,以快速封閉液室溫封閉15 min以后,分別加入一抗(Nephrin、Podocin、Sirt1、CD63、CD81及Alix以1∶1 000稀釋?zhuān)睒?biāo)GAPDH、β-actin以1∶10 000稀釋?zhuān)? ℃孵育過(guò)夜。洗膜后加入對(duì)應(yīng)的二抗(以1∶3 000稀釋?zhuān)?,室溫孵? h,再洗膜以后使用超敏ECL化學(xué)發(fā)光液顯影。采用Image J軟件檢測(cè)各個(gè)目的條帶的灰度值,以β-actin為內(nèi)參蛋白,計(jì)算各目標(biāo)蛋白相對(duì)表達(dá)量。每組實(shí)驗(yàn)重復(fù)3次,結(jié)果取均值。
1.5RT-qPCR法檢測(cè)D、E組足細(xì)胞Sirt1 mRNA表達(dá)水平
提取D、E組培養(yǎng)48 h的足細(xì)胞總RNA后,用Nano-drop 2000檢測(cè)兩組足細(xì)胞RNA的濃度和純度,用HiScript Ⅲ RT SuperMix在逆轉(zhuǎn)錄儀中逆轉(zhuǎn)錄成mRNA,然后在7300 RT-qPCR檢測(cè)系統(tǒng)中使用PCR試劑盒進(jìn)行檢測(cè)。實(shí)驗(yàn)所用引物序列由上海捷瑞生物工程有限公司設(shè)計(jì)合成,Sirt1引物的序列為F:5′-GCTGACGACTTCGACGACG-3′,R:5′-TCGGTCAACAGGAGGTTGTCT-3′,β-actin引物序列為F:5′-GGGAAATCGTGCGTGAC-3′,R:5′-AGGCTGGAAAAGAGCCT-3′。以β-actin作為內(nèi)參基因,采用2-△△CT計(jì)算細(xì)胞Sirt1 mRNA的相對(duì)表達(dá)水平。
1.6統(tǒng)計(jì)學(xué)分析
使用GraphPad Prism 8.0進(jìn)行數(shù)據(jù)分析,計(jì)量資料以±s表示,兩組間比較采用獨(dú)立樣本t檢驗(yàn),多組間比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗(yàn)。以P<0.05為差異有顯著意義。
2結(jié)果
2.1各組足細(xì)胞Sirt1、Nephrin、Podocin表達(dá)水平比較
RT-qPCR結(jié)果顯示,D、E組Sirt1 mRNA相對(duì)表達(dá)水平分別為15.50±2.43、1.01±0.17,D組足細(xì)胞Sirt1 mRNA 相對(duì)表達(dá)量顯著高于E組(t=14.580,P<0.05)。免疫印跡法分析顯示,A~C多組間足細(xì)胞Sirt1、Nephrin和Podocin蛋白相對(duì)表達(dá)量比較差異均有顯著性(F=49.84~106.40,P<0.01);與A組相比,C組足細(xì)胞Sirt1、Nephrin以及Podocin相對(duì)表達(dá)量顯著降低(t=7.446~15.110,P<0.01),B組足細(xì)胞Sirt1、Nephrin和Podocin相對(duì)表達(dá)量無(wú)顯著差異(P>0.05);與E組相比,D組足細(xì)胞Sirt1、Nephrin和Podocin相對(duì)表達(dá)量均顯著升高(t=4.657~32.860,P<0.05);與C組相比,F(xiàn)組足細(xì)胞Nephrin、Podocin相對(duì)表達(dá)量顯著升高(t=3.790、8.151,P<0.01),Sirt1表達(dá)水平無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05)。見(jiàn)表1、圖1。
2.2足細(xì)胞外泌提取及體分泌情況
透射電鏡下可見(jiàn)各組足細(xì)胞外泌體呈現(xiàn)典型的茶托樣結(jié)構(gòu)(圖2A)。NTA檢測(cè)結(jié)果顯示,A、C、D、E、F組足細(xì)胞外泌體濃度分別為(61.30±1.50)×106/L、(87.00±2.60)×106/L、(21.2±0.30)×106/L、(66.00±1.00)×106/L和(6.40±0.46)×106/L;與A組相比,C組足細(xì)胞外泌體分泌顯著增加(t=14.550,P<0.01);與E組相比,D組足細(xì)胞外泌體分泌顯著減少(t=74.610,P<0.01);與C組相比,F(xiàn)組足細(xì)胞外泌體分泌量顯著減少(t=16.300,P<0.05)。免疫印跡法結(jié)果顯示,與A組相比,C組足細(xì)胞外泌體相關(guān)標(biāo)志蛋白Alix、CD63以及CD81表達(dá)增加(圖2B);與E組相比,D組足細(xì)胞Alix、CD63以及CD81表達(dá)減少(圖2C)。
3討論
