• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of boundary conditions on the distribution of energetic electrons during collisionless magnetic reconnection

    2024-04-24 06:16:52LeiWANG王磊CanHUANG黃燦DongkeCHEN陳冬可ZhongweiYANG楊忠煒AiminDU杜愛民andYasongGE葛亞松
    Plasma Science and Technology 2024年4期
    關(guān)鍵詞:陳冬王磊愛民

    Lei WANG (王磊),Can HUANG (黃燦),*,Dongke CHEN (陳冬可),Zhongwei YANG (楊忠煒),Aimin DU (杜愛民) and Yasong GE (葛亞松)

    1 CAS Engineering Laboratory for Deep Resources Equipment and Technology,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,People’s Republic of China

    2 College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100029,People’s Republic of China

    3 State Key Laboratory of Space Weather,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,People’s Republic of China

    Abstract We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection.The results demonstrate that the boundary conditions are crucial to this evolution.Specifically,in the cases of traditional periodic boundary (PB) and fully-opened boundary (OB) conditions,the evolutions are quite similar before the system achieves the fastest reconnection rate.However,differences emerge between the two cases afterward.In the PB case,the reconnection electric field experiences a rapid decline and even becomes negative,indicating a reversal of the reconnection process.In contrast,the system maintains a fast reconnection stage in the OB case.Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases.In the electron density depletion layer and the dipolarization front region,a larger proportion of suprathermal electrons are produced in the OB case.Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases.However,in the OB case,they can also be generated in the electron holes along the separatrix.Before the reverse reconnection stage,no high-energy electrons are present in the PB case.In contrast,about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case.

    Keywords: magnetic reconnection,electron energization,particle-in-cell simulation

    1.Introduction

    Magnetic reconnection is an efficient mechanism that explosively converts magnetic energy into kinetic and thermal energy of the plasma,causing a topological rearrangement of the magnetic field [1–6].This process is associated with various outburst phenomena in space plasma,such as solar flares [7,8],coronal mass ejections [9],and magnetospheric substorms [10–13].Additionally,reconnection has been fulfilled in dedicated plasma devices [14–16].

    The dynamic behavior of electrons is a critical factor in collisionless magnetic reconnection,and the generation of energetic electrons is a significant characteristic of this process [17–19].During antiparallel reconnection,electrons undergo a three-step acceleration process,which includes being trapped by an electrostatic potential well of the polarization electric field and gaining energy due to a pre-acceleration near the inflow separatrices,then being accelerated by the induced electric field in the electron diffusion region,and finally being accelerated during their gradient and curvature drift motion near the magnetic field pileup region [20].Egedalet alsuggested that electrons are pre-accelerated by parallel electric fields distributed along the separatrices before flowing into the reconnection site [21,22].Moreover,electrons can be accelerated along the separatrix multiple times by the parallel electric fields,allowing them to reach relativistic energies [23].In the guide field reconnection,when electrons are funneled into the vicinity of the X-line,they are not demagnetized and gyrate with the force of the guide field,resulting in longer residence time of electrons in the diffusion region and sustained acceleration by the parallel reconnection electric field [24,25].Near the reconnection front or dipolarization front (DF) region,the parallel electric field can trap electrons,causing sustained acceleration by the betatron mechanism [26,27].Additionally,electrons near the DF region can also be significantly accelerated by the Fermi mechanism [28,29].The formation of multiple magnetic islands [30] due to multiple X-line reconnections can lead to electron acceleration during the island coalescence process [31–35].Okaet alfurther discovered that electrons trapped within the islands undergo continuous energization due to the presence of the reconnection electric field prevalent in the reconnection diffusion region [36].Electrons can also gain energy stochastically from the Fermi acceleration mechanism in multiple magnetic islands during reconnection [37].The current sheet linked to a large-scale magnetic island can be fragmented into multiple electronscale current sheets,prompting the generation of secondary magnetic reconnection and resulting in a turbulent state.This process leads to significant electron energization [38–40].

    Earlier kinetic simulations of magnetic reconnection typically employ periodic boundary conditions [41–43],which can artificially recirculate particles and magnetic flux and restrict the duration of the physically meaningful results.To overcome this limitation,Daughtonet aldeveloped an appropriate open boundary model to simulate a much larger system and eliminate the artificial effects,allowing the kinetic structure of the reconnection layer to develop over extended periods [44].They found that the electron diffusion region lengthens over time,leading to the electron layer becoming unstable and generating secondary islands periodically.Consequently,the fast reconnection rate is resumed.However,the impact of boundary conditions on the temporal and spatial distribution of energetic electrons at different energy levels under identical plasma and magnetic field parameters remains unclear.In this work,we conducted the first comparative study of the evolution of reconnection and the characteristics of energetic electrons using numerical simulations under periodic and open boundary conditions.

