• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope

    2024-03-25 09:30:54ZhetongLiu劉哲彤BingyaoLiu劉秉堯DongdongLiang梁冬冬XiaomeiLi李曉梅XiaominLi李曉敏LiChen陳莉RuiZhu朱瑞JunXu徐軍TongboWei魏同波XuedongBai白雪冬andPengGao高鵬
    Chinese Physics B 2024年3期
    關(guān)鍵詞:徐軍陳莉高鵬

    Zhetong Liu(劉哲彤), Bingyao Liu(劉秉堯), Dongdong Liang(梁冬冬), Xiaomei Li(李曉梅),Xiaomin Li(李曉敏), Li Chen(陳莉), Rui Zhu(朱瑞),?, Jun Xu(徐軍),Tongbo Wei(魏同波),?, Xuedong Bai(白雪冬),§, and Peng Gao(高鵬),6,?

    1Electron Microscopy Laboratory,School of Physics,Peking University,Beijing 100871,China

    2Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China

    3Research and Development Center for Semiconductor Lighting Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    4Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    5Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    6International Center for Quantum Materials,Peking University,Beijing 100871,China

    Keywords: nitride multiquantum wells, defect, cathodoluminescence, scanning transmission electron microscopy

    1.Introduction

    III-nitrides (i.e., group VA-III nitrides including InN,GaN and AlN) are widely used in optoelectronic devices because of their large bandgaps, high thermal conductivities, high electron mobilities, and high breakdown field strengths.[1-4]Among them,the light-emitting diodes(LEDs)prepared using multiple quantum wells(MQWs)are environmentally friendly, have a higher energy efficiency than traditional lighting,[5,6]and are widely used in lighting devices.[7]InGaN-based blue LEDs utilize GaN quantum barriers(QBs)between quantum wells(QWs)to limit the carriers,vastly increasing the light efficiency.[8]However, their performance is still limited by problems such as the quantum efficiency decrease.[9-11]One of the primary factors contributing to the decrease in luminescence efficiency is the presence of a piezoelectric polarization field, which was proposed to be induced by stress during epitaxial and doping process on MQWs luminescence.[12,13]Nevertheless, further investigation is required to explore the correlation between microstructure and luminescent properties at the nanoscale for MQWs.Therefore,in order to gain further insights into the luminescence mechanism of MQWs,it becomes imperative to investigate how differences in stress, elemental components and defects among different period QWs influence the luminescent behavior under higher spatial resolution.

    In recent years, more in-depth research on the luminescence mechanisms of MQWs has brought luminescence studies to the nanometer scale,[14-18]all of which have been enabled by the development of scanning transmission electron microscopy(STEM)-cathodoluminescence(CL).CL is the ultraviolet, visible, and near-infrared light emitted by materials under the excitation caused by the incidence of high-energy electron beams.The luminescence mechanisms can be divided into incoherent and coherent emissions.The material system that we studied is a direct-bandgap semiconductor in which incoherent emission predominates.In terms of the yield of incoherent emissions, the smaller the voltage, the larger the volume of interactions between the electrons and the material,and the better the yield.Therefore,an 80 kV voltage was adopted to ensure not only a high output but also a high spatial resolution.On the one hand,compared with other spectral characterization techniques, such as laser-excited photoluminescence(PL),[19,20]CL has several advantages.For example,the source in CL is super-continuous and has a large energy range; hence, CL is suitable for multiple transitions, including broad bandgap transitions and core-level transitions.[21]On the other hand, compared to SEM-CL,[22,23]STEM-CL provides higher spatial resolution and can be combined with high-angle annular dark field (HAADF) image and electron energy loss spectrum (EELS), which can study the optical properties of materials, such as local bandgap changes and defects with nanometer resolution.Therefore, STEM-CL is a powerful method for studying the optoelectrical properties of nanostructures with quantum-size effects in semiconductor optoelectronic devices such as LEDs.Furthermore,there have been several STEM-CL studies that investigated the luminescence of MQWs,encompassing variations in doping condition and thickness among MQWs that lead to distinct luminescent properties.[14,24]However,the effects of discrepancies among different period QWs and defects on the optoelectronic performance of MQWs are still largely unknown.