DN是糖尿病患者嚴(yán)重微血管并發(fā)癥,是一種慢性進(jìn)行性疾病,是終末期腎臟病的常見(jiàn)病因,近年來(lái)其發(fā)病率與日俱增[6]。目前DN的發(fā)病機(jī)制尚不完全清楚。研究顯示,足細(xì)胞是位于腎小球基底膜外表面的終末分化細(xì)胞,在維持腎小球?yàn)V過(guò)屏障的結(jié)構(gòu)和功能方面發(fā)揮重要作用[8]。越來(lái)越多的證據(jù)表明,腎小球足細(xì)胞在DN的發(fā)病過(guò)程中起關(guān)鍵作用[9-12],但其具體機(jī)制仍不十分清楚。
外泌體是一種直徑為50~150 nm的細(xì)胞外囊泡,通過(guò)細(xì)胞內(nèi)吞過(guò)程形成,并且由細(xì)胞內(nèi)多泡體(MVBs)釋放[3]。越來(lái)越多的證據(jù)表明,外泌體介導(dǎo)細(xì)胞間通訊,參與各種腎臟疾病的發(fā)生發(fā)展[13-14]。由于足細(xì)胞可分泌含有多種因子的外泌體[15-16],且足細(xì)胞功能受外泌體的調(diào)節(jié)[17-18],因此外泌體分泌異??赡苁荄N足細(xì)胞功能障礙的重要機(jī)制。既往研究發(fā)現(xiàn),在體外高糖環(huán)境刺激下,足細(xì)胞分泌外泌體增加。此外鏈脲佐菌素誘導(dǎo)6、12周小鼠體內(nèi)尿足細(xì)胞外泌體分泌增加,且先于尿蛋白升高[4]。但DN足細(xì)胞外泌體分泌增加的具體機(jī)制尚不清楚,本研究發(fā)現(xiàn)其可能與Sirt1表達(dá)的減少有關(guān)。
Sirt1是煙酰胺腺嘌呤二核苷酸依賴(lài)的去乙?;讣易宄蓡T,在機(jī)體衰老、炎癥中發(fā)揮著重要作用[19]。研究發(fā)現(xiàn),Sirt1可維持高糖環(huán)境下腎臟細(xì)胞的穩(wěn)態(tài),對(duì)DN發(fā)病時(shí)的腎細(xì)胞氧化應(yīng)激、細(xì)胞凋亡、腎組織炎癥、腎臟纖維化等有改善作用[20]。既往研究表明,Sirt1在DN患者足細(xì)胞和腎小球細(xì)胞中表達(dá)降低,且糖尿病小鼠Sirt1全身敲除及足細(xì)胞特異性敲除均可加速DN的進(jìn)展[21]。此外,Sirt1活性增高可以預(yù)防糖尿病誘導(dǎo)的足細(xì)胞損傷,并有效緩解DN的進(jìn)展[22]。關(guān)于Sirt1與外泌體分泌間的關(guān)系,LATIFKAR等[23]發(fā)現(xiàn)在乳腺癌細(xì)胞中,Sirt1的缺失可能通過(guò)影響V型質(zhì)子ATP酶催化亞基A(ATP6V1A)mRNA的穩(wěn)定性,來(lái)影響溶酶體膜上ATP6V1A的表達(dá),造成溶酶體酸化功能障礙,進(jìn)而引起MVBs與質(zhì)膜融合,增加外泌體釋放。上述過(guò)程中能夠在細(xì)胞水平上促進(jìn)癌細(xì)胞的浸潤(rùn),但是Sirt1在DN足細(xì)胞外泌體分泌中的作用尚未見(jiàn)報(bào)道。在本研究中高糖誘導(dǎo)的足細(xì)胞Nephrin、Podocin以及Sirt1表達(dá)減少,足細(xì)胞外泌體分泌增加。對(duì)足細(xì)胞轉(zhuǎn)染Sirt1過(guò)表達(dá)慢病毒后,發(fā)現(xiàn)高糖環(huán)境下足細(xì)胞外泌體釋放減少,Nephrin、Podocin及Sirt1表達(dá)增加,足細(xì)胞損傷減輕。此外,外泌體釋放抑制劑GW4869干預(yù)高糖誘導(dǎo)的足細(xì)胞后,足細(xì)胞損傷也有所減輕。以上結(jié)果提示Sirt1可能通過(guò)抑制外泌體分泌減輕DN足細(xì)胞損傷,但上述結(jié)論還需進(jìn)一步體內(nèi)實(shí)驗(yàn)驗(yàn)證,且需對(duì)Sirt1下游機(jī)制進(jìn)行探討。
綜上所述,本研究發(fā)現(xiàn)高糖誘導(dǎo)的足細(xì)胞外泌體分泌增加與Sirt1的減少有關(guān),而過(guò)表達(dá)Sirt1可減輕足細(xì)胞的損傷,減少外泌體分泌。本研究首次研究了Sirt1與DN足細(xì)胞外泌體分泌的關(guān)系,補(bǔ)充了足細(xì)胞外泌體釋放的具體分子機(jī)制,為DN治療新靶點(diǎn)提供了理論依據(jù)。
作者聲明:丁琳、馬瑞霞參與了研究設(shè)計(jì);丁琳、周燕、劉珊珊、劉南池、馬瑞霞參與了論文的寫(xiě)作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]MA R C W. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018,61(6):1249-1260.