    2.Simulation model

    In this study,we have simulated the anti-parallel magnetic reconnections via 2-D particle-in-cell (PIC) codes [25,26,45].Apart from the setting of boundary conditions,the remaining components of the simulation model are nearly identical to those used in our previous studies.The simulations start from a Harris current sheet with the number densityn(z)=nb+n0sech2wherenb=0.1n0is the background density and δ=0.5diis the half-width,heredipresents the initial ion inertial length based onn0.Theycomponent of the initial magnetic vector potential is ψ=-δB0lnand the magnetic field is inferred fromB=-ey×?ψ,whereB0is the ambient magnetic field around the current sheet.Ions and electrons follow Maxwellian distribution,with the mass ratio=100 and the initial temperature ratiowhere “i” (“e”) represents ion (electron).The ratio of light speed to Alfvén speed is 15.The typical kinetic energy of a thermal electron is about 0.0476mec2.The electromagnetic fields are updated by Maxwell equations [46],and ions and electrons are treated as individual particles and respond to the electromagnetic fields.The simulations are performed in the (x,z) plane with a domain of [-17.5di,17.5di]×[-9di,9di]and a spatial resolution of 0.025di.The simulations employ more than 108particles in each species.Two cases are run in this study.In the traditional periodic boundary (PB) case,periodic boundary conditions are applied in thexdirection,while fields match the conducting boundary conditions and particles are mirrored at the boundaries in thezdirection.In the fully-opened boundary (OB) case,the particle boundary is identical to the setting in reference [44],and we use a sample of 6 cells to calculate the particle distribution function.Neumann boundary is applied for the electromagnetic fields.Simulations are initiated with a weak local flux perturbation placed at (0,0) [47].The time step is Δt=wheredenotes the ion gyrofrequency.The simulations end att=for each case.

    3.Results and discussion

    The results of the evolution of magnetic reconnection under two different boundary conditions are displayed in figure 1.Figure 1(a) shows the reconnected magnetic flux and the reconnection electric fieldEy.Magnetic reconnection initiates at aboutt=.Aroundt=,the reconnection rate reaches its peak,exceeding 0.4,indicating that reconnection enters a rapid growth phase.Here,the reconnection rate is represented byEynormalized byVAB0,where Alfvén speedVAis calculated by the peak number density,not the upstream.The fast reconnection may be driven by the selfreinforcing process of the reconnection electric field [48].Beforet=,the evolution of the two cases exhibits striking similarities.However,the evolution diverges significantly afterward.In the PB case,the reconnection electric field drops rapidly and even becomes negative after reaching its maximum.In contrast,in the OB case,the system remains in the fast reconnection stage,withEyranging from 0.25 to 0.45.Figures 1(b) and (c) depict the temporal evolution ofEyalong the linez=0 in the PB and OB cases,respectively.Eypeaks at the outflow front,also known as DF.The evolution appears similar beforet=.In the PB case,Eyin the DF region increases,reaching its maximum of~ 1.3 att=,and then rapidly decreases,even becoming negative.This indicates that the outflows are blocked and the reconnection enters the reverse phase.In contrast,in the OB case,Eyin the DF region continues to increase and reaches its maximum of~ 3.3 att=before the DF propagates out of the simulation domain.This suggests that in the OB case,the amplitude of the DF keeps growing and steepening.

    Figure 1.(a) The reconnected magnetic flux (dotted lines) and the reconnection electric field (solid lines) for the PB case (blue) and OB case (red),respectively.The time evolution of reconnection electric field for (b) PB case and (c) OB case along z=0 from t=0 to t=.

    Figure 2 illustrates the production of energetic electrons in different energy ranges in the PB case at two typical times(t=and.From top to bottom,the panels exhibit the distribution of electron number densityne,parallel electric fieldE||,reconnection electric fieldEy,and the proportion of suprathermal (0.15mec2<εT<0.4mec2),medium-energy (0.4mec2<εM<1mec2),and high-energy(εH>1mec2) electrons.Att=(in the fast reconnection phase),along the separatrices,the ion-scale parallel electric fields (marked by the arrow in figure 2(b)) in the density depletion layer [49] (the dark blue area in figure 2(a)) accelerate electrons to suprathermal [21,50].In the electron current layer near the X-line,electrons are energized to suprathermal and even medium energy under the DC acceleration ofEy[24,51,52].As electrons move from the reconnection site to the magnetic pile-up region,a significant proportion of suprathermal electrons are accelerated to high energies during their gradient/curvature-drift motion[20,51].Ahead of the DF,thermal electrons are energized to suprathermal mainly by local betatron acceleration [26].The DF serves as the boundary between the background thermal electrons and the accelerated electrons.No high-energy electrons are produced before the end of the fast reconnection phase.Att=,in the reversed reconnection phase,Eybecomes predominantly negative,and DFs are reflected toward the X-line (compared with figures 2(a) and (g)).A significant proportion of medium-energy electrons (peaks at >50%) and high-energy electrons (peaks at >40%) are produced in the pile-up region.

