• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering

    2020-04-24 05:50:06HanghangWANG王行行LiyanZHANG張麗艷WenqiLU陸文琪andJunXU徐軍
    Plasma Science and Technology 2020年3期
    關(guān)鍵詞:徐軍行行

    Hanghang WANG (王行行),Liyan ZHANG (張麗艷),Wenqi LU (陸文琪) and Jun XU (徐軍)

    1 Key Laboratory of Materials Modification by Laser,Ion and Electron Beams,Ministry of Education,School of Physics,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 School of Chemical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    Abstract

    Keywords:continuous compositional spread method,silicon carbide,optical band gap,magnetron sputtering,Raman and IR spectra

    1.Introduction

    Due to its excellent physical and chemical properties,silicon carbide(SiC)has been or is being widely used in most hi-tech fields such as aerospace,aviation,military,and nuclear power[1–4].The key properties of SiC include high melting point,high thermal conductivity,high hardness,resistance against corrosion and wear,low thermal expansion and semiconducting nature.The properties such as optical band gap of SixCythin films are strongly dependent on the Si?C bond density,and the formation of Si?C bonds is directly related to the composition of SixCythin films.

    The composition change of SixCythin films not only determines the optical bang gap,but also determines other properties such as carrier density,conductivity and induced spin polarization,all these properties depend on the structure,which in turn depends on the composition.The change of the carbon content y of SixCythin films results in variations of its structure and leads to a complex relationship between the properties and compositions [5–7].In order to shed light on this relationship,SixCythin films with different compositions have been deposited by a variety of techniques,such as plasma enhanced chemical vapor deposition,radio frequency(RF) sputtering,pulsed laser deposition,ion implantation,direct current reactive magnetron sputtering [6–10].Among various methods,the magnetron sputtering appears to be very attractive due to its relative simplicity,high deposition rates and wide application in industry [11].Furthermore,magnetron sputtering technique can simplify the investigation of the relationship between the properties and compositions by depositing hydrogen-free SixCythin films.The compositions of hydrogen-free SixCythin films deposited by magnetron sputtering techniques can be changed by controlling the power of target,area ratio of silicon to graphite sections of a composite target and even the driving frequency of RF power supply [11–17].In the present study,continuous compositional spread method,a kind of combinatorial material methodology,has been used to deposit SixCythin films with different compositions by controlling deposition position.Compared with the conventional magnetron sputtering methods,the major advantage of the continuous compositional spread method is that a range of SixCythin films with different compositions can be prepared in a single deposition and the optimal parameters can be obtained quickly [18,19].

    In this paper,the continuous compositional spread method is employed to investigate the relationship of optical band gap and compositions.The compositions of the thin films are changed by controlling the deposition position.The present work is focused on the variation of the composition with deposition position and the influence of compositions on chemical structure and the optical band gap of SixCythin films.

    Figure 1.The schematic diagram of co-sputtering system.

    2.Experimental details

    The SixCythin films were deposited by Microwave Electron Cyclotron Resonance plasma enhanced RF (13.56 MHz)magnetron co-sputtering;the deposition system schematic is illustrated in figure 1.A horizontal deposition distance L is defined as the horizontal distance of sample to the left side of silicon target,as shown in figure 1.Both the angles between the targets and the substrates are 37°.The distance between the center of silicon target and substrate changes from 128.2 to 180.6 mm with the L changing from 85 to 175 mm,while the distance between the center of graphite target and substrate changes from 180.6 to 128.2 mm with L changing from 85 to 175 mm.The left silicon (diameter:68 mm,purity:99.999%) and the right graphite (68 mm,99.999%) magnetron targets were sputtered singly or simultaneously:(1) for silicon thin films,only the silicon target was sputtered and the RF power of target was set to 150 W;(2) for carbon thin films,only the graphite target was sputtered and the RF power of target was set to 500 W;(3) for SixCythin films,the two targets were sputtered simultaneously and the RF power of silicon and graphite targets was set to 150 W and 500 W,respectively.For all of the sputtering process described above,a microwave plasma source was set as 250 W to get high plasma density near the substrate and maintain discharge during sputtering process [20].Before introducing the sputtering argon gas (99.999%),the system was pumped to a pressure of 2.6×10–3Pa,and then the sputtering pressure was set as 0.22 Pa.The flow rate of the argon gas was kept constant at 20 sccm.All thin films were deposited on square Si and glass substrates,10 mm on a side,at room temperature for different characterizations:Si substrates deposited for 120 min were used for deposition rate,composition and chemical structure measurement,and the glass substrates deposited for 20 min were used for transmittance measurement.

