梁慧 李如美 朱鈺曉 劉同金 李瑞娟 房鋒
摘要 土壤中重金屬和有機(jī)物污染既造成巨大經(jīng)濟(jì)損失,又嚴(yán)重威脅人類健康。生物炭作為來源廣泛、制備簡(jiǎn)單,比表面積大、表面官能團(tuán)豐富、孔隙結(jié)構(gòu)發(fā)達(dá)的材料,被廣泛應(yīng)用于農(nóng)業(yè)、生態(tài)修復(fù)和環(huán)境保護(hù)領(lǐng)域。從生物炭的來源與制備工藝、對(duì)污染物的吸附機(jī)理、影響因素以及在土壤重金屬和有機(jī)物污染修復(fù)中的應(yīng)用現(xiàn)狀等方面進(jìn)行了綜述,同時(shí)對(duì)生物炭材料在土壤污染修復(fù)中的研究重點(diǎn)進(jìn)行了展望,為生物炭在土壤污染修復(fù)中的應(yīng)用提供參考。
關(guān)鍵詞 生物炭;重金屬;有機(jī)物;土壤修復(fù)
中圖分類號(hào) X 53? 文獻(xiàn)標(biāo)識(shí)碼 A
文章編號(hào) 0517-6611(2024)06-0017-04
doi:10.3969/j.issn.0517-6611.2024.06.004
開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Research Progress of Biochar for Remediation of Heavy Metal and Inorganic Pollutant in Soil
LIANG Hui,LI Ru-mei,ZHU Yu-xiao et al
(Institute of Plant Protection,Shandong Academy of Agricultural Sciences,Jinan,Shandong 250100)
Abstract The pollution of heavy metals and organic matter in soil not only causes huge economic losses,but also seriously threatens human health.Biochar is widely used in agriculture,ecological restoration and environmental protection because of its wide range of raw materials,simple preparation method,large specific surface area,rich surface functional groups and developed pore structure.In this paper,the source and preparation technology of biochar,the adsorption mechanism of pollutants,the influencing factors and the application status of biochar in soil heavy metal and organic pollution remediation were reviewed.at the same time,the research focus of biochar materials in contaminated soil remediation was prospected,in order to provide reference for the application of biochar in soil pollution remediation.Biochar is widely used in agriculture,ecological restoration and environmental protection because of its wide range of raw materials,simple preparation method,large specific surface area,rich surface functional groups and developed pore structure.In this paper,the source and preparation of biochar,the adsorption mechanism of pollutants,the influencing factors and the application status of biochar in soil heavy metal and organic pollution remediation were reviewed.Finally,the research focus of biochar materials in contaminated soil remediation was prospected,in order to provide reference for the application of biochar in soil pollution remediation.