    Figure 2.The simulation results from the PB case at t= and t=,respectively.The quantities,from top to bottom,are electron number density ne,parallel electric field E||,reconnection electric field Ey,and proportion of suprathermal electrons,mediumenergy electrons,and high-energy electrons.The black contours in the top panels denote the in-plane magnetic field lines.The white solid (dashed) lines mark the positions of the DF (separatrices).

    Figure 3 presents the results of the OB case.Att=,stronger parallel electric fields exist in the density depletion layer compared to the PB case (compared with figures 2(b) and 3(b)),resulting in a larger proportion of thermal electrons being accelerated to suprathermal(compared with figures 2(d) and 3(d)).In the electron current layer near the X-line,electrons are energized to suprathermal and even medium energy via the reconnection electric field.Unlike in the PB case,high-energy electrons can be produced in the OB case,with an average proportion of~ 20% in the fast reconnection phase.The proportion of suprathermal electrons in the pile-up region is similar in both cases,while the PB case has a higher proportion of mediumenergy electrons compared to the OB case.In the OB case,the proportion of suprathermal electrons near the DF is larger than that in the PB case.This is because the DF in the OB case keeps growing (figure 1(c)) with continuous local betatron acceleration.

    Figure 3.The simulation results from the OB case with the same format as figure 2.

    Att=,the DF mentioned above has already propagated out of the simulation domain,while fast reconnection is still ongoing.The electron beam instability leads to the formation of electrostatic solitary structures (arrows in figure 3(h)) or electron phase-space holes (EHs) that propagate rapidly along the separatrices towards the X-line [53–55].As their propagation speed exceeds the phase velocity of the whistler waves,they can excite Cherenkov emission [56],resulting in an electromagnetic perturbation that gradually enhances along the separatrices towards the X-line (Eyperturbation shown in figure 3(i)).This modulates the reconnection rate,which is shown as theEyperturbation aftert=in figure 1(a).The transverse instability traps electrons [57,58],and the reconnection electric field accelerates them from suprathermal to medium energy (figures 3(j)–(k)).As there is no outflow region blocking,the electron current layer can elongate beyond 20di,and high-energy electrons continue to be produced in this region.

    Figure 4 provides a quantitative comparison of the production efficiencies of suprathermal electrons (solid curves) and medium-energy electrons (dashed curves)between the PB case (in blue) and the OB case (in red).Before the reconnection rate reaches its maximum,there are no obvious differences between the two cases.Near the separatrix in the PB case,the proportion of suprathermal electrons initially increases slowly and reaches its maximum(~ 23%) att=,and then decreases rapidly.While in the OB case,it increases almost continuously and consistently remains higher than in the PB case aftert=Due to the energization of electrons in the EHs,the proportion of medium-energy electrons is much larger in the OB case.In the pile-up region,the evolution of the proportion of electrons in both energy ranges is similar in the two cases beforet=.Subsequently,the suprathermal electron proportion becomes slightly higher in the OB case,while the medium-energy electron proportion gets higher in the PB case.In the DF region,the proportion of suprathermal electrons in both cases increases almost continuously after the initiation of reconnection,with a slower growth rate aftert=.But the proportion in the OB case surpasses that in the PB case aftert=.The variation trends of the medium-energy electron proportions in the two energy ranges are similar to those in the pile-up region,but the values are smaller.From the separatrix to the DF,the differences between the two cases appear earlier,suggesting that the physics downstream is more susceptible to the influence of boundary conditions.

    Figure 4.The time evolution of the mean proportion of suprathermal electrons (solid curves) and medium-energy electrons (dashed curves)in the vicinity of (a) separatrix,(b) magnetic pile-up region,and (c) DF region from t= to t=.The blue and red lines represent the results from the PB case and OB case,respectively.Here the separatrix region,the pile-up region,and the DF region are defined as the place where ψ is between ψSP±0.15diB0,between ψPU±0.3diB0,and between ψDF±0.3diB0,respectively.ψSP and ψDF are the y components of the magnetic vector potential at the separatrix and the DF.ΨPU is the mean of ψSP and ψDF.

