• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fringe jump counting method for the phase measurement in the HCN laser interferometer on EAST and its FPGA-based implementation

    2024-04-24 06:17:26YuanYAO姚遠YaoYANG楊曜AngTI提昂YangSONG宋揚JiaminZHANG張家敏YanWANG王琰YaoZHANG張耀HaiqingLIU劉海慶andYinxianJIE揭銀先
    Plasma Science and Technology 2024年4期
    關(guān)鍵詞:姚遠劉海張家

    Yuan YAO (姚遠),Yao YANG (楊曜),*,Ang TI (提昂),Yang SONG (宋揚),Jiamin ZHANG (張家敏),3,Yan WANG (王琰),Yao ZHANG (張耀),Haiqing LIU (劉海慶) and Yinxian JIE (揭銀先)

    1 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 Anhui Electrical Engineering Professional Technique College,Hefei 230022,People’s Republic of China

    3 Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,People’s Republic of China

    Abstract Electron density in fusion plasma is usually diagnosed using laser-aided interferometers.The phase difference signal obtained after phase demodulation is wrapped,which is also called a fringe jump.A method has been developed to unwrap the phase difference signal in real time using FPGA,specifically designed to handle fringe jumps in the hydrogen cyanide (HCN) laser interferometer on the EAST superconducting tokamak.This method is designed for a phase demodulator using the fast Fourier transform (FFT) method at the front end.The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms,such as field programmable gate array (FPGA).It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time.Electron density results show good confidence in the fringe jump unwrapping method.Further possible application in other laser interferometers,such as the POlarimeter-INTerferometer (POINT)system on EAST tokamak is also discussed.

    Keywords: electron density,laser-aided interferometer,fringe jump unwrapping,FPGA,EAST

    1.Introduction

    Electron density is a fundamental parameter for magnetically confined fusion plasma.Density control is essential to achieve plasma discharges in fusion devices,including tokamaks,stellarators and inertial-confinement fusion devices.Laser-aided interferometers have become increasingly popular as designated diagnostics for real-time density measurement and feedback control in recent years.In tokamaks,the modulated Mach–Zehnder interferometer is a standard approach to provide electron density [1–6].As a superconducting tokamak aiming to operate with long-pulse/steady state,the Experimental Advanced Superconducting Tokamak (EAST) needs real-time density control with a highspeed phase demodulation system in the interferometer system.Currently,a discrete component-based nuclear instrument module (NIM) is employed in the interferometer system on EAST [7],to demodulate the phase information while fringe counting is implemented with a CPU.With this module,there is a relatively high risk of the process being unmaintainable since there is a huge increase in system commissioning and debugging complexity.

    In this study,a fringe counting method has been developed for the phase measurement with fringe jumps in the laser-aided interferometer on EAST.It is conducted by a phase jump determination process with a localized phase jump signal threshold definition.The algorithm is introduced in section 2.A dedicated phasemeter hardware has also been developed and implemented on EAST.The phasemeter was designed and based on the FPGA technique,described in section 3 .It has been contributing to real-time density control on EAST since 2021.The experimental results,presented in section 4,show the well-corrected phase jump signal and associated plasma density signal.In this section,some remaining issues with this method will also be discussed.The paper concludes with a summary in section 5.

    2.Fringe jump and its correction method

    2.1.Fringe jump in the HCN interferometer on EAST

    Outputs from the detectors of the Mach–Zehnder interferometer are sinusoidal signals that carry the variation of optical path difference from the electron density.The probing signal(VP) and the reference signal (VF) can be represented as follows:

    whereAis the amplitude of the signals,Δωis the modulated frequency of the interferometer,Pstands for the probing signal,whileFstands for the reference signal.After analogto-digital conversion,the two signals are represented as follows,after transformation of equations (1) and (2):

    where φP(n) and φF(n) are the phases of the digitized probing and reference signals.

    The fast Fourier transform is an efficient algorithm to obtain phase information using digital devices,such as a data acquisition system (DAQ) [8]. φncan be obtained by multiplyingPnandFnin the conjugate form after FFT,wherePnandFnare the maximum values in the FFT sequence.Afterwards,the digital phase difference θncan be calculated by equation (5) [9]:

    A well-known problem with this method is the fringe jump that arises from the phase comparison technique,due to the arcus-tangent function (when the phase difference reaches π or -π).To obtain a valid and reliable electron density,the phase information with a fringe jump needs to be unwrapped [10–16].Accurate and real-time fringe counting method is essential for the plasma control system (PCS),especially for electron density feedback control.Therefore,many real-time methods for fringe counting have been implemented,such as the real-time phase jump process(RPJP) method used in the HL-2A tokamak [15],and a fringe projection measurement method based on dual variable-frequency coded patterns from Shandong University[16].These methods,based on mathematical analysis and precise transition point determination,have yielded excellent results in their respective devices or data processing.The advantage of the method proposed in this paper relies in its real-time capability and its ability to meet the requirements of feedback control during experiments.Moreover,it can be adapted to interferometer signals in the EAST discharge campaigns through rapid adjustment of thresholds and other parameters.