    In this study,we performed STEM-CL to characterize the luminescence of five-period InxGa1-xN/GaN MQWs.Three CL luminescence peaks,including yellow band luminescence(YL), GaN, and MQWs, were observed in the CL spectra;however, the wavelength and intensity of the luminescence could be affected by many universal defects at the nanoscale.Firstly, the piezoelectric polarization fields caused by the strain in different periods of the quantum well led to a change in the luminescence wavelength.The differences in electron and hole mobility can also influence the luminescence intensity.Secondly, in regions with low indium content, the luminescence intensity of CL weakens or even annihilates due to the hindered recombination of electron-hole pairs.Thirdly,the reduced indium content leads to a blue shift in the luminescence spectrum.Finally, owing to the release of strain at the dislocation,the nonradiative recombination rate increases,resulting in a decrease in the luminescence intensity.Our study clarifies the microscopic mechanism for failure analysis of MQW-based devices, creating new tunable factors for the design of new optoelectronic devices.

    2.Results and discussion

    The five-period InxGa1-xN/GaN MQWs are grown by the metal-organic chemical vapor deposition (MOCVD) method on graphene (Gr)/SiO2/Si(100) substrates, whose structure is shown in Figs.1(a) and S1a-b.Our low-temperature STEMCL system is shown in Fig.1(b), in which the temperature can be lowered down to 102 K.The two parabolic mirrors and low-temperature environment significantly improve the signalto-noise ratio(SNR),enabling better CL collection efficiency.However,obtaining high-quality InxGa1-xN MQWs emission spectra is very challenging at room temperature as the SNR of CL data is poor.On the other hand, although the temperature can be achieved around 102 K, it fails to stabilize at other temperatures for now, making it arduous to compare the cathodoluminescence of MQWs under different thermal conditions.Furthermore, the transmission electrons enable energy-dispersive x-ray spectroscopy (EDS) and EELS measurements in the same area,as shown in Fig.1(c).The atomic content of In and Ga in the wells is found to be 0.15 and 0.85 by EDS,respectively.According to Vegard’s law,[25]the band gap of In0.15Ga0.85N is estimated to be 2.75 eV,and the LED emission wavelength is approximately 450 nm.The EELS mapping to characterize bandgaps of InxGa1-xN MQWs region is shown in Fig.1(c),and the typical EELS spectra integrated from the QW and QB are shown in Fig.1(d),where the bandgaps are extracted by a linear fitting method.The bandgap at InGaN QW is~2.8 eV (~443 nm) and the bandgap at GaN QB is~3.1 eV (~400 nm).The STEM-CL spectrum of InxGa1-xN MQWs is shown in Fig.1(e), which exhibits three distinct peaks.The band diagrams of these peaks are shown in Fig.2(a).Combined with the EELS characterization,the first peak at~400 nm originates from the near-band-edge(NBE) emission of the GaN QBs.The bandgap of the GaN QBs differs from that of bulk GaN (Eg,GaN=3.4 eV).This discrepancy arises due to two factors, i.e., the presence of a small amount of indium in GaN QBs and the effects of quantum confinement and Cerenkov loss.The peak at~450 nm is consistent with the front bandgap estimation, which is the NBE luminescence peak of the In0.15Ga0.85N QWs.The last peak at~580 nm originates from the YL owing to the defect state.[26]

    To further study the luminescence of each period QW at the microscopic level, we conduct line-scanning STEMCL experiments with a step length of 1 nm and a probe size of~0.2 nm (Fig.2(b)).The CL spectral lines of each QW are superimposed in terms of the luminescence wavelength,as shown in Fig.2(c).The NBE luminescence peak of InxGa1-xN first exhibits a blue shift, followed by a red shift of~20 nm.The traditional Crosslight APSYS simulation fails to explain this owing to the lack of nonuniform trains in actual MQWs.As shown in Fig.2(d),owing to the spontaneous polarization of bulk GaN and piezoelectrically induced polarization from the mixing of In element, the combination of the built-in electric field causes energy band bending and electron and hole wave-function separation;this results in the reduction of recombination efficiency and a red shift of the emission wavelength called the quantum-confined Stark effect(QCSE).[27-29]In the structure of the MQWs, the strains in the periods of the MQWs are not the same.From Figs.2(e)and S1c-e,the strains in different periods are obtained by geometric phase analysis(GPA),[30-32]which show that the tensile strain decreases in the first two periods and then increases as the QW approached p-GaN.This indicates that the piezoelectrically induced polarization electric field also decreases and increases, resulting in the blue/red shift of the luminescence peak,[33,34]which subsequently leads to the NBE luminescence wavelength undergoing a blue shift followed by a red shift across different periods.