Key words Biochar;Heavy metal;Organic pollutants;Soil remediation
隨著現(xiàn)代工農(nóng)業(yè)生產(chǎn)的快速發(fā)展,大量的無機(jī)、有機(jī)類污染物進(jìn)入土壤環(huán)境中。根據(jù)2014年公布的全國(guó)土壤污染狀況調(diào)查[1],受無機(jī)(鎘、砷、鉛等)和有機(jī)物(滴滴涕、多環(huán)芳烴等)污染的耕地面積約占全國(guó)耕地總面積的1/5,直接導(dǎo)致了嚴(yán)重的糧食污染與減產(chǎn),造成了巨大的經(jīng)濟(jì)損失。重金屬、農(nóng)藥、抗生素及多環(huán)芳烴是無機(jī)和有機(jī)類污染物的典型代表,來源廣泛且能在土壤中長(zhǎng)期存在。由于常具有致突變、致畸、致癌效應(yīng)和較高的生物累積性,這些土壤污染物的擴(kuò)散不僅會(huì)破壞生態(tài)平衡、污染環(huán)境,還可以通過食物鏈途徑危害人體健康。因此,重金屬和有機(jī)物污染土壤的修復(fù)引起了眾多研究者的關(guān)注。
土壤中施用生物炭能夠改善土壤環(huán)境,降低環(huán)境風(fēng)險(xiǎn),并能提高糧食產(chǎn)量,因而生物炭技術(shù)受到廣泛關(guān)注。生物炭原料來源豐富,制備工藝相對(duì)簡(jiǎn)單,具有比表面積大、含氧官能團(tuán)豐富、孔隙結(jié)構(gòu)發(fā)達(dá)、導(dǎo)電性良好等特點(diǎn)[2-3],可作為一種經(jīng)濟(jì)高效的吸附劑用于治理土壤中的無機(jī)和有機(jī)污染物。
該研究對(duì)生物炭的來源與制備工藝、與土壤中重金屬和有機(jī)污染物的作用機(jī)理進(jìn)行了綜述,總結(jié)了生物炭在土壤重金屬和有機(jī)物污染修復(fù)中的應(yīng)用現(xiàn)狀,為生物炭在土壤污染修復(fù)中的應(yīng)用提供參考。
1 生物炭的來源及制備工藝
生物炭通常由生物質(zhì)在缺氧或限氧情況下,經(jīng)高溫?zé)峤猱a(chǎn)生,是一類多孔、穩(wěn)定、芳香度高、富含碳素的固態(tài)物質(zhì)[4]。由于其具有較高的化學(xué)穩(wěn)定性、優(yōu)異的吸附能力和良好的環(huán)境相容性等特點(diǎn),被視為一種性能優(yōu)良的土壤污染修復(fù)材料[5]。
生物炭來源廣泛,根據(jù)原料來源不同,主要有植物源生物炭(木頭、樹葉、秸稈、稻殼等生物炭)、動(dòng)物源生物炭(動(dòng)物糞便生物炭)和污泥生物炭。研究發(fā)現(xiàn),原料來源、制備條件對(duì)生物炭的理化性質(zhì)及吸附能力影響顯著。一般來說,植物源生物炭的比表面積更大,吸附性能和重金屬固定性能更高,而動(dòng)物糞便生物炭含有更多的鈣、磷、鉀等微量元素[6]。
除高溫?zé)峤馔?,生物炭還可由水熱法碳化制得。水熱碳化是在相對(duì)較高(2~10 MPa)的壓力下,將生物質(zhì)在熱水(180~280 ℃)中轉(zhuǎn)化為生物炭的方法。與熱解生物炭相比,水熱生物炭表面含有更多的含氧官能團(tuán)和陽離子交換量,對(duì)土壤污染物具有更好的吸附性能[7]。
2 生物炭修復(fù)土壤污染的機(jī)理
2.1 生物炭修復(fù)重金屬污染土壤的機(jī)理