    A simulation for the FFT-based phase calculation algorithm has been performed.Two sinusoidal waves are generated with MATLAB software.The parameters of the reference signal remain unchanged,while the frequency of the probing signal is shifted by a constant.This frequency shift generates a continuous and linear change in phase difference between the two sinusoidal signals.The phase difference of the two sinusoidal waves is shown below in figure 1.The results show highly reasonable linearity and accuracy,which means that the FFT-based algorithm works well for phase determination.

    It can be seen from figure 1 that fringe jump occurs when the phase difference reaches up to π or down to -π,due to the value range of the arcus-tangent function.Fringe counting is a necessary step that must be implemented for realtime feedback and control.The second section of this paper presents an electronical hardware-based method to count the fringe,to meet the requirements of accuracy and real time.

    Figure 1.The diagram of the simulation results of the phase calculation algorithm.

    An HCN laser-based interferometer,with a wavelength of 337μm and intermediate frequency at 10 kHz and 1 MHz after upgrade,provides the electron density measurement on EAST [6,7].In recent years,a digital phasemeter has been designed and employed to calculate the phase difference between the probing signal and reference signal [14].The phase difference calculation algorithm is mainly implemented via a Xilinx Kintex-7 FPGA inside a hardware system.The real-time phase signal with a fringe jump of shot#107095 discharge is shown in figure 2.As can be seen in figure 2,the phase changes back and forth from maximum to minimum near the jump point.Therefore,a fringe counting method is needed to unwrap the phase-difference information,after which the real-time electron density information could be recognized.

    2.2.Fringe counting method

    Figure 2.The diagram of the phase-difference (in volts) results from the HCN interferometer of shot #107095 discharge on EAST.

    A flow chart of the fringe counting method is shown in figure 3 (the top half).There are two key parameters,one being the full amplitude (“FA” in the chart) whose voltage corresponds to 2 π (though there would be some slight deviations in practice),and the other being the noise threshold (“th”in the chart).O(i) stands for the original phase point (i.e.the phase with fringe jump) andL(i) stands for the line-integrated density (i.e.the total phase after fringe jump correction),which will then be output to PCS.

    For each phase value,the difference between itself and the previous point is calculated.This difference needs to be repeatedly compared to the noise threshold (“th”) by adding integer multiples of the full amplitude (FA),as shown by the diamond tables in red in figure 3.The comparison process continues until the calculation result is smaller than the threshold.Then,the valueO(i)+N×FA will be output as the new density value,while the average value is used as the new output if none of the results meet the criteria,as shown in the bottom table in green in figure 3.It should be noted that “th” is an empirical value (typical value equal to 1 V for the HCN interferometer),related to the electronics of the detectors.The appropriate threshold can be confirmed after a few discharges to achieve the highest accuracy of fringe jump counting.Moreover,the number of comparisons depends on the magnitude of the density variation.For instance,20 jumps are sufficient for the upper density limit on EAST.In figure 3,multiple judgments stand for the comparison process from the 2nd comparison to the 19th one.

    Figure 3.Flow chart detailing the implementation of the fringe jump correction method.

    For the HCN interferometer on EAST,each jump represents an line-integrated density change of approximately 0.62×1019m-2,while considering the density upper limit (above 1020m-2) of the EAST device.The use of 20 multiplexers(MUXs) can completely cover the range of possible densities.

    2.3.Algorithm implementation in FPGA

    Field programmable gate arrays (FPGAs) are semiconductor devices that are based on a matrix of configurable logic blocks connected via programmable interconnects.FPGAs can be reprogrammed to the dedicated application or functionality requirements after manufacturing.They are suitable as a carrier of consequent algorithms.Part of the FFTbased study has been reported in [14] and the fringe counting algorithm is also well implemented in the FPGA.What needs to be pointed out is that the interpolation method is employed to lower the latency because the FFT part will significantly increase the time for calculation.On the other hand,the FFT-based algorithm,using 1024 points as the time window with a sampling rate of 62 MS/s,will greatly reduce the amount of processing data,which means that there is no need for external storage.The FPGA structure is shown in the lower part of figure 3.Accumulative data and phase difference are stored through registers and a MUX is used to select the formula that satisfies the condition.This logic has been implemented in a Kintex-7 FPGA and has been used to process the output of the HCN interferometer on EAST.