    Fig.1.STEM-CL characterization combined with the HAADF, EDS, and EELS of InxGa1-xN MQWs.(a) HAADF image of InxGa1-xN LED.(b)Schematic diagram of STEM-CL,HAADF,EDS and EELS.(c)HAADF image,EDS mappings of In(red),Ga(green),EELS bandgap mapping and atomic fractions of In and Ga of the InxGa1-xN MQWs.(d)EELS spectrum of QB and QW.(e)STEM-CL spectrum of the InxGa1-xN MQWs.

    Fig.2.CL emission difference of five periods of MQWs.(a)Band diagram of three CL emission peaks.(b)STEM-CL mapping across different five periods of MQWs.(c)The shift of NBE wavelength in QWs.(d)Schematic diagram of built-in electric field in MQWs.(e)Line profile of the strain calculated by GPA in QW1-5.(f)Line profile of CL emission intensity in QW1-5.

    We also observe that the 4th QW exhibits the strongest light-emitting tendency (Fig.2(f)).Because the electron mobility is fast and the hole mobility is slow.[35]The electrons and holes recombine mostly in the QW near the p-type GaN,where the luminescence is stronger.However, due to the difference in growth temperature between the final QW and the electron barrier layer, a minor precipitation of indium element occurs as indicated by the EDS measurement(Fig.1(c)),thereby impacting the growth quality and resulting in the decline of CL luminescence intensity within the last QW.

    It is worth noting that there is usually a non-uniform composition in the MQWs.A typical QW with partially missing In is shown in Figs.3(a) and 3(b), and the atomic fraction change of the In content is shown in Fig.3(c).We perform a STEM-CL characterization in this region(Fig.3(d))and discover that the NBE emission peak of the QW decreases with the composition of In(Fig.3(e)).Moreover,the CL luminescence intensity weakens or even disappears in the In-deficient region(Fig.3(f)).This can be explained from the perspective of recombination.According to the different methods of energy release, recombination can be divided into radiation and non-radiation recombination.Direct radiation recombination,which is the primary form of radiation recombination, refers to the process of direct recombination between conductionband electrons and valence-band holes.It can also be carried out through the recombination center to release energy in other ways, which is called non-radiative recombination.Because the CL can only collect signals of radiation recombination,the reduction of In content makes it difficult to achieve the electron-hole pair recombination,thus enhancing the nonradiative recombination, which weakens the intensity of the CL luminescence.

    Additionally, various defects in GaN can affect the luminescence of the MQWs.A HAADF image of a threading dislocation(TD)in the MQWs is shown in Fig.4(a),which is judged to be a mixed-type dislocation.Previous studies have found it hard to explain the structure-activity relationship between the dislocation and luminescence of MQWs owing to the limitation of spatial resolution.[36-39]

    As shown in Fig.4(b),we study the luminescence of the mixed dislocation region in the MQWs.The NBE luminescence peak of InxGa1-xN QW around the dislocation has a blue shift of~15 nm (Fig.4(c)).As Fig.4(b) shows, the strain is released at the dislocation,and the strain-induced polarization electric field is depressed,which leads to a blue shift of the luminescence peak near the dislocation.On the other hand, Fig.4(e) shows that the luminescence intensity at the mixed dislocations is significantly weakened,which can be attributed to recombination.As shown in Fig.4(f), the mixedtype dislocation in n-type GaN is an electron trap with a negative charge,which has a scattering effect on the carriers.The energy generated by the electron and hole recombination is likely to be captured by another electron, resulting in Auger recombination and the formation of a nonradiative recombination center.[40-42]The nonradiative recombination rate thus increases near the dislocation,leading to a decrease in minority carriers and luminescence intensity.

    Fig.3.Effect of In composition fluctuation on CL emission.(a),(b)HAADF image and EDS mapping of local In composition fluctuation in MQWs.(c) Atomic fraction of In element in QW1.(d) STEM-CL mapping across In composition fluctuation region in QW1.(e), (f) Line profile of wavelength and intensity of NBE emission across In composition fluctuation region in QW1.

    Fig.4.Effect of the TD on CL emission.(a),(b)HAADF image and STEM-CL mapping of TD in MQWs.(c)Line profile of wavelength of NBE emission across the TD.(d)Schematic diagram showing the effects of the TD on the built-in electric field.(e)Line profile of intensity of NBE emission across the TD.(f)Schematic diagram of the non-radiative recombination mechanism around the TD.

    3.Conclusions

    Using STEM-CL characterizations at 102 K, we studied the luminescence behavior of five periods of In0.15Ga0.85N/GaN MQWs and the influence of defects (including component undulations and dislocations)on luminescence.We found that the strain and defects of the material would affect the recombination process and piezoelectricallyinduced polarization electric field, leading to changes in the wavelength and intensity of the MQWs luminescence.Thus, the direct relationship between the atomic structure of InxGa1-xN MQWs and photoelectric properties was established.These microscopic variations significantly impact the overall performance of the device, necessitating their consideration during both MQWs fabrication and device design.