    In the PB case,particles move out from one side of the boundary in thexdirection and reenter the simulation domain from the opposite side multiple times.These reentering particles can go back to the diffusion region and undergo re-acceleration.This process leads to a larger proportion of medium-energy and high-energy electrons (compared with figures 2(k)–(l) and 3(k)–(l)).Additionally,the reconnection outflow and DF are blocked after the system reaches the fast reconnection stage,as illustrated in figure 1(b).In contrast,in the OB case,the DF can propagate out freely.TheBzcomponent continuously strengthens throughout the entire simulation domain,resulting in a consistent increase in the proportion of suprathermal electrons near the DF due to betatron acceleration.This proportion is almost always greater than that observed in the PB case (figure 4(c)).

    The OB condition can be used to simulate the substorm process when the magnetic flux in the magnetotail lobe can be continuously replenished to compensate for the reconnected magnetic flux near the reconnection site.However,when the reconnection is faster than the upstream supply,the OB condition used in this study is no longer applicable.In the simulations of reference [56],they used periodic boundary conditions with a large simulation box size ofLx×Ly=200di×30di.Due to the blocking that occurs in the late stage of the evolution of primary reconnection under the PB condition,the simulation domain must be sufficiently large to prevent the artificial recirculation of particles and magnetic flux.However,we found that appropriate OB conditions can produce similar results in a very small calculation domain (meaning low computational cost).This indicates that the OB condition is very suitable for studying local physical processes and therefore has extensive value in application.On the other hand,the PB condition can be applied in certain specific situations,such as in the Earth’s space due to the existence of the dipole field or in experimental devices with closed boundaries,where there is outflow blocking and a reverse reconnection process occurs,producing medium-energy and even high-energy electrons.Additionally,in the magnetic island chain geometry [32,37],electrons can gain kinetic energy by reflecting from the ends of the contracting magnetic islands or by refecting between two approaching magnetic islands.The PB condition is also suitable for this scenario.

    4.Conclusion

    In conclusion,2-D PIC simulations are conducted to investigate the effects of boundary conditions on magnetic reconnection evolution.Before the fastest reconnection rate is achieved,the evolution is similar between the PB and OB conditions;however,differences emerge afterward.In the PB case,the reconnection electric field rapidly declines and becomes negative sometimes after reaching its maximum,whereas in the OB case,the system remains in the fast reconnection stage.Suprathermal electrons are generated near the separatrix and exhaust region,with more being produced in the OB case in the electron density depletion layer and the DF region.Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases,but the OB case also generates them in electron holes along the separatrix.Highenergy electrons are absent in the PB case before reverse reconnection,while a considerable number of high-energy electrons are present in the thin and elongated electron current layer in the OB case.The study provides new insights into magnetic reconnection evolution and the role of boundary conditions in affecting the temporal and spatial distribution of energetic electrons.

    Acknowledgments

    We acknowledge the support from the Key Research Program of the Chinese Academy of Sciences (No.ZDBSSSW-TLC00105),the National Key R&D Program of China(No.2022YFF0503200),National Natural Science Foundation of China (Nos.41974173 and 42274224),and the Youth Innovation Promotion Association,Chinese Academy of Sciences (No.2019066).