    The system hardware is presented in figure 4,which includes one trigger input,five probing channels,one reference channel and the corresponding five line-integral density outputs.The structure diagram of the system employed in the diagnostics system is shown in the upper part of figure 4.As shown in the diagram,after the detection signal and reference signal output from the detector,the signal enters the FPGA by the conditioning circuit and analog-to-digital converters (ADCs) with high quality.After receiving the trigger signal,phase analysis is performed to obtain the wrapped phase information,which is then sent to the unwrapping module.Finally,it is converted into an analog signal and sent to the plasma control system (PCS).

    3.Results and discussion

    3.1.Correct unwrapping algorithm implementation

    Using the real-time unwrapping algorithm described in section 2 with suitable voltage coefficients,the line-integrated electron density information can be obtained,as shown in the figure 5 below.As can be seen in the upper part of the figure,the algorithm identifies 11 valid upward flips(green circles) and 11 valid downward flips (red crosses),respectively.The upward and downward jumps in the wrapped signal are 11 and 11,respectively.

    The statistical analysis for the wrapped signal is shown in table 1.The jumps caused by rising and falling densities are counted separately.That is,seven effective flips were identified from 152 flips caused by rising density,and seven effective flips were identified from 147 flips caused by falling density.Due to the signal noise,the maximum value of the voltage difference (ΔVd) will be very close to the threshold value,but it can be confirmed from the final density output results that the parameters are valid.

    3.2.Incorrect unwrapping situation

    For shot #105851,only one noise of original wrapped signal is generated on the wrapped signal at 14 s due to the impact on the optical path at the end of the discharge,because of rapid changes in current,magnetic field or other factors.When an inappropriate threshold is defined,multiple and diverse errors occur in the unwrapped density signal,as shown in figure 6.

    Table 1.Statistics of the validity of the fringe jump correction method for shot #107095.

    Figure 4.Structure of the electronics system with the fringe counting method in between the detectors and the PCS system.

    Figure 5.Electron density output after fringe counting of shot#107095 discharge on EAST.

    It can be observed that during the initial phase of discharge,the noise,being outside the threshold detection range,forces the system to replace the true value with an average value.On the other hand,in the latter half of the discharge period,due to a decrease in the signal-to-noise ratio of the original enveloped signal,a noticeable enhancement of noise is observed in the unwrapped results as well.Finally,due to an erroneous determination of the inflection point,the final density is rendered meaningless with negative values.

    Specific analysis for the wrapped signal of shot #105851 is shown in table 2.It is shown that three effective flips were selected from 71 flips caused by rising density and two effective flips were selected from 72 flips caused by falling density.

    Figure 6.Electron density after fringe jump counting of shot#105851 discharge on EAST.

    4.Discussion

    In general,as shown in figure 5,the logic implemented in FPGA can count the fringe jumps of the HCN laser interferometer on EAST.If the threshold is set properly (in our system the threshold is 0.8–1.0 V),the vague part of the phase information in figure 5,and even in figure 6,can be eliminated.A good plasma density signal can be produced and implemented to the PCS system.The fringe jump correction method (algorithm+FPGA hardware) has been applied on EAST tokamak since 2021.In a recent statistical analysis,the rate of success of this method is 99.9%.The accuracy of fringe jump is of great importance for future fusion devices,when real-time density control is required in a long-pulse/steady-state operation scenario.

    The quality of the phase difference signal from the detector strongly influences the fringe counting method.In section 4.2,a major reason for the failure of this method is presented.As mentioned in section 2,the threshold value is empirical and is closely linked to the signal from the detector.Setting an excessively high threshold can result in the ingress of significant noise into the processing system,whereas an excessively low threshold may lead to the inability to identify suitable intervals for the averaging processing,thereby potentially introducing calculation errors in the overall electron density.A calibration is needed between campaigns or when the detector is replaced.Another possible failure mechanism is that due to the rapid change of density,the interferometer cannot respond in real time,which can be called a fringe jump error.For instance,in figure 6,during a rapid density change before disruption,the rapid variations in the phase difference signal itself result inthe loss of density information,rendering subsequent processing steps completely ineffective.This means that the original sine wave signals can no longer provide the changes in plasma density.Consequently,we cannot obtain any meaningful density data by adjusting the threshold or full amplitude value parameters.In general,the quality of the wrapped signal is an important parameter for the proper operation of the unwrapped algorithm.Further detailed studies on the interaction between the signal from the detector and the phase correction method are in progress.