    Appendix A:Methods

    A1.MOCVD process of the GaN and blue LED on Gr/SiO2/Si(100)substrate

    Trimethylgallium (TMGa), trimethylaluminum (TMAl),and NH3were used as Ga, Al, and N precursors for growing AlN and GaN films.The III-nitride films were grown on the Gr/SiO2/Si(100)substrate using the Veeco K300 MOCVD chamber.First, the high temperature (HT)-AlN was grown at 1200°C for 6 min with the NH3flow of 1000 sccm and TMAl flow of 50 sccm.Then the 1st-GaN layer was grown at 1050°C for 40 min.After that 5 periods of InxGa1-xN/GaN MQWs layer were grown at 735°C/834°C with 3 nm InGaN well layers and 12 nm GaN barriers.The active layers were capped with a p-GaN layer deposited at 950°C with the biscyclopentadienyl magnesium(Cp2Mg)flow of 120 sccm,followed by an annealing process at 720°C for 10 min under N2ambient.

    A2.Electron microscopy characterizations and analysis

    The cross-sectional TEM specimen was made by the ThermoFisher Helios G4 UX focused ion beam system.The HAADF and EDS mapping were performed using FEI Titan Cubed Themis G2 300 spherical aberration corrected STEM,operated at 300 kV.The convergence semi angle was 30 mrad and the collection semi angle of HAADF was 39-200 mrad.The camera length in HAADF mode was set as 145 mm.The STEM-CL spectra were taken on JEOL Grand ARM 300 equipped with a Vulcan CL detector,operated at 80 kV.

    Acknowledgements

    Projct supported by the National Key R&D Program of China (Grant No.2019YFA0708202), the National Natural Science Foundation of China (Grant Nos.11974023,52021006, 61974139, 12074369, and 12104017), the “2011 Program” from the Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter, and the Youth Supporting Program of Institute of Semiconductors.We acknowledge Electron Microscopy Laboratory of Peking University and Institute of Physics of Chinese Academy of Sciences for the use of electron microscopes.