生物炭孔隙結(jié)構(gòu)發(fā)達(dá),比表面積大,陽離子交換量高,并含有豐富的含氧基團(tuán)[8],對(duì)重金屬污染土壤有良好的修復(fù)效果。大量研究表明,生物炭對(duì)重金屬污染土壤的修復(fù)機(jī)理較為復(fù)雜,主要通過物理吸附、靜電吸引、離子交換、表面絡(luò)合、共沉淀等多種途徑穩(wěn)定重金屬,實(shí)現(xiàn)土壤中重金屬的鈍化[9]。
物理吸附主要是通過范德華力將重金屬吸附在生物炭表面或分散進(jìn)孔隙中,因此生物炭的吸附能力受其孔隙結(jié)構(gòu)和比表面積制約。原料來源、制備工藝對(duì)生物炭的孔隙結(jié)構(gòu)和比表面積有著重要的影響。Nzediegwu等[10]研究表明,500 ℃下熱解,秸稈生物炭的比表面積為3.2 m2/g,動(dòng)物糞便生物炭為9.7 m2/g,而鋸末生物炭可達(dá)43.0 m2/g;并且,生物炭表面的官能團(tuán)豐度也隨著熱解溫度的升高而降低。Cao等[11]研究了不同熱解溫度下制備的牛糞生物炭,發(fā)現(xiàn)生物炭的比表面積隨熱解溫度的升高而增大,在高溫下熱解制得的生物炭比低溫時(shí)的微孔數(shù)量和比表面積都要大得多,而在低溫生物炭卻含有更多的含氧官能團(tuán),這與Nzediegwu等[10]的研究發(fā)現(xiàn)一致。Zhang等[12]測(cè)試了不同熱解溫度生物炭對(duì)Pb的固定能力,發(fā)現(xiàn)700 ℃制得的生物炭是400 ℃的9倍。
生物炭表面所帶電荷與帶相反電荷的重金屬離子之間的靜電吸引是生物炭固定重金屬的另一重要機(jī)制。靜電吸引機(jī)理主要依賴于生物炭的zeta電位和土壤pH,生物炭的zeta電位通常為負(fù)值,表明生物炭表明帶負(fù)電荷,因此容易與帶正電荷的重金屬離子(Hg2+、Pb2+、Cd2+、Cr3+等)發(fā)生靜電吸附;然而土壤pH較低易引起官能團(tuán)質(zhì)子化而致使生物炭帶正電,此時(shí)生物炭對(duì)陰離子具有較強(qiáng)的靜電引力,如HAsO2-4、Cr2O2-7和Sb(OH)-6等更容易被吸附[13]。
生物炭表面的離子與含相同電荷的重金屬離子進(jìn)行交換從而固定重金屬的過程即為離子交換。離子交換能力與生物炭表面官能團(tuán)的性質(zhì)、離子半徑及帶電性質(zhì)緊密相關(guān)[14]。研究表明,采用棗籽生物炭吸附Cu(Ⅱ)和Ni(Ⅱ),離子交換可占Cu(Ⅱ)、Ni(Ⅱ)總吸附量的69%和72%,同時(shí)同樣電荷量的Na+、K+、Ca2+和 Mg2+被釋放出來[15]。周雅蘭等[16]在污泥生物炭對(duì)Cd(Ⅱ)的吸附研究中,發(fā)現(xiàn)溶液中Na+、K+、Ca2+和Mg2+濃度隨Cd(Ⅱ)初始質(zhì)量濃度的增加而增加,說明Cd(Ⅱ)的去除是通過離子交換實(shí)現(xiàn)的。
生物炭表面的羥基、羰基、羧基等含氧基團(tuán)可與土壤中的重金屬離子發(fā)生絡(luò)合作用,形成金屬配合物。Wang等[17]研究發(fā)現(xiàn),在吸附Cr(Ⅵ)后玉米秸稈生物炭的C―C/C―H、C―O―C及O = C―O等鍵含量發(fā)生了不同程度的改變,說明表面絡(luò)合對(duì)Cr(Ⅵ)的吸附起著重要的作用。同樣的,莫官海等[18]在去除U(Ⅵ)時(shí),吸附后的生物炭羥基、羧基等基團(tuán)出現(xiàn)峰位遷移,驗(yàn)證了生物炭表面的含氧基團(tuán)與重金屬發(fā)生了絡(luò)合反應(yīng)。