    猜你喜歡
    陳冬王磊愛民
    Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
    李愛民美術(shù)作品
    觸摸俄羅斯
    金秋(2020年24期)2020-04-30 00:15:28
    Carriage to eternity: image of death in Dickinson and Donne
    青年生活(2019年29期)2019-09-10 06:46:01
    不再被“圓”困住
    陳冬:把能用的勁兒都使出來
    “整式的加減”綜合檢測題
    “根本停不下來”
    中學(xué)生英語高效課堂探究(2008年12期)2008-01-14 09:24:54
    99久久精品热视频| 女生性感内裤真人,穿戴方法视频| 亚洲 国产 在线| 亚洲专区中文字幕在线| 国产一级毛片七仙女欲春2| 欧美三级亚洲精品| 亚洲中文字幕一区二区三区有码在线看 | 成人三级黄色视频| 国产精品综合久久久久久久免费| 欧美日韩黄片免| 精品电影一区二区在线| 人人妻,人人澡人人爽秒播| 国产男靠女视频免费网站| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕日韩| 亚洲 国产 在线| 久久精品人妻少妇| 国产免费男女视频| 精品高清国产在线一区| 精品一区二区三区av网在线观看| 一本精品99久久精品77| 久久久久久久久免费视频了| 可以在线观看毛片的网站| 特大巨黑吊av在线直播| 十八禁人妻一区二区| 亚洲精品久久国产高清桃花| 香蕉丝袜av| 18美女黄网站色大片免费观看| 最近在线观看免费完整版| 久久九九热精品免费| 毛片女人毛片| 亚洲av熟女| 在线观看午夜福利视频| 免费在线观看黄色视频的| 欧美极品一区二区三区四区| 亚洲狠狠婷婷综合久久图片| 大型黄色视频在线免费观看| 国产野战对白在线观看| 欧美黄色片欧美黄色片| 亚洲九九香蕉| 日本 欧美在线| 精品国产超薄肉色丝袜足j| 久久精品成人免费网站| 大型黄色视频在线免费观看| 岛国在线观看网站| 91老司机精品| 成人18禁高潮啪啪吃奶动态图| 免费看日本二区| 一本精品99久久精品77| 中文字幕高清在线视频| 精品电影一区二区在线| 国产精品亚洲av一区麻豆| 9191精品国产免费久久| 亚洲成人中文字幕在线播放| 最近最新免费中文字幕在线| 黄色a级毛片大全视频| 在线观看www视频免费| 欧美黄色片欧美黄色片| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 久久婷婷成人综合色麻豆| 深夜精品福利| 午夜激情福利司机影院| 亚洲成av人片在线播放无| 国产精品久久久久久亚洲av鲁大| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 亚洲 欧美一区二区三区| 国产99白浆流出| 国产成年人精品一区二区| 最近最新免费中文字幕在线| 一本一本综合久久| 色播亚洲综合网| 欧美精品亚洲一区二区| 亚洲 欧美 日韩 在线 免费| 久久久久亚洲av毛片大全| 国产主播在线观看一区二区| 18禁美女被吸乳视频| 国产成人一区二区三区免费视频网站| 高清在线国产一区| 黑人操中国人逼视频| 黄色 视频免费看| 国产精品一及| 亚洲国产欧美一区二区综合| 免费在线观看亚洲国产| 蜜桃久久精品国产亚洲av| 亚洲国产中文字幕在线视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩免费av在线播放| 久久亚洲精品不卡| 亚洲人成77777在线视频| 桃红色精品国产亚洲av| 欧美日韩亚洲国产一区二区在线观看| 成人一区二区视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美精品综合久久99| 观看免费一级毛片| 欧美精品亚洲一区二区| 欧美av亚洲av综合av国产av| 亚洲激情在线av| 波多野结衣高清作品| 国产精品日韩av在线免费观看| 天天添夜夜摸| 最近最新免费中文字幕在线| 可以免费在线观看a视频的电影网站| 看免费av毛片| 不卡一级毛片| 亚洲美女视频黄频| 亚洲性夜色夜夜综合| 久久精品成人免费网站| 两人在一起打扑克的视频| 婷婷丁香在线五月| 黄色a级毛片大全视频| 9191精品国产免费久久| 成人国产一区最新在线观看| 亚洲片人在线观看| 天堂动漫精品| 亚洲欧美一区二区三区黑人| 99精品久久久久人妻精品| 亚洲国产中文字幕在线视频| 又黄又粗又硬又大视频| 久久久精品大字幕| 久久午夜综合久久蜜桃| 国产69精品久久久久777片 | 亚洲av成人精品一区久久| 欧美精品亚洲一区二区| 欧美黑人精品巨大| 香蕉丝袜av| 老司机午夜十八禁免费视频| 两个人看的免费小视频| av免费在线观看网站| 女同久久另类99精品国产91| 