    猜你喜歡
    徐軍陳莉高鵬
    Special breathing structures induced by bright solitons collision in a binary dipolar Bose–Einstein condensates
    高鵬
    高鵬副教授
    湖北省推進(jìn)沿邊地區(qū)省際合作研究
    Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
    Merging and splitting dynamics between two bright solitons in dipolar Bose–Einstein condensates?
    一場(chǎng)車禍
    Therapeutic observation on lung-clearing and spleen-strengthening tuina in children with exogenous cough
    Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering
    The application of pragmatics in English Teaching
    青年生活(2019年36期)2019-09-10 20:31:58
    一级毛片久久久久久久久女| av福利片在线观看| 六月丁香七月| 69av精品久久久久久| 日日摸夜夜添夜夜爱| 岛国在线免费视频观看| 天美传媒精品一区二区| 一边亲一边摸免费视频| 爱豆传媒免费全集在线观看| 久久久成人免费电影| 久久这里只有精品中国| 在线观看一区二区三区| 免费观看a级毛片全部| 亚洲精品亚洲一区二区| 乱码一卡2卡4卡精品| 成年免费大片在线观看| 国产麻豆成人av免费视频| 久久午夜亚洲精品久久| 色噜噜av男人的天堂激情| 亚洲精品乱码久久久久久按摩| 国产精品.久久久| 99精品在免费线老司机午夜| 精品无人区乱码1区二区| 欧美成人一区二区免费高清观看| 免费人成视频x8x8入口观看| 亚洲欧洲日产国产| 亚洲精品成人久久久久久| 身体一侧抽搐| 91狼人影院| 欧美人与善性xxx| 国产激情偷乱视频一区二区| 蜜桃亚洲精品一区二区三区| 精品人妻熟女av久视频| 久久国内精品自在自线图片| 亚洲va在线va天堂va国产| 亚洲五月天丁香| 日日干狠狠操夜夜爽| 免费看美女性在线毛片视频| 久久久久久久久久黄片| 精品一区二区免费观看| 久久婷婷人人爽人人干人人爱| 国内精品美女久久久久久| 国语自产精品视频在线第100页| h日本视频在线播放| 天天一区二区日本电影三级| 成人永久免费在线观看视频| 国产大屁股一区二区在线视频| 成人二区视频| 国产精品一区www在线观看| 丰满乱子伦码专区| 国产私拍福利视频在线观看| 日韩一本色道免费dvd| 日韩av不卡免费在线播放| 国产免费一级a男人的天堂| 日本熟妇午夜| av在线亚洲专区| 赤兔流量卡办理| 99在线视频只有这里精品首页| 久久久精品欧美日韩精品| 日韩三级伦理在线观看| 日韩制服骚丝袜av| 黄片无遮挡物在线观看| 22中文网久久字幕| 国产精品一区二区三区四区免费观看| 欧美高清性xxxxhd video| 国产片特级美女逼逼视频| 欧美一区二区亚洲| 久久精品夜夜夜夜夜久久蜜豆| 日韩成人伦理影院| 免费看日本二区| videossex国产| 超碰av人人做人人爽久久| 黄色视频,在线免费观看| 少妇的逼好多水| 日日撸夜夜添| 五月玫瑰六月丁香| 亚洲熟妇中文字幕五十中出| 爱豆传媒免费全集在线观看| 亚洲av中文av极速乱| 看十八女毛片水多多多| 亚洲国产日韩欧美精品在线观看| 成人午夜精彩视频在线观看| 亚洲在久久综合| 国产伦一二天堂av在线观看| 联通29元200g的流量卡| 国产成人a区在线观看| 亚洲最大成人中文| 久久这里有精品视频免费| 久久这里有精品视频免费| 国产大屁股一区二区在线视频| videossex国产| 亚洲aⅴ乱码一区二区在线播放| 亚洲av中文av极速乱| 三级国产精品欧美在线观看| 国产乱人视频| 亚洲精品久久久久久婷婷小说 | 最新中文字幕久久久久| 久久99热这里只有精品18| 国产精品一及| 亚洲av免费在线观看| 国产一区二区亚洲精品在线观看| av免费观看日本| 欧美精品一区二区大全| 中文字幕av成人在线电影| 国内少妇人妻偷人精品xxx网站| 日本黄色视频三级网站网址| 国产亚洲精品久久久久久毛片| 国产老妇女一区| 欧美日韩综合久久久久久| 九九在线视频观看精品| 国产精品一区二区三区四区免费观看| 九草在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 成人永久免费在线观看视频| 欧美变态另类bdsm刘玥| 人人妻人人看人人澡| 亚洲精华国产精华液的使用体验 | www日本黄色视频网| 男女做爰动态图高潮gif福利片| 亚洲国产精品sss在线观看| 99国产极品粉嫩在线观看| 亚洲中文字幕日韩| 一个人看的www免费观看视频| www.av在线官网国产| 