生物炭中的CO2-3、PO3-4、SO2-4、OH-等礦物組分易與重金屬陽離子結(jié)合形成不溶于水的沉淀物,促進(jìn)重金屬的吸附和固定[19]。例如,稻稈生物炭中CO2-3的C2O2-4和可與Pb分別形成Pb3(CO3)2(OH)2和PbC2O4沉淀,是固定Pb的主要機(jī)制[20]。研究發(fā)現(xiàn),生物炭表面的酚羥基也能夠促進(jìn)重金屬形成共沉淀,以提高重金屬的固定效率[21]。
2.2 生物炭修復(fù)有機(jī)物污染土壤的機(jī)理
土壤中的有機(jī)污染物主要有農(nóng)藥、抗生素和多環(huán)芳烴等,生物炭主要通過靜電吸引、孔隙填充、π-π相互作用、分配作用和氫鍵等途徑去除土壤中有機(jī)污染物[22]。
與吸附重金屬離子類似,孔隙結(jié)構(gòu)、比表面積和表面官能團(tuán)也是影響生物炭對(duì)有機(jī)污染物吸附的重要因素。研究表明,增大比表面積、提高含氧基團(tuán)的豐度后,稻殼生物炭對(duì)四環(huán)素的吸附量提升了1倍,且主要是π-π相互作用增強(qiáng)引起的[23];而提高污泥生物炭的孔隙率,能夠有效降低空間位阻效應(yīng),增強(qiáng)孔隙填充作用從而促進(jìn)對(duì)四環(huán)素的吸附[24]。Zheng等[25]認(rèn)為,質(zhì)子化作用能夠有效增強(qiáng)有機(jī)污染物與生物炭表面負(fù)電荷的靜電吸引,因此生物炭經(jīng)酸處理改性后,對(duì)莠去津的吸附能力得到顯著提升。低溫?zé)峤庵苽涞纳锾繉?duì)有機(jī)污染物的吸附多是分配作用,而高溫?zé)峤馍锾縿t是表面靜電吸附和分配作用共同作用[26]。Chen等[27]探討了多環(huán)芳烴在松葉生物炭上的吸附機(jī)理,當(dāng)熱解溫度較低時(shí),生物炭中無定形的有機(jī)質(zhì)含量豐富,對(duì)多環(huán)芳烴的吸附以分配作用為主;當(dāng)熱解溫度升高,生物炭中芳香碳結(jié)構(gòu)增多,表面靜電吸附起主導(dǎo)作用。氫鍵是指氫原子與電負(fù)性大的原子之間以共價(jià)鍵結(jié)合,低溫?zé)峤馍锾炕蛩疅嵘锾勘砻婧休^多的極性官能團(tuán),易與含極性官能團(tuán)的有機(jī)污染物形成氫鍵,一般來說,生物炭表面的羥基中的氫為供體,有機(jī)物氮和氧為受體[28]。Tan等[29]通過改性增加玉米秸稈生物炭表面的含氧官能團(tuán),阿特拉津與生物炭之間的π-π相互作用和H鍵作用得到增強(qiáng),因而提升了對(duì)阿特拉津的吸附能力。
除了吸附土壤污染物外,生物炭的應(yīng)用還可顯著改善土壤質(zhì)量、提高土壤肥力和持水能力,同時(shí)有利于提升土壤微生物的種群數(shù)量和豐度,促進(jìn)微生物對(duì)有機(jī)污染物的降解[30]。
3 生物炭在修復(fù)土壤污染領(lǐng)域中的應(yīng)用現(xiàn)狀
生物炭用于修復(fù)土壤重金屬污染已開展了大量的研究和應(yīng)用。Bian等[31]將小麥秸稈生物炭施用在水稻田中,有效地固定了重金屬鎘,減少了水稻植株中的Cd含量,因而水稻呈現(xiàn)更好的生長(zhǎng)態(tài)勢(shì)。Moore等[32]開展雞糞生物炭固定銅離子的田間試驗(yàn),發(fā)現(xiàn)土壤中施加5%的雞糞生物炭時(shí),90%的可交換態(tài)銅能夠得到有效固定;同時(shí),該課題組研究發(fā)現(xiàn),當(dāng)生物炭的施用量為20 t/hm2時(shí),土壤中Cd含量最多可降低89%,而用量為10 t/hm2時(shí)最多只降低了62%。因此,重金屬的固定效果與生物炭的投加量有關(guān)。