又黄又粗又硬又大视频| 久久久久久久久中文| 男女那种视频在线观看| 欧美国产日韩亚洲一区| 天天一区二区日本电影三级| 男人舔奶头视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品一区二区三区四区免费观看 | 久久香蕉精品热| 国产成人啪精品午夜网站| av视频在线观看入口| 搡老岳熟女国产| 国产免费男女视频| 少妇的丰满在线观看| 免费看美女性在线毛片视频| 日本五十路高清| 99久久99久久久精品蜜桃| 亚洲成人久久爱视频| 校园春色视频在线观看| 窝窝影院91人妻| 夜夜看夜夜爽夜夜摸| 黄色女人牲交| 啦啦啦观看免费观看视频高清| 国产黄色小视频在线观看| 久久午夜亚洲精品久久| 哪里可以看免费的av片| 国产精品综合久久久久久久免费| 精品国内亚洲2022精品成人| 一本一本综合久久| 十八禁网站免费在线| 国产午夜福利久久久久久| 两个人看的免费小视频| 久久性视频一级片| 岛国视频午夜一区免费看| 久久久久久免费高清国产稀缺| 国产又黄又爽又无遮挡在线| 久久久久九九精品影院| 88av欧美| 少妇粗大呻吟视频| 啦啦啦观看免费观看视频高清| 麻豆成人午夜福利视频| 国产三级黄色录像| 成人国产一区最新在线观看| 亚洲成av人片在线播放无| 久久久久久亚洲精品国产蜜桃av| 日本免费a在线| 国产真人三级小视频在线观看| 国产精品国产高清国产av| 欧美中文综合在线视频| 欧美成人一区二区免费高清观看 | 每晚都被弄得嗷嗷叫到高潮| 国产精品野战在线观看| 狂野欧美白嫩少妇大欣赏| 91成年电影在线观看| 国产亚洲精品第一综合不卡| 日韩国内少妇激情av| 人妻久久中文字幕网| 最近最新中文字幕大全免费视频| 日韩精品免费视频一区二区三区| 亚洲专区国产一区二区| 男女那种视频在线观看| 日韩有码中文字幕| 极品教师在线免费播放| 日韩 欧美 亚洲 中文字幕| 国产乱人伦免费视频| 亚洲一区高清亚洲精品| 亚洲黑人精品在线| 国产91精品成人一区二区三区| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩高清在线视频| 黄色片一级片一级黄色片| 99国产综合亚洲精品| www日本黄色视频网| 国产亚洲精品久久久久久毛片| 精品久久久久久久久久免费视频| 亚洲人与动物交配视频| 国产高清有码在线观看视频 | 亚洲av电影在线进入| 国产在线观看jvid| 亚洲成人免费电影在线观看| 成人欧美大片| 久久久久国产一级毛片高清牌| 色精品久久人妻99蜜桃| 亚洲精品美女久久av网站| 2021天堂中文幕一二区在线观| 国产乱人伦免费视频| 国产精品电影一区二区三区| 久久精品国产99精品国产亚洲性色| a级毛片在线看网站| 国产黄a三级三级三级人| 少妇人妻一区二区三区视频| 黄色成人免费大全| 成人精品一区二区免费| 欧美成人免费av一区二区三区| 给我免费播放毛片高清在线观看| 天天添夜夜摸| 成人手机av| 国产精品电影一区二区三区| 亚洲全国av大片| 婷婷六月久久综合丁香| 午夜a级毛片| 美女黄网站色视频| 亚洲精品国产精品久久久不卡| 欧美日韩乱码在线| 成熟少妇高潮喷水视频| 欧美一级毛片孕妇| 一级作爱视频免费观看| a级毛片在线看网站| 欧美性猛交╳xxx乱大交人| 国产91精品成人一区二区三区| 国产亚洲精品第一综合不卡| 精品国产超薄肉色丝袜足j| 天天一区二区日本电影三级| 免费在线观看日本一区| 欧美日韩亚洲国产一区二区在线观看| av福利片在线| 久久天躁狠狠躁夜夜2o2o| 特大巨黑吊av在线直播| 亚洲va日本ⅴa欧美va伊人久久| 美女免费视频网站| 欧美黑人欧美精品刺激| 日本a在线网址| 禁无遮挡网站| 少妇的丰满在线观看| 亚洲av成人精品一区久久| 国产免费男女视频| 97人妻精品一区二区三区麻豆| 伊人久久大香线蕉亚洲五| 欧美日韩黄片免| 亚洲精品一卡2卡三卡4卡5卡| 国产午夜精品论理片| 天堂av国产一区二区熟女人妻 | 免费一级毛片在线播放高清视频| 丰满人妻熟妇乱又伦精品不卡| 性欧美人与动物交配| 可以在线观看的亚洲视频| 十八禁人妻一区二区| 69av精品久久久久久| 国产一区二区三区在线臀色熟女| www.999成人在线观看| 国内揄拍国产精品人妻在线| 最好的美女福利视频网| 亚洲中文字幕一区二区三区有码在线看 | 色综合欧美亚洲国产小说| 熟女少妇亚洲综合色aaa.