    Table 2.Statistics of the validity of the fringe jump correction method for shot #105851.

    Table 3.Relationships between a single fringe jump and the working wavelength of the interferometers on the EAST facility.

    On the other hand,time response is a fundamental requirement for plasma feedback control with PCS.The time consumption caused by the correction method mainly depends on the system clock.The implementation of the method is in the order of magnitude of hundreds of MHz,which can completely meet the millisecond level of PCS.For all the interferometers on EAST,there exists at least one fringe jump situation in principle because the initial phase could be near a jump point.Specifically,all the interferometers currently used on EAST are listed in table 3.It can be observed that the number of jumps is inversely proportional to the working wavelength.For devices that can operate at higher densities in the future,effectively addressing the flipping issue in interferometers is crucial to ensure accurate density measurements.

    5.Conclusion

    In summary,an FPGA-based fringe jump method has been implemented and tested on the HCN laser interferometer on EAST tokamak.The appropriate threshold has been determined for the wrapped signal of a certain signal-to-noise ratio in near discharge campaigns.The algorithm selected is relatively simple to implement and therefore can satisfy the requirement of real time feedback control.The importance of the phase difference signal from the detector has been discussed.Considering that all interferometers have the problem of signal wrapping,this study can be extended to other interferometers (such as POINT,solid-state source interferometer and even dispersion interferometer) on EAST and other fusion devices in the future.

    Acknowledgments

    This study was funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228),the HFIPS Director’s Fund (No. YZJJKX202301),Anhui Provincial Major Science and Technology Project (No.2023z020004) and Task JB22001 from the Anhui Provincial Department of Economic and Information Technology.