Gao等[33]制備的玉米秸稈生物炭可使土壤中可提取態(tài)Cd含量降低91%,并有效緩解了Cd對(duì)植物生長(zhǎng)的脅迫;對(duì)浸出前后生物炭的分析表明,鈍化機(jī)理以離子交換和表面絡(luò)合為主。Guo等[34]提出,花生殼生物炭的施用使土壤有機(jī)質(zhì)含量得到顯著提升,土壤堿解氮(N)、速效磷(P)、速效鉀(K)含量明顯提高;同時(shí),土壤中脲酶、磷酸酶、過氧化氫酶、蔗糖酶的活性,以及土壤中細(xì)菌、放線菌和真菌的數(shù)量都有明顯的增加;研究還發(fā)現(xiàn),施用花生殼生物炭降低了土壤中Cr的有效性,與對(duì)照組相比,不同處理下的根部和地上部分的Cr含量均有所降低。
目前,生物炭用于修復(fù)土壤重金屬污染的研究相對(duì)較多,而用于修復(fù)土壤有機(jī)物污染的研究相對(duì)較少,但呈逐年遞增的趨勢(shì)。Deng等[35]采用熱解法制得木薯生物炭,并開展對(duì)除草劑阿特拉津的吸附研究。結(jié)果表明,生物炭對(duì)阿特拉津的吸附量隨著投加量增大而增大,當(dāng)投加量增加到5%時(shí),阿特拉津在木薯生物炭上的吸附量高達(dá)246 mg/kg。因此,生物炭對(duì)土壤中除草劑有顯著的固定作用,能夠有效減少阿特拉津在土壤中的淋溶和遷移,進(jìn)而降低除草劑在土壤中的濃度,修復(fù)土壤污染。同樣,Spokas等[36]的研究也證明,當(dāng)土壤中的鋸末生物炭含量達(dá)到5%時(shí),可明顯增加對(duì)乙草胺等除草劑的吸附,減少其淋溶和徑流損失;同時(shí)研究結(jié)果還表明,鋸末生物炭具有抗微生物降解的能力,是一種有效的固碳方式。李桂榮等[37]開展生物炭與黑麥草聯(lián)合修復(fù)Cd-芘復(fù)合污染土壤研究,發(fā)現(xiàn)當(dāng)黑麥草種植密度合適,并投加適量的生物炭時(shí),能夠有效降低土壤中Cd和芘的含量,同時(shí),土壤微生物群落的豐富度也得到顯著提升。
隨著研究的深入,如吸附位點(diǎn)少、吸附能力有限等不足束縛了生物炭的進(jìn)一步應(yīng)用;但經(jīng)過物理、化學(xué)或生物方法改性后,其孔隙體積、比表面積、表面官能團(tuán)的種類和數(shù)量以及理化性質(zhì)都有較大的改變。大量研究表明,改性后的生物炭具有更強(qiáng)的吸附能力和土壤修復(fù)能力。表1中列舉了部分不同改性方法處理后的生物炭對(duì)土壤污染物的吸附情況,由表1可知,改性生物炭的吸附能力和土壤修能力得到極大的提升,但提升效果隨污染物和改性方式的不同而有所差異。
4 結(jié)論
綜述了生物炭的來源與制備工藝,總結(jié)了生物炭對(duì)土壤中重金屬、有機(jī)物等污染物的去除機(jī)理,以及生物炭在土壤污染修復(fù)中的應(yīng)用現(xiàn)狀。生物炭在土壤修復(fù)中的應(yīng)用,既可固定土壤中的污染物,又可提升土壤微生物的種群數(shù)量和豐度,改善土壤質(zhì)量??傮w來看,生物炭在土壤污染修復(fù)中發(fā)揮著越來越重要的作用。首先,生物炭用于土壤污染修復(fù)的研究大多處于實(shí)驗(yàn)室階段,實(shí)際應(yīng)用還有待開展;其次,多數(shù)研究局限于單一污染物的修復(fù),對(duì)土壤復(fù)合污染的情況研究較少,機(jī)理難以明確;最后,生物炭的長(zhǎng)期影響和負(fù)面影響也需受到重視。
參考文獻(xiàn)
[1]
環(huán)境保護(hù)部,國(guó)土資源部.全國(guó)土壤污染狀況調(diào)查公報(bào)[J].國(guó)土資源通訊,2014(8):26-29.