国产精品乱码一区二三区的特点| 国产伦理片在线播放av一区 | 国产精品久久久久久久电影| 全区人妻精品视频| 国产极品精品免费视频能看的| 日韩欧美 国产精品| 欧美bdsm另类| 久久婷婷人人爽人人干人人爱| 欧美一区二区国产精品久久精品| 搡老妇女老女人老熟妇| 国产精华一区二区三区| 国产美女午夜福利| 久久精品国产亚洲网站| 高清毛片免费看| 国产在线精品亚洲第一网站| 精品国内亚洲2022精品成人| av在线亚洲专区| 精品不卡国产一区二区三区| 欧美又色又爽又黄视频| av国产免费在线观看| 爱豆传媒免费全集在线观看| 色哟哟·www| 精品免费久久久久久久清纯| 夜夜爽天天搞| 午夜精品在线福利| 免费在线观看成人毛片| 干丝袜人妻中文字幕| 国产真实乱freesex| 欧美成人一区二区免费高清观看| 亚洲aⅴ乱码一区二区在线播放| 超碰av人人做人人爽久久| 好男人视频免费观看在线| 亚洲精品久久国产高清桃花| 久久精品久久久久久久性| 精品99又大又爽又粗少妇毛片| 99久国产av精品| 中文字幕免费在线视频6| 老师上课跳d突然被开到最大视频| 欧美变态另类bdsm刘玥| 国产探花极品一区二区| 熟妇人妻久久中文字幕3abv| 在线国产一区二区在线| 中文亚洲av片在线观看爽| 亚洲成av人片在线播放无| 国产大屁股一区二区在线视频| 国产成人精品一,二区 | 精华霜和精华液先用哪个| 亚洲av.av天堂| 一个人免费在线观看电影| 夜夜爽天天搞| 亚洲精品久久国产高清桃花| 精品无人区乱码1区二区| 观看免费一级毛片| 成人综合一区亚洲| 国产黄片美女视频| 看十八女毛片水多多多| 熟女电影av网| 最近手机中文字幕大全| 久久久久久大精品| 久久人人爽人人爽人人片va| 久久久久久大精品| 插阴视频在线观看视频| 99热这里只有是精品在线观看| 午夜久久久久精精品| 免费一级毛片在线播放高清视频| 亚洲最大成人中文| 男女啪啪激烈高潮av片| 我的老师免费观看完整版| 国产精品一区二区性色av| 寂寞人妻少妇视频99o| 日韩一本色道免费dvd| 国产 一区精品| 亚洲美女视频黄频| 国产男人的电影天堂91| 嫩草影院精品99| 一个人观看的视频www高清免费观看| 亚洲四区av| 中文字幕精品亚洲无线码一区| 啦啦啦啦在线视频资源| 国产精品久久电影中文字幕| 九九爱精品视频在线观看| 久久精品国产亚洲av天美| 免费人成在线观看视频色| 亚洲无线观看免费| 成人美女网站在线观看视频| 亚洲欧美日韩东京热| 久久久久久九九精品二区国产| 少妇人妻一区二区三区视频| 久久婷婷人人爽人人干人人爱| 亚洲av男天堂| av在线播放精品| 亚洲va在线va天堂va国产| 久久久久网色| 国产精品伦人一区二区| 青春草视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 中文欧美无线码| a级毛片免费高清观看在线播放| 亚洲五月天丁香| 久久精品国产99精品国产亚洲性色| 日韩欧美国产在线观看| 日韩一区二区视频免费看| 成人高潮视频无遮挡免费网站| 男人舔奶头视频| 久久这里只有精品中国| 97在线视频观看| 国产真实乱freesex| 亚洲人成网站在线播| 伦精品一区二区三区| 成人欧美大片| 黄色配什么色好看| 在线观看66精品国产| 一区二区三区高清视频在线| 人妻制服诱惑在线中文字幕| 在线观看免费视频日本深夜| 日韩欧美精品v在线| 亚洲内射少妇av| 亚洲四区av| 人妻系列 视频| 一级毛片aaaaaa免费看小| 99视频精品全部免费 在线| 3wmmmm亚洲av在线观看| 亚洲av熟女| 国产视频内射| 久久久a久久爽久久v久久| 成人永久免费在线观看视频| 九九在线视频观看精品| 自拍偷自拍亚洲精品老妇| 亚洲精品日韩av片在线观看| 男女下面进入的视频免费午夜| 哪里可以看免费的av片| 97热精品久久久久久| 人妻久久中文字幕网| 亚洲国产精品国产精品| 日韩成人伦理影院| 国内少妇人妻偷人精品xxx网站| 久久精品国产自在天天线| 国产精品av视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区四那| 国产精品久久久久久亚洲av鲁大| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 欧美高清成人免费视频www| 男人舔奶头视频| 日日干狠狠操夜夜爽| 国产精品麻豆人妻色哟哟久久 | 最近视频中文字幕2019在线8| 青春草亚洲视频在线观看| 女人被狂操c到高潮| 国产精品麻豆人妻色哟哟久久 | а√天堂www在线а√下载| 国产日本99.