| 97超级碰碰碰精品色视频在线观看| 好男人在线观看高清免费视频| 精品久久久久久久末码| 成人午夜高清在线视频| 午夜福利免费观看在线| 亚洲成人国产一区在线观看| 国产在线观看jvid| 亚洲av成人不卡在线观看播放网| 黄色成人免费大全| 亚洲午夜精品一区,二区,三区| 亚洲成av人片在线播放无| 中文字幕久久专区| 欧美大码av| 国产精品 欧美亚洲| 精品久久蜜臀av无| 久久久精品国产亚洲av高清涩受| 久9热在线精品视频| 成年人黄色毛片网站| 18禁裸乳无遮挡免费网站照片| 国产成人精品久久二区二区91| 免费观看人在逋| av在线天堂中文字幕| 久久久国产精品麻豆| 日韩三级视频一区二区三区| 国产成年人精品一区二区| 国产精品免费一区二区三区在线| 少妇被粗大的猛进出69影院| 国产一区二区在线观看日韩 | 久久久国产欧美日韩av| 一区二区三区高清视频在线| 三级国产精品欧美在线观看 | 亚洲国产欧美网| 亚洲中文日韩欧美视频| 亚洲精品av麻豆狂野| 亚洲精品av麻豆狂野| 黄色毛片三级朝国网站| 国产激情欧美一区二区| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一电影网av| 在线播放国产精品三级| 黄色丝袜av网址大全| 中文在线观看免费www的网站 | av中文乱码字幕在线| av天堂在线播放| 男女午夜视频在线观看| 色在线成人网| av国产免费在线观看| 一a级毛片在线观看| 亚洲精品久久成人aⅴ小说| 亚洲片人在线观看| 他把我摸到了高潮在线观看| 香蕉av资源在线| av国产免费在线观看| avwww免费| 国产免费av片在线观看野外av| 少妇被粗大的猛进出69影院| 国产91精品成人一区二区三区| 久久中文看片网| 长腿黑丝高跟| av有码第一页| 国产精品自产拍在线观看55亚洲| 香蕉丝袜av| 欧美在线一区亚洲| 麻豆av在线久日| 午夜精品在线福利| 国产成人av教育| 国产精品亚洲av一区麻豆| 国产v大片淫在线免费观看| 亚洲国产精品久久男人天堂| 中文字幕最新亚洲高清| 中文字幕久久专区| 欧美高清成人免费视频www| 又黄又粗又硬又大视频| 国产精品一区二区三区四区免费观看 | 国产黄a三级三级三级人| 露出奶头的视频| 搡老妇女老女人老熟妇| 69av精品久久久久久| 十八禁人妻一区二区| av福利片在线| netflix在线观看网站| 国产精品久久久人人做人人爽| 久久精品91无色码中文字幕| 国产精品 欧美亚洲| 老司机在亚洲福利影院| 午夜a级毛片| 国产精品久久久久久人妻精品电影| 久久草成人影院| 久久久精品大字幕| 欧美乱色亚洲激情| 又紧又爽又黄一区二区| 又粗又爽又猛毛片免费看| 啦啦啦免费观看视频1| 99精品欧美一区二区三区四区| a级毛片a级免费在线| 男女视频在线观看网站免费 | www日本在线高清视频| 国产亚洲精品久久久久久毛片| 亚洲 国产 在线| 国内揄拍国产精品人妻在线| 长腿黑丝高跟| 一夜夜www| bbb黄色大片| 黄色成人免费大全| 欧美性猛交╳xxx乱大交人| 国产成人欧美在线观看| 超碰成人久久| 国内揄拍国产精品人妻在线| 亚洲五月天丁香| 正在播放国产对白刺激| 日本黄色视频三级网站网址| 十八禁网站免费在线| 亚洲第一欧美日韩一区二区三区| 91老司机精品| 国内精品一区二区在线观看| 少妇粗大呻吟视频| 亚洲片人在线观看| 一个人免费在线观看的高清视频| 在线观看午夜福利视频| 在线看三级毛片| 天堂影院成人在线观看| 香蕉久久夜色| 老汉色∧v一级毛片| 欧美在线黄色| 亚洲精品国产精品久久久不卡| 免费搜索国产男女视频| 美女 人体艺术 gogo| 国内久久婷婷六月综合欲色啪| 中文字幕高清在线视频| 国产精品1区2区在线观看.| 国产精品久久久久久亚洲av鲁大| 欧美午夜高清在线| 黄频高清免费视频| 国产熟女午夜一区二区三区| 国产激情久久老熟女| 亚洲午夜理论影院| 欧美三级亚洲精品| 欧美在线黄色| 90打野战视频偷拍视频| 午夜福利视频1000在线观看| 精品午夜福利视频在线观看一区| 天堂av国产一区二区熟女人妻 | 大型黄色视频在线免费观看| 他把我摸到了高潮在线观看| 在线观看美女被高潮喷水网站 | 人妻夜夜爽99麻豆av| 两个人免费观看高清视频| 国产精品爽爽va在线观看网站| 日本一二三区视频观看| 熟女少妇亚洲综合色aaa.| 亚洲午夜理论影院| 两个人的视频大全免费| 欧美午夜高清在线| av视频在线观看入口| 亚洲人成伊人成综合网2020| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av| 国产在线观看jvid| 久久久精品欧美日韩精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲自偷自拍图片 自拍| 日韩欧美 国产精品| 宅男免费午夜| 母亲3免费完整高清在线观看| xxxwww97欧美| 一区二区三区国产精品乱码| 动漫黄色视频在线观看| 亚洲精品久久成人aⅴ小说| 亚洲精品中文字幕一二三四区| 欧美日韩亚洲综合一区二区三区_| 后天国语完整版免费观看| 伦理电影免费视频| 手机成人av网站| 97人妻精品一区二区三区麻豆| 国产一区二区三区在线臀色熟女| 最近在线观看免费完整版| 观看免费一级毛片| 变态另类成人亚洲欧美熟女| 男人舔女人下体高潮全视频| 午夜亚洲福利在线播放| av片东京热男人的天堂| 国产成人精品久久二区二区免费| 