    猜你喜歡
    姚遠劉海張家
    說話算話的我
    “霸王”不在家
    以小見大 以情動人
    清夜
    幼兒100(2021年26期)2021-09-09 01:44:26
    Establish a Three-dimensional Fluorescent Fingerprint Database of Traditional Chinese Medicines
    學生天地(2019年36期)2019-08-25 08:59:52
    給張家源的信
    少先隊活動(2018年8期)2018-12-29 12:16:02
    On Differences of Gods in Chinese Myths and Greek Myths from Cross—culture Perspective
    姚遠平面設(shè)計作品
    要是你在野外迷了路
    幼兒100(2016年32期)2016-12-10 07:49:44
    亚洲第一电影网av| 老司机福利观看| 亚洲精品久久国产高清桃花| 色播亚洲综合网| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产成人久久av| 亚洲无线在线观看| 深爱激情五月婷婷| 嫩草影院新地址| 日本一二三区视频观看| 给我免费播放毛片高清在线观看| 亚洲欧美清纯卡通| 男插女下体视频免费在线播放| 日韩欧美精品免费久久| 99热6这里只有精品| 女人被狂操c到高潮| 国产精品久久电影中文字幕| 午夜精品国产一区二区电影 | 在线天堂最新版资源| 免费在线观看影片大全网站| 欧美三级亚洲精品| 看十八女毛片水多多多| 亚洲最大成人中文| 国产成人一区二区在线| 亚洲精华国产精华液的使用体验 | 国产亚洲精品综合一区在线观看| 少妇的逼水好多| 亚洲国产日韩欧美精品在线观看| av.在线天堂| 日韩一本色道免费dvd| 日本色播在线视频| 亚洲av.av天堂| 久久久精品94久久精品| 少妇猛男粗大的猛烈进出视频 | 国产一区二区三区在线臀色熟女| av在线播放精品| 中国美女看黄片| 美女 人体艺术 gogo| 亚洲精品乱码久久久v下载方式| 尤物成人国产欧美一区二区三区| 亚洲国产日韩欧美精品在线观看| 白带黄色成豆腐渣| 寂寞人妻少妇视频99o| av天堂在线播放| 久久婷婷人人爽人人干人人爱| 国产av不卡久久| 插逼视频在线观看| 国产成人a区在线观看| 婷婷亚洲欧美| 国产三级在线视频| 国内揄拍国产精品人妻在线| videossex国产| 国产精品电影一区二区三区| 精品一区二区三区人妻视频| 亚洲av电影不卡..在线观看| 亚洲av熟女| 免费观看的影片在线观看| 在线播放无遮挡| 国产在线男女| 日韩,欧美,国产一区二区三区 | 国产美女午夜福利| 99久国产av精品| 久久久精品大字幕| 91狼人影院| 欧美日韩综合久久久久久| 午夜福利高清视频| 日韩人妻高清精品专区| 亚洲成人精品中文字幕电影| 久久婷婷人人爽人人干人人爱| 亚洲自拍偷在线| 亚洲精品成人久久久久久| 少妇人妻一区二区三区视频| 国内揄拍国产精品人妻在线| 久久精品夜夜夜夜夜久久蜜豆| 一a级毛片在线观看| 欧美一区二区精品小视频在线| 国产亚洲精品av在线| 国产午夜精品论理片| 久久久久国内视频| 99热6这里只有精品| 国产在视频线在精品| 嫩草影院入口| 国产精品一二三区在线看| 亚洲国产精品成人综合色| 高清毛片免费观看视频网站| 午夜精品在线福利| 97超级碰碰碰精品色视频在线观看| 99riav亚洲国产免费| 国产69精品久久久久777片| 亚洲四区av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产色片| 一卡2卡三卡四卡精品乱码亚洲| 麻豆乱淫一区二区| 别揉我奶头 嗯啊视频| 久久人妻av系列| 精品久久久久久成人av| 亚洲精品国产av成人精品 | 有码 亚洲区| 精品久久久久久久末码| 亚洲成a人片在线一区二区| 欧美xxxx黑人xx丫x性爽| 三级毛片av免费| 国产美女午夜福利| 亚洲最大成人手机在线| 99久久精品一区二区三区| 午夜福利18| 简卡轻食公司| 国产一级毛片七仙女欲春2| 午夜精品国产一区二区电影 | 国产亚洲欧美98| 天堂影院成人在线观看| 插阴视频在线观看视频| 色5月婷婷丁香| 久久久久九九精品影院| 欧美3d第一页| 亚洲性夜色夜夜综合| 国产亚洲av嫩草精品影院| 老司机福利观看| 尾随美女入室| 一区二区三区高清视频在线| 99久久精品热视频| 中国国产av一级| 久久久国产成人免费| 在线播放国产精品三级| 欧美激情久久久久久爽电影| 欧美又色又爽又黄视频| 天堂√8在线中文| 最近手机中文字幕大全| 中文字幕免费在线视频6| 91在线观看av| 三级国产精品欧美在线观看| www.