    The film thickness was measured by Dektak 6M surface profiler.The infrared absorption spectra of the SixCythin films were measured by Nicolet 6700 FTIR in the wavenumber range of 400–4000 cm?1with a spectral resolution of 4 cm?1.The Raman spectra were measured by Renishaw inVia instrument and a 532 nm line of a 10 mW laser as the exciting source.The Raman spectra range was 200–2000 cm?1and corrected by deducting the background signal.The optical transmittance of the films was investigated by a DH-2000-BAL type ultraviolet–visible spectrophotometer.The compositions were analyzed by ESCALABTM250Xi x-ray photoelectron spectrometer.

    3.Results and discussion

    Silicon (Si),carbon (C) and SixCythin films have been deposited on Si substrates,respectively.The deposition rate of these thin films is plotted as a function of horizontal deposition distance L in figure 2(a).It can be seen that the deposition rate of Si films decreases almost linearly with the increasing L.In contrast,the deposition rate of C films increases almost linearly with L.Similar results have been reported in [21,22].The co-sputtering of the silicon and graphite targets leads to the deposition rate of SixCyfilms as shown in figure 2(a),firstly decreases and then increases with the increasing L.Thus,we can expect that the compositions of the SixCythin films should gradually vary with L.In order to verify the expected result,the compositions of the SixCythin films obtained from x-ray photoelectron spectroscopy (XPS)measurements are plotted as a function of L in figure 2(b).It is clear that the carbon content increases linearly from 0.28 to 0.72 with the deposition position changed from 85 to 175 mm,and the stoichiometric SiC thin film could be found at the cross point of two dot lines shown in figure 2(b)with L value of 130 mm.The SixCythin film composition changes from C poor to C rich with increasing y.Due to a nearly linear relation between L and y,L can be used as a reference for the carbon content of the SixCythin films.

    Figure 2.(a)The deposition rates of the thin films as a function of L,(b) the element content of the SixCy thin films as a function of L.

    Figure 3.The infrared absorption spectra of the SixCy films with increasing y.

    The infrared absorption spectra of the SixCythin films with increasing carbon content y are shown in figure 3.The spectra exhibit one main absorption band centered around 790 cm?1,which is assigned to vibrational modes of Si?C[8],while the weak band around 1400 cm?1appeared when y value is larger than 0.49 might due to sp2C?C bonds [12,23].

    The Si?C bond density NSi?Ccan be calculated from the following formula based on the peak area of Si?C stretching mode [17]:

    Figure 4.(a)The Si?C bond densities vary with increasing y,(b)the FWHM and peak position of Si?C bands vary with increasing y.The inset is a typical fitting result of the Si?C band.

    where As=2.13×1019cm?2is the conversion factor of Si–C stretching bond,ν is the wavenumber and α(ν) is the absorption coefficient.

    The Si?C bond density of the SixCythin films varying with increasing y is plotted in figure 4(a).Figure 4(a) shows that the Si?C bond density increases firstly and then decreases with increasing carbon content y.For y<0.5,C poor composition regime,the Si?Si bonds are replaced by Si?C bonds with increasing y;whereas for y>0.5,C rich regime,the Si?C bonds are replaced by C?C bonds with increasing y [6].The cross point of two regimes leads to a maximum Si?C bond density of 11.7×1022cm?3appearing at y=0.49.

    The full width at half maximum (FWHM) and peak position of the Si?C bands varying with increasing y are plotted in figure 4(b).Both the FWHM and peak position were obtained from the peak fitting with a Gaussian function.A typical fitting result of the Si?C band with y=0.57 is given in the inset of figure 4(b).The experimental and fitted results are plotted by circle and solid lines,respectively.Figure 4(b)shows that the Si?C peak FWHM increases from 212 to 294 cm?1and peak position increases from 753 to 813 cm?1with increasing y.The increase of FWHM indicates that the degree of disorder for the SixCythin films increases with increasing carbon content y [16].The increase of peak position is due to the higher electronegativity of carbon respect to the substituted silicon atoms [24].