[2] YAASHIKAA P R,KUMAR P S,VARJANI S,et al.A critical review on the biochar production techniques,characterization,stability and applications for circular bioeconomy[J].Biotechnology reports,2020,28:1-15.
[3] LIU Z G,ZHANG F S.Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J].Journal of hazardous materials,2009,167(1/2/3):933-939.
[4] HAMID Y,TANG L,SOHAIL M I,et al.An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain[J].Science of the total environment,2019,660:80-96.
[5] WEBER K,QUICKER P.Properties of biochar[J].Fuel,2018,217:240-261.
[6] 宗大鵬,田穩(wěn),李韋鈺,等.農(nóng)林廢棄物生物炭鈍化典型土壤重金屬的機(jī)制研究進(jìn)展[J].生態(tài)毒理學(xué)報(bào),2023,18(1):232-245.
[7] HUFF M D,KUMAR S,LEE J W.Comparative analysis of pinewood,peanut shell,and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis[J].Journal of environmental management,2014,146:303-308.
[8] MANDAL S,SARKAR B,BOLAN N,et al.Enhancement of chromate reduction in soils by surface modified biochar[J].Journal of environmental management,2017,186:277-284.
[9] QIN P,WANG H L,YANG X,et al.Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate,cadmium,and lead from co-contaminated soils[J].Chemosphere,2018,198:450-459.
[10] NZEDIEGWU C,ARSHAD M,ULAH A,et al.Fuel,thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature[J].Bioresource technology,2021,320:1-11.
[11] CAO X D,HARRIS W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J].Bioresource technology,2010,101 (14):5222-5228.
[12] ZHANG J Z,HOU D Y,SHEN Z T,et al.Effects of excessive impregnation,magnesium content,and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity[J].Environmental research,2020,183:1-7.
[13] LYU P,LI L F,HUANG X Y,et al.Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: High-efficiency removal of As(III) and Cd(II) from aqueous solutions and insight into the mechanism of simultaneous purification[J].Science of the total environment,2022,823:1-14.
[14] 黃安香,楊定云,楊守祿,等.改性生物炭對(duì)土壤重金屬污染修復(fù)研究進(jìn)展[J].化工進(jìn)展,2020,39(12):5266-5274.
[15] MAHDI Z,YU Q J,EL HANANDEH A.Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar[J].Journal of environmental chemical engineering,2018,6(1):1171-1181.
[16] 周雅蘭,周冰.Fe浸漬污泥生物炭對(duì)含Cd(Ⅱ) 廢水的吸附性能研究[J].工業(yè)水處理,2021,41(5):80-85.
[17] WANG K,SUN Y B,TANG J C,et al.Aqueous Cr(VI) removal by a novel ball milled FeO-biochar composite: Role of biochar electron transfer capacity under high pyrolysis temperature[J].Chemosphere,2020,241:1-11.
[18] 莫官海,謝水波,曾濤濤,等.污泥基生物炭處理酸性含U(Ⅵ)廢水的效能與機(jī)理[J].化工學(xué)報(bào),2020,71(5):2352-2362.
[19] YANG X,ZHANG S Q,JU M T,et al.Preparation and modification of biochar materials and their application in soil remediation[J].Applied sciences,2019,9(7):1-25.
[20] TAN Z X,LIN C S K,JI X Y,et al.Returning biochar to fields: A review[J].Applied soil ecology,2017,116:1-11.