色视频.com| 色播亚洲综合网| 美女高潮的动态| 露出奶头的视频| 亚洲av免费高清在线观看| 免费搜索国产男女视频| 高清日韩中文字幕在线| 国产高清视频在线播放一区| 精品国产三级普通话版| 综合色av麻豆| 国产av不卡久久| 久久国内精品自在自线图片| 免费电影在线观看免费观看| 亚洲五月天丁香| 在线观看美女被高潮喷水网站| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 国内精品久久久久精免费| 18+在线观看网站| av.在线天堂| 小说图片视频综合网站| 精品一区二区三区视频在线观看免费| 99久久精品热视频| 亚洲国产欧美人成| 简卡轻食公司| 亚洲精品456在线播放app| 九色成人免费人妻av| 亚洲av免费高清在线观看| 色播亚洲综合网| 亚洲最大成人手机在线| 又爽又黄无遮挡网站| 香蕉av资源在线| 日韩成人av中文字幕在线观看 | 成年免费大片在线观看| 国产在视频线在精品| 免费一级毛片在线播放高清视频| 在线播放无遮挡| 欧美日本视频| 亚洲激情五月婷婷啪啪| 日韩三级伦理在线观看| 国产精品精品国产色婷婷| 亚洲精品国产av成人精品 | 在线播放无遮挡| 精品一区二区三区人妻视频| 亚洲无线观看免费| ponron亚洲| 天堂√8在线中文| 国产高清有码在线观看视频| 亚洲av美国av| 亚洲欧美清纯卡通| 国产黄色视频一区二区在线观看 | 亚洲美女黄片视频| 人人妻人人澡人人爽人人夜夜 | 欧美高清成人免费视频www| 午夜日韩欧美国产| 三级男女做爰猛烈吃奶摸视频| 久久精品国产自在天天线| 成人毛片a级毛片在线播放| 国产午夜精品久久久久久一区二区三区 | 国产探花极品一区二区| 婷婷精品国产亚洲av| 亚洲自拍偷在线| 男女之事视频高清在线观看| 听说在线观看完整版免费高清| 别揉我奶头~嗯~啊~动态视频| 精品99又大又爽又粗少妇毛片| 亚洲在线观看片| 人妻夜夜爽99麻豆av| 在线a可以看的网站| 免费电影在线观看免费观看| 亚洲精品久久国产高清桃花| 国产又黄又爽又无遮挡在线| 国产中年淑女户外野战色| 特大巨黑吊av在线直播| 国产黄片美女视频| 全区人妻精品视频| 久久精品国产清高在天天线| 一进一出好大好爽视频| 99riav亚洲国产免费| 成年女人毛片免费观看观看9| 国产精品一区二区免费欧美| 成年女人看的毛片在线观看| 亚洲国产欧洲综合997久久,| 女人十人毛片免费观看3o分钟| 99热这里只有是精品在线观看| 人人妻人人看人人澡| 特级一级黄色大片| 一进一出抽搐gif免费好疼| 久久久久久久午夜电影| 少妇裸体淫交视频免费看高清| 少妇熟女欧美另类| 欧美日本视频| 国产精品1区2区在线观看.| 91麻豆精品激情在线观看国产| 午夜亚洲福利在线播放| 午夜精品国产一区二区电影 | 亚洲成人精品中文字幕电影| 神马国产精品三级电影在线观看| 深爱激情五月婷婷| 亚洲aⅴ乱码一区二区在线播放| 日本黄色片子视频| 日韩国内少妇激情av| 大型黄色视频在线免费观看| 国产精品精品国产色婷婷| 99久国产av精品国产电影| 一本一本综合久久| 美女被艹到高潮喷水动态| 人人妻人人澡人人爽人人夜夜 | 亚洲av五月六月丁香网| 亚洲精品一区av在线观看| 亚洲成人久久性| 男女边吃奶边做爰视频| 在线观看美女被高潮喷水网站| 成年av动漫网址| 99久久九九国产精品国产免费| 你懂的网址亚洲精品在线观看 | 国产精品日韩av在线免费观看| 亚洲va在线va天堂va国产| 欧美国产日韩亚洲一区| 日韩欧美在线乱码| av天堂中文字幕网| 国产精品久久久久久亚洲av鲁大| 久久久精品欧美日韩精品| 夜夜夜夜夜久久久久| 不卡视频在线观看欧美| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 亚洲国产精品成人久久小说 | 午夜精品一区二区三区免费看| 一级黄片播放器| 久久6这里有精品| 夜夜夜夜夜久久久久| 亚洲国产日韩欧美精品在线观看| 22中文网久久字幕| 有码 亚洲区| 成人av在线播放网站| 国产在线男女| 在线观看av片永久免费下载| 在线观看一区二区三区| 中文字幕熟女人妻在线| 日本撒尿小便嘘嘘汇集6| 国内精品久久久久精免费| 亚洲在线观看片| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 在线免费观看不下载黄p国产| 在线国产一区二区在线| 最好的美女福利视频网| 搡老妇女老女人老熟妇| 亚洲国产精品成人久久小说 | 精品久久久久久久久久免费视频| 欧美区成人在线视频| 免费高清视频大片| 欧美3d第一页| 国产老妇女一区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av二区三区四区| 少妇人妻一区二区三区视频| 69人妻影院| 欧美高清性xxxxhd video| 熟女电影av网| 