[2]KATO M, NATARAJAN R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory[J]. Nat Rev Nephrol, 2019,15(6):327-345.
[3]KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020,367(6478):eaau6977.
[4]BURGER D, THIBODEAU J F, HOLTERMAN C E, et al. Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury[J]. J Am Soc Nephrol, 2014,25(7):1401-1407.
[5]WANG S, YANG Y K, HE X Y, et al. Cdk5-mediated phosphorylation of Sirt1 contributes to podocyte mitochondrial dysfunction in diabetic nephropathy[J]. Antioxid Redox Signal, 2021,34(3):171-190.
[6]SHANKLAND S J, PIPPIN J W, REISER J, et al. Podocytes in culture: Past, present, and future[J]. Kidney Int, 2007,72(1):26-36.
[7]CAO J Y, WANG B, TANG T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021,11(11):5248-5266.
[8]NAGATA M. Podocyte injury and its consequences[J]. Kidney Int, 2016,89(6):1221-1230.
[9]LU J, CHEN P P, ZHANG J X, et al. GPR43 deficiency protects against podocyte insulin resistance in diabetic nephropathy through the restoration of AMPKα activity[J]. Theranostics, 2021,11(10):4728-4742.
[10]LIU J, SUN M C, XIA Y, et al. Phloretin ameliorates diabetic nephropathy by inhibiting nephrin and podocin reduction through a non-hypoglycemic effect[J]. Food Funct, 2022,13(12):6613-6622.
[11]JIANG L, WU Y. Pos-372 mettl3-mediated m6a modification of timp2 mRNA promotes podocyte injury in diabetic nephro-pathy[J]. Kidney Int Rep, 2022,7(2):S168.
[12]WU M, YANG Z F, ZHANG C Y, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy[J]. Metabolism, 2021,118:154748.
[13]LV L L, FENG Y, WU M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J]. Cell Death Differ, 2020, 27(1):210-226.
[14]LI Z L, LV L L, TANG T T, et al. HIF-1α inducing exoso-mal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation[J]. Kidney Int, 2019,95(2):388-404.
[15]HONG J N, BHAT O M, LI G B, et al. Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes[J]. Biochim Biophys Acta Mol Cell Res, 2019,1866(5):849-860.
[16]ZHOU H, KAJIYAMA H, TSUJI T, et al. Urinary exoso-mal Wilms tumor-1 as a potential biomarker for podocyte injury[J]. Am J Physiol Renal Physiol, 2013,305(4):F553-F559.
[17]JIN J, WANG Y G, ZHAO L, et al. Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithe-lial-mesenchymal transition of podocytes by inhibiting ZEB2[J]. Biomed Res Int, 2020, 2020:2685305.
[18]WU X M, GAO Y B, XU L P, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes[J]. Sci Rep, 2017,7(1):9371.
[19]DONOFRIO N, SERVILLO L, BALESTRIERI M L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection[J]. Antioxid Redox Signal, 2018,28(8):711-732.
[20]AHMED H H, TAHA F M, OMAR H S, et al. Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy[J]. Mol Cell Biochem, 2019,457(1-2):1-9.
[21]LIU R J, ZHONG Y F, LI X Z, et al. Role of transcription factor acetylation in diabetic kidney disease[J]. Diabetes, 2014,63(7):2440-2453.
[22]HONG Q, ZHANG L, DAS B, et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury[J]. Kidney Int, 2018,93(6):1330-1343.
[23]LATIFKAR A, LING L, HINGORANI A, et al. Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity[J]. Dev Cell, 2019,49(3):393-408.
(本文編輯 范睿心 厲建強(qiáng))