少妇粗大呻吟视频| 国产av不卡久久| 禁无遮挡网站| 两个人看的免费小视频| 国产亚洲精品久久久久久毛片| 99久久精品热视频| av超薄肉色丝袜交足视频| 欧美另类亚洲清纯唯美| 亚洲一区中文字幕在线| 国产一区在线观看成人免费| 欧美日韩亚洲综合一区二区三区_| 久久久久性生活片| 亚洲午夜理论影院| 日本五十路高清| 天天添夜夜摸| 两人在一起打扑克的视频| 亚洲午夜理论影院| 国产精品久久久久久亚洲av鲁大| 九九热线精品视视频播放| 国产成人一区二区三区免费视频网站| 免费观看精品视频网站| 黄色 视频免费看| 黄色视频不卡| 国产麻豆成人av免费视频| 免费一级毛片在线播放高清视频| 大型黄色视频在线免费观看| 欧美一区二区国产精品久久精品 | 可以免费在线观看a视频的电影网站| 成人永久免费在线观看视频| 国产成人系列免费观看| а√天堂www在线а√下载| 色av中文字幕| 老熟妇乱子伦视频在线观看| av欧美777| 18禁裸乳无遮挡免费网站照片| 日本一本二区三区精品| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 成人av一区二区三区在线看| 久久久久九九精品影院| 亚洲欧美日韩东京热| 国产一区二区激情短视频| svipshipincom国产片| 午夜免费成人在线视频| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 亚洲av成人av| xxxwww97欧美| 国产精品98久久久久久宅男小说| 岛国视频午夜一区免费看| 黄色片一级片一级黄色片| 亚洲专区字幕在线| 两个人免费观看高清视频| 成人手机av| netflix在线观看网站| 午夜福利欧美成人| 午夜福利视频1000在线观看| 天堂av国产一区二区熟女人妻 | 国产精品免费一区二区三区在线| 久9热在线精品视频| 国产亚洲精品一区二区www| 亚洲美女视频黄频| 青草久久国产| 成人精品一区二区免费| 巨乳人妻的诱惑在线观看| 男人的好看免费观看在线视频 | 日韩大码丰满熟妇| 在线观看66精品国产| 日日干狠狠操夜夜爽| 国产熟女xx| 国产精品日韩av在线免费观看| 国产片内射在线| 美女大奶头视频| 中文字幕精品亚洲无线码一区| 欧美三级亚洲精品| 亚洲国产欧美一区二区综合| 国产免费男女视频| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 在线视频色国产色| 成年人黄色毛片网站| 无限看片的www在线观看| 国产精品一及| 国产亚洲欧美98| 亚洲 欧美 日韩 在线 免费| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 制服丝袜大香蕉在线| 成人高潮视频无遮挡免费网站| 欧美zozozo另类| 亚洲av成人一区二区三| 婷婷六月久久综合丁香| 亚洲最大成人中文| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 身体一侧抽搐| 国产成人精品无人区| 免费观看精品视频网站| 中文字幕人成人乱码亚洲影| 1024手机看黄色片| 日韩精品中文字幕看吧| 99在线人妻在线中文字幕| 欧美一级毛片孕妇| 午夜福利高清视频| 最近最新免费中文字幕在线| 亚洲av成人一区二区三| 国产精品,欧美在线| 国产精品亚洲av一区麻豆| 国产一级毛片七仙女欲春2| а√天堂www在线а√下载| 免费在线观看日本一区| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 麻豆成人av在线观看| 日本免费a在线| 中文字幕久久专区| 久久99热这里只有精品18| 久久久久久亚洲精品国产蜜桃av| 欧美日韩黄片免| 久久亚洲真实| 日韩欧美在线乱码| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看| 嫩草影视91久久| 欧美成狂野欧美在线观看| 婷婷亚洲欧美| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 91麻豆精品激情在线观看国产| 可以免费在线观看a视频的电影网站| 一进一出抽搐gif免费好疼| 日韩大码丰满熟妇| 欧美不卡视频在线免费观看 | 在线播放国产精品三级| 久久久国产欧美日韩av| 一进一出抽搐动态| 国产一级毛片七仙女欲春2| 亚洲精华国产精华精| 国产精品乱码一区二三区的特点| 久久久国产精品麻豆| 一级毛片女人18水好多| 婷婷六月久久综合丁香| 精品欧美一区二区三区在线| www.自偷自拍.com| 麻豆国产av国片精品| 午夜两性在线视频| 久久亚洲真实| 又黄又爽又免费观看的视频| 香蕉丝袜av| 在线观看舔阴道视频| 欧美一区二区国产精品久久精品 | 国产精品亚洲美女久久久| videosex国产| 一级毛片精品| 亚洲熟妇中文字幕五十中出| 九色国产91popny在线|