国产精品日韩av在线免费观看| 三级毛片av免费| 日日摸夜夜添夜夜添av毛片| 神马国产精品三级电影在线观看| 欧美性感艳星| 别揉我奶头 嗯啊视频| 国内精品美女久久久久久| 亚洲最大成人av| 校园春色视频在线观看| 久久精品91蜜桃| 国产精品精品国产色婷婷| 极品教师在线视频| 精品一区二区三区人妻视频| 成人漫画全彩无遮挡| 高清毛片免费看| 国产一级毛片七仙女欲春2| 亚洲美女视频黄频| 美女大奶头视频| 欧美日韩乱码在线| 午夜久久久久精精品| 91久久精品电影网| 日日干狠狠操夜夜爽| 乱码一卡2卡4卡精品| 亚洲第一区二区三区不卡| 变态另类丝袜制服| 欧美中文日本在线观看视频| 看十八女毛片水多多多| АⅤ资源中文在线天堂| 国产亚洲欧美98| 免费看光身美女| av免费在线看不卡| 亚洲成人久久爱视频| 日韩大尺度精品在线看网址| 精品熟女少妇av免费看| or卡值多少钱| 成人亚洲精品av一区二区| 在线观看66精品国产| 久久久成人免费电影| 18禁在线无遮挡免费观看视频 | 亚洲国产高清在线一区二区三| 亚洲国产欧美人成| 极品教师在线视频| 夜夜看夜夜爽夜夜摸| 中国国产av一级| 校园春色视频在线观看| 亚洲欧美精品自产自拍| 99九九线精品视频在线观看视频| 久久精品国产亚洲av天美| 国产精品综合久久久久久久免费| 一个人免费在线观看电影| 国产高清三级在线| av天堂在线播放| 日韩欧美精品免费久久| 久久久欧美国产精品| 美女免费视频网站| 国产精华一区二区三区| 国产白丝娇喘喷水9色精品| 两个人视频免费观看高清| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 中文资源天堂在线| 日本免费a在线| 尾随美女入室| 日本a在线网址| 久久精品国产亚洲av涩爱 | 国产日本99.免费观看| 亚洲一区二区三区色噜噜| 毛片女人毛片| 人妻夜夜爽99麻豆av| 好男人在线观看高清免费视频| 夜夜看夜夜爽夜夜摸| 男人的好看免费观看在线视频| 一级黄色大片毛片| 亚洲va在线va天堂va国产| 熟女电影av网| 一本久久中文字幕| 色哟哟哟哟哟哟| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 国产片特级美女逼逼视频| 国产高潮美女av| 精品一区二区三区视频在线| 大型黄色视频在线免费观看| 97超级碰碰碰精品色视频在线观看| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 午夜福利18| 免费看av在线观看网站| 男女下面进入的视频免费午夜| 人妻久久中文字幕网| 在线观看一区二区三区| 午夜久久久久精精品| 精品乱码久久久久久99久播| 99精品在免费线老司机午夜| 激情 狠狠 欧美| 91在线观看av| av在线播放精品| 白带黄色成豆腐渣| 亚洲欧美清纯卡通| 国产爱豆传媒在线观看| 久久精品夜色国产| 少妇人妻一区二区三区视频| 亚洲不卡免费看| 99热网站在线观看| 国产探花在线观看一区二区| 日韩强制内射视频| 欧美激情国产日韩精品一区| 欧美zozozo另类| 日韩国内少妇激情av| 欧美性猛交黑人性爽| 乱码一卡2卡4卡精品| 国产av在哪里看| 99久久无色码亚洲精品果冻| 97超碰精品成人国产| 搡女人真爽免费视频火全软件 | 久久人妻av系列| 老熟妇仑乱视频hdxx| 久久6这里有精品| 国产在线男女| 九九久久精品国产亚洲av麻豆| 1024手机看黄色片| 欧美绝顶高潮抽搐喷水| 99热网站在线观看| 熟女人妻精品中文字幕| 免费一级毛片在线播放高清视频| 成人三级黄色视频| 一个人观看的视频www高清免费观看| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久大av| 国产亚洲av嫩草精品影院| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩高清专用| 99热精品在线国产| 日本 av在线| 国产日本99.免费观看| 国产极品精品免费视频能看的| 岛国在线免费视频观看| 国产亚洲精品综合一区在线观看| 美女黄网站色视频| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 俺也久久电影网| 亚洲国产精品合色在线| 激情 狠狠 欧美| 青春草视频在线免费观看| www.色视频.com| 特大巨黑吊av在线直播| 亚洲精品一区av在线观看| 成人性生交大片免费视频hd| 欧美日韩一区二区视频在线观看视频在线 | 熟女电影av网| 久99久视频精品免费| 蜜臀久久99精品久久宅男| 干丝袜人妻中文字幕| 成人国产麻豆网| 国产在视频线在精品| 日韩精品有码人妻一区| 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 亚洲精品色激情综合| 亚洲第一电影网av| 长腿黑丝高跟| 欧美日韩国产亚洲二区| 嫩草影院入口| 成人毛片a级毛片在线播放| 最新在线观看一区二区三区| www.