[21] EL-SHAFEY E I.Removal of Zn(Ⅱ) and Hg(Ⅱ) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk[J].Journal of hazardous materials,2010,175(1/2/3):319-327.
[22] ANAE J,AHMAD N,KUMAR V,et al.Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives[J].Science of the total environment,2021,767:1-25.
[23] JING X R,WANG Y Y,LIU W J,et al.Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J].Chemical engineering journal,2014,248:168-174.
[24] TANG L,YU J F,PANG Y,et al.Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J].Chemical engineering journal,2018,336:160-169.
[25] ZHENG W,GUO M X,CHOW T,et al.Sorption properties of greenwaste biochar for two triazine pesticides[J].Journal of hazardous materials,2010,181(1/2/3):121-126.
[26] PIGNATELLO J J,XING B S.Mechanisms of slow sorption of organic chemicals to natural particles[J].Environmental science & technology,1996,30(1):1-11.
[27] CHEN B L,YUAN M X.Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar[J].Journal of soils and sediments,2011,11(1):62-71.
[28] KEERTHANAN S,RAJAPAKSHA S M,TRAKAL L,et al.Caffeine removal by Gliricidia sepium biochar:Influence of pyrolysis temperature and physicochemical properties[J].Environmental research,2020,189:1-12.
[29] TAN G C,SUN W L,XU Y R,et al.Sorption of mercury (Ⅱ) and atrazine by biochar,modified biochars and biochar based activated carbon in aqueous solution[J].Bioresource technology,2016,211:727-735.
[30] ZHANG G X,GUO X F,ZHU Y E,et al.The effects of different biochars on microbial quantity,microbial community shift,enzyme activity,and biodegradation of polycyclic aromatic hydrocarbons in soil[J].Geoderma,2018,328:100-108.
[31] BIAN R J,JOSEPH S,CUI L Q,et al.A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J].Journal of hazardous materials,2014,272:121-128.
[32] MOORE F,GONZLEZ M E,KHAN N,et al.Copper immobilization by biochar and microbial community abundance in metal-contaminated soils[J].Science of the total environment,2018,616/617:960-969.
[33] GAO X,PENG Y T,ZHOU Y Y,et al.Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.)[J].Journal of environmental management,2019,251:1-9.
[34] GUO X F,JI Q,RIZWAN M,et al.Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils[J].Ecotoxicology and environmental safety,2020,206:1-12.
[35] DENG H,F(xiàn)ENG D,HE J X,et al.Influence of biochar amendments to soil on the mobility of atrazine using sorption-desorption and soil thin-layer chromatography[J].Ecological engineering,2017,99:381-390.
[36] SPOKAS K A,KOSKINEN W C,BAKER J M,et al.Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J].Chemosphere,2009,77(4):574-581.
[37] 李桂榮,陳富凱,賈勝勇,等.茄子稈生物炭聯(lián)合黑麥草對(duì)土壤鎘-芘復(fù)合污染修復(fù)的影響[J].河南農(nóng)業(yè)科學(xué),2020,49(9):51-61.
[38] WANG L,WANG Y J,MA F,et al.Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review[J].Science of the total environment,2019,668:1298-1309.
[39] TRAKAL L,VESELSK V,AFARˇK I,et al.Lead and cadmium sorption mechanisms on magnetically modified biochars[J].Bioresource technology,2016,203:318-324.
[40] MA Y,LIU W J,ZHANG N,et al.Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution[J].Bioresource technology,2014,169:403-408.
[41] YANG G X,JIANG H.Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J].Water research,2014,48:396-405.
[42] GUO W,WANG S J,WANG J K,et al.Sorptive removal of phenanthrene from aqueous solutions using magnetic and non-magnetic rice husk-derived biochars[J].Royal society open science,2018,5(5):1-11.
[43] YANG X N,CHEN Z F,WU Q H,et al.Enhanced phenanthrene degradation in river sediments using a combination of biochar and nitrate[J].Science of the total environment,2018,619/620:600-605.