免费观看| 国产毛片a区久久久久| 国产蜜桃级精品一区二区三区| av女优亚洲男人天堂| 国产精品野战在线观看| 不卡一级毛片| 麻豆国产97在线/欧美| 国产精品一区www在线观看| 精品国内亚洲2022精品成人| 2022亚洲国产成人精品| 天堂√8在线中文| 国产成人aa在线观看| av专区在线播放| 亚洲精品自拍成人| 有码 亚洲区| 天堂√8在线中文| 国产精品久久久久久精品电影小说 | 日本五十路高清| 亚洲av第一区精品v没综合| 天堂影院成人在线观看| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 国模一区二区三区四区视频| 啦啦啦韩国在线观看视频| 午夜久久久久精精品| 蜜桃亚洲精品一区二区三区| 在线观看66精品国产| 丰满乱子伦码专区| 99久久人妻综合| 亚洲第一区二区三区不卡| 成人国产麻豆网| 国产精品美女特级片免费视频播放器| 久久久久久久久久成人| 久久中文看片网| 免费看日本二区| 久久久久久九九精品二区国产| 毛片一级片免费看久久久久| 亚洲图色成人| 欧美+亚洲+日韩+国产| 天美传媒精品一区二区| 亚洲av成人精品一区久久| 亚洲精品乱码久久久久久按摩| 69人妻影院| 亚洲在线自拍视频| av免费观看日本| 一本一本综合久久| 国产免费男女视频| 日韩三级伦理在线观看| av女优亚洲男人天堂| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 亚洲av免费高清在线观看| 国产精品99久久久久久久久| 99热只有精品国产| 在现免费观看毛片| 少妇的逼水好多| 国产三级中文精品| 亚洲高清免费不卡视频| 99久久精品一区二区三区| 九九久久精品国产亚洲av麻豆| 久久久久网色| 网址你懂的国产日韩在线| 18禁在线播放成人免费| 青春草视频在线免费观看| 精品国产三级普通话版| 少妇人妻精品综合一区二区 | 久久精品91蜜桃| 成人三级黄色视频| 亚洲成人久久爱视频| 九九在线视频观看精品| 我要搜黄色片| 天堂av国产一区二区熟女人妻| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 国产探花极品一区二区| 久久久久久久午夜电影| 免费看日本二区| 此物有八面人人有两片| 能在线免费看毛片的网站| 色5月婷婷丁香| 国产亚洲91精品色在线| 精品久久久久久成人av| 精品人妻偷拍中文字幕| 亚洲精品国产av成人精品| 免费av观看视频| 国产av不卡久久| 晚上一个人看的免费电影| 人妻夜夜爽99麻豆av| 99久久无色码亚洲精品果冻| 99久久精品一区二区三区| 在线免费观看的www视频| 久久精品久久久久久久性| 久久久久久九九精品二区国产| 国产精品久久视频播放| 久久久欧美国产精品| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久| 精品久久久久久久人妻蜜臀av| 亚州av有码| 国产久久久一区二区三区| 欧美日本亚洲视频在线播放| 日本一二三区视频观看| 成人永久免费在线观看视频| 国产精品日韩av在线免费观看| 国产大屁股一区二区在线视频| 99国产极品粉嫩在线观看| 久久久国产成人免费| 国产高清不卡午夜福利| 久久6这里有精品| 国产成人一区二区在线| 丰满乱子伦码专区| 久久久精品大字幕| 免费观看a级毛片全部| 亚洲成人久久爱视频| 欧美三级亚洲精品| 国产黄片视频在线免费观看| av在线老鸭窝| 日韩精品有码人妻一区| 一级av片app| 人人妻人人澡欧美一区二区| 国产真实乱freesex| 精品国内亚洲2022精品成人| 99热网站在线观看| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看| 国产黄片视频在线免费观看| av在线亚洲专区| 在线观看一区二区三区| 一边摸一边抽搐一进一小说| 伦理电影大哥的女人| 免费看美女性在线毛片视频| 天堂av国产一区二区熟女人妻| 久久99精品国语久久久| 久久久久网色| 国产老妇女一区| 美女国产视频在线观看| 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 国产精品福利在线免费观看| 91久久精品国产一区二区三区| 国产综合懂色| 人人妻人人澡欧美一区二区| 亚洲精品影视一区二区三区av| 久久这里有精品视频免费| 亚洲av.av天堂| 欧美极品一区二区三区四区| 人妻夜夜爽99麻豆av| 超碰av人人做人人爽久久| 精品久久久久久成人av| 中文欧美无线码| 高清毛片免费观看视频网站| 内射极品少妇av片p| 变态另类丝袜制服| 亚洲国产精品国产精品| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 国产伦精品一区二区三区四那| 亚洲国产欧洲综合997久久,| 亚洲国产欧美人成| 国产老妇女一区| 免费人成视频x8x8入口观看| 成年av动漫网址| 国产极品精品免费视频能看的| 欧美性猛交黑人性爽| 九九爱精品视频在线观看| 国产精品综合久久久久久久免费| or卡值多少钱| 亚洲av电影不卡..