色视频.com| 99精品在免费线老司机午夜| 日韩成人av中文字幕在线观看 | 最近2019中文字幕mv第一页| 深夜a级毛片| 久久久久精品国产欧美久久久| 国产男人的电影天堂91| 91在线观看av| 久久天躁狠狠躁夜夜2o2o| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 欧美bdsm另类| 晚上一个人看的免费电影| 国产成人91sexporn| 又黄又爽又刺激的免费视频.| 国产一区二区激情短视频| 在线看三级毛片| 此物有八面人人有两片| 亚洲久久久久久中文字幕| 国产精品人妻久久久影院| 小蜜桃在线观看免费完整版高清| 欧美激情在线99| 在线天堂最新版资源| 精品人妻熟女av久视频| 欧美bdsm另类| 欧美最黄视频在线播放免费| 日韩成人av中文字幕在线观看 | 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| a级毛片a级免费在线| 看免费成人av毛片| 久久国内精品自在自线图片| 欧美日本亚洲视频在线播放| 精品人妻一区二区三区麻豆 | 真实男女啪啪啪动态图| 黄色视频,在线免费观看| h日本视频在线播放| 国产淫片久久久久久久久| 欧美日韩在线观看h| 国产又黄又爽又无遮挡在线| 我要看日韩黄色一级片| 在线观看免费视频日本深夜| 国产中年淑女户外野战色| 搡女人真爽免费视频火全软件 | 亚洲一级一片aⅴ在线观看| 日韩欧美在线乱码| 中国美女看黄片| 国产三级中文精品| 九九爱精品视频在线观看| 变态另类丝袜制服| 国产毛片a区久久久久| 男人和女人高潮做爰伦理| 2021天堂中文幕一二区在线观| 亚洲图色成人| a级毛片a级免费在线| 一个人看的www免费观看视频| 亚洲国产精品成人久久小说 | av卡一久久| 天天躁夜夜躁狠狠久久av| 国产精品久久电影中文字幕| 久久久久久国产a免费观看| 久久久久国产网址| 亚洲欧美日韩高清专用| 日韩中字成人| 日日摸夜夜添夜夜添小说| 日韩av在线大香蕉| 国产精品综合久久久久久久免费| 午夜精品国产一区二区电影 | 免费人成视频x8x8入口观看| 久久久久久九九精品二区国产| 欧美极品一区二区三区四区| 国产一区二区在线av高清观看| 黄色一级大片看看| 国产成人aa在线观看| 亚洲欧美成人综合另类久久久 | 黄色欧美视频在线观看| 校园人妻丝袜中文字幕| av在线蜜桃| 亚洲av不卡在线观看| 亚洲熟妇熟女久久| 日韩精品中文字幕看吧| 精品人妻熟女av久视频| 久久99热这里只有精品18| 亚洲欧美成人精品一区二区| 最近手机中文字幕大全| 亚洲欧美日韩无卡精品| 亚洲在线自拍视频| 嫩草影院新地址| 国产女主播在线喷水免费视频网站 | 欧美一区二区精品小视频在线| 精品久久久久久成人av| 成年女人永久免费观看视频| 亚洲色图av天堂| 在线免费观看不下载黄p国产| 99热网站在线观看| 欧美人与善性xxx| 久久久色成人| 日韩中字成人| 亚洲中文日韩欧美视频| 亚洲va在线va天堂va国产| 国产精品无大码| 精品久久久噜噜| а√天堂www在线а√下载| 国产免费一级a男人的天堂| 亚洲人成网站在线播| 成年女人永久免费观看视频| 一级黄色大片毛片| 成人鲁丝片一二三区免费| 亚洲av成人av| 少妇高潮的动态图| 一级黄片播放器| 在线免费观看的www视频| 免费看光身美女| 国产成人aa在线观看| 免费av毛片视频| 久久久久免费精品人妻一区二区| 给我免费播放毛片高清在线观看| 看非洲黑人一级黄片| 真人做人爱边吃奶动态| 亚洲va在线va天堂va国产| 97人妻精品一区二区三区麻豆| 免费人成在线观看视频色| 嫩草影院入口| 亚洲美女黄片视频| 99精品在免费线老司机午夜| 18禁在线无遮挡免费观看视频 | 国产又黄又爽又无遮挡在线| 嫩草影院新地址| 在线观看av片永久免费下载| 中文字幕人妻熟人妻熟丝袜美| 日韩成人av中文字幕在线观看 | 亚洲av电影不卡..在线观看| 国产精品爽爽va在线观看网站| 成年女人看的毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 噜噜噜噜噜久久久久久91| 亚洲欧美精品自产自拍| 欧美高清性xxxxhd video| av在线天堂中文字幕| 身体一侧抽搐| 日本三级黄在线观看| 超碰av人人做人人爽久久| 人妻夜夜爽99麻豆av| 国内久久婷婷六月综合欲色啪| 免费观看人在逋| 国产爱豆传媒在线观看| 一本精品99久久精品77| 国产高清有码在线观看视频| 国产精品久久久久久亚洲av鲁大| 精品一区二区三区av网在线观看| 色播亚洲综合网| 村上凉子中文字幕在线| 国产激情偷乱视频一区二区|