在线观看| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| 美女脱内裤让男人舔精品视频 | 校园人妻丝袜中文字幕| 97超碰精品成人国产| 亚洲精品色激情综合| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 久久草成人影院| 国产亚洲5aaaaa淫片| 一本一本综合久久| 亚洲av二区三区四区| 18禁在线播放成人免费| 欧美高清成人免费视频www| 成年女人永久免费观看视频| 中文字幕久久专区| 亚洲18禁久久av| 免费看日本二区| 日韩欧美精品v在线| 少妇人妻精品综合一区二区 | 综合色av麻豆| 欧美变态另类bdsm刘玥| 国产一区二区激情短视频| 日韩视频在线欧美| 高清日韩中文字幕在线| 精品久久久久久久久久久久久| 日韩精品有码人妻一区| 亚洲av免费高清在线观看| 欧美人与善性xxx| 97在线视频观看| 国产av麻豆久久久久久久| 亚州av有码| 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 国内久久婷婷六月综合欲色啪| 精品午夜福利在线看| 啦啦啦韩国在线观看视频| 午夜亚洲福利在线播放| 国产精品乱码一区二三区的特点| 国产亚洲精品久久久com| 国内精品美女久久久久久| 麻豆精品久久久久久蜜桃| 国产精品无大码| 蜜桃久久精品国产亚洲av| 亚洲av成人av| 赤兔流量卡办理| 两个人视频免费观看高清| 黄色配什么色好看| 国产亚洲精品久久久com| 日本五十路高清| 国产中年淑女户外野战色| 人妻夜夜爽99麻豆av| 男人和女人高潮做爰伦理| 高清午夜精品一区二区三区 | 91精品一卡2卡3卡4卡| 哪里可以看免费的av片| 丝袜喷水一区| 亚洲欧洲国产日韩| 啦啦啦啦在线视频资源| 欧美一区二区精品小视频在线| 久久午夜亚洲精品久久| 你懂的网址亚洲精品在线观看 | 亚洲av熟女| 波多野结衣巨乳人妻| 哪里可以看免费的av片| 亚洲人成网站高清观看| 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 久久欧美精品欧美久久欧美| 亚洲av免费高清在线观看| 成人亚洲欧美一区二区av| 午夜亚洲福利在线播放| 国产探花极品一区二区| 18禁在线播放成人免费| 免费av观看视频| 有码 亚洲区| 可以在线观看毛片的网站| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 亚洲精品久久久久久婷婷小说 | 免费不卡的大黄色大毛片视频在线观看 | 欧美xxxx性猛交bbbb| 国内精品美女久久久久久| 男人的好看免费观看在线视频| .国产精品久久| 国产黄片视频在线免费观看| 91狼人影院| 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 丝袜美腿在线中文| 国产老妇女一区| 一本久久中文字幕| 国产精品一区二区性色av| 国产黄色视频一区二区在线观看 | 日韩av不卡免费在线播放| 可以在线观看的亚洲视频| 久久99精品国语久久久| 夜夜夜夜夜久久久久| 国产精品福利在线免费观看| 晚上一个人看的免费电影| 亚洲综合色惰| 久久久精品大字幕| 亚洲国产欧美人成| 91狼人影院| 亚洲七黄色美女视频| 久久久久久久久久久免费av| 毛片一级片免费看久久久久| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| 夜夜看夜夜爽夜夜摸| 国产精品嫩草影院av在线观看| 一进一出抽搐gif免费好疼| 精品无人区乱码1区二区| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 中文欧美无线码| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 99久久成人亚洲精品观看| 高清日韩中文字幕在线| 直男gayav资源| 午夜a级毛片| 高清毛片免费看| 国产一区亚洲一区在线观看| 中出人妻视频一区二区| 哪个播放器可以免费观看大片| 久久草成人影院| 九九久久精品国产亚洲av麻豆| 又爽又黄a免费视频| 九九久久精品国产亚洲av麻豆| 乱码一卡2卡4卡精品| 国产av不卡久久| 天堂av国产一区二区熟女人妻| 噜噜噜噜噜久久久久久91| 日韩,欧美,国产一区二区三区 | 亚洲av第一区精品v没综合| 国内精品一区二区在线观看| 国产成人a∨麻豆精品| 成人特级黄色片久久久久久久| 久99久视频精品免费| 亚洲精品亚洲一区二区| 中文字幕av在线有码专区| 欧美性猛交黑人性爽| 不卡视频在线观看欧美| 69av精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 成人av在线播放网站| 日韩一本色道免费dvd| 99热全是精品| 少妇被粗大猛烈的视频| 成年av动漫网址| 免费不卡的大黄色大毛片视频在线观看 | 国语自产精品视频在线第100页| 久久国内精品自在自线图片| 美女大奶头视频| 成人一区二区视频在线观看| 免费搜索国产男女视频| 欧美日本亚洲视频在线播放| 乱码一卡2卡4卡精品| 狠狠狠狠99中文字幕| 天天躁夜夜躁狠狠久久av| 中文在线观看免费www的网站| 国产黄片视频在线免费观看| 久久精品人妻少妇| 国产亚洲av片在线观看秒播厂 | 2021天堂中文幕一二区在线观| 国产在线精品亚洲第一网站| 久久韩国三级中文字幕| 欧美又色又爽又黄视频|