    The Raman spectrum of the SixCythin films is shown in figure 5.The spectra exhibit three main bands located at 260–590 cm?1,590–1050 cm?1and 1100–1750 cm?1,respectively.The band centered around 468 cm?1is due to Si?Si bonds and the band centered around 800 cm?1is attributed to Si?C bonds [17,25].The last band centered around 1450 cm?1is due to the C?C bond [17,24,25].The C?C band is probably a result of intimately mixed diamondlike sp3and graphite-like sp2bonds in deposited films[9,25].The decrease of Si?Si bands intensity and the increase of C?C bands intensity indicate that the C atoms replace the Si atoms in the SixCynetwork with increasing y.This result agrees well with the infrared result discussed above.

    Figure 5.The Raman spectrum of the SixCy films with increasing y.

    Figure 6.The G peak position and the intensity ratio I(D)/I(G)vary with increasing y.

    The C?C band intensity and width increase significantly with carbon content y,and this band can be fitted by two Gaussian peaks labeled D and G,as shown in the inset of figure 5.The D peak centered around 1348 cm?1is due to disordered sp2C bonds in the graphitic structure,while the G peak is duo to ring-like and chain-like graphite structures[25,26].The G peak position and the intensity ratio I(D)/I(G)are the two key parameters to monitor carbon bonds.The G peak position and the intensity ratio I(D)/I(G) vary with increasing y are plotted in figure 6.It is shown that the G peak position linearly increases from 1450 to 1505 cm?1with increasing carbon content y.This phenomenon has also been reported for amorphous SixCy:H [27].The increase of intensity ratio I(D)/I(G)with y shown in figure 6 indicates that the disordered carbon in thin films increases and the sp3carbon content decreases [27,28].

    Figure 7.(a)The transmittance of the SixCy thin films,(b)the optical band gap varies with increasing y.The inset is the deposition rate of the SixCy thin films deposited on glass substrate.

    The typical transmittance spectra of the SixCythin films are shown in figure 7(a),the marks on each spectrum act as the indicator of carbon content y.The deposition rate of the SixCythin films deposited on glass substrate is plotted as a function of carbon content y in the inset of figure 7(b).The optical band gap of the thin films was derived from the ultraviolet–visible spectroscopy (UV–vis) spectra by Tauc’s plotting method [6].The optical band gap of SixCythin films varying with carbon content y is shown in figure 7(b).It shows that the optical band gap increases initially and reaches to a maximum,and then it decreases rapidly.The maximum optical band gap value of 1.99 eV appears around y=0.5.Compare with figure 4(a),the variation of Si?C bond density and optical band gap with carbon content y are similar,which indicates that the optical band gap depends on Si?C bond density:at y<0.5 regime,the optical band gap increases with y due to the fact that the Si?Si bonds are gradually replaced by the Si–C bonds;at the C rich regime,y>0.5,the optical band gap decreases with y due to two reasons:(1)the sp3Si?C bonds are replaced by sp2C?C bonds [7],(2) the increase of disordered carbon and the decrease of sp3carbon content narrow the optical band gap [29].Above results demonstrate that the optical band gap of SixCyfilms could be changed in the range of 1.27?1.99 eV with carbon content y changing from 0.28 to 0.72.

    4.Conclusions

    SixCyfilms with different carbon contents have been prepared by the continuous compositional spread method.The carbon content y is changed from 0.28 to 0.72 by controlling the deposition position.Nearly linear relationship between L and y is obtained.When y<0.5,the Si?Si bonds are replaced by Si?C bonds with increasing y,which increases the Si?C bond density,leads to the optical band gap increase;whereas for y>0.5,the Si?C bonds are replaced by C?C bonds with increasing y,which reduces the Si?C bond density,leads to the lower optical band gap.The maximum optical band gap value of 1.99 eV appears around y=0.5.

    ORCID iDs

    猜你喜歡
    徐軍行行
    Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
    Crystal growth,spectral properties and Judd–Ofelt analysis of Pr: CaF2-YF3?
    醫(yī)者頌
    一場(chǎng)車(chē)禍
    行行重行行
    Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake*
    行行重行行
    千王之變
    連云港方言動(dòng)詞體標(biāo)記“行行”
    文教資料(2014年2期)2014-08-21 03:02:45
    国产黄色视频一区二区在线观看| 观看美女的网站| 亚洲欧美清纯卡通| 侵犯人妻中文字幕一二三四区| 国产片内射在线| 成人国产麻豆网| 十分钟在线观看高清视频www| 桃花免费在线播放| 啦啦啦在线观看免费高清www| 综合色丁香网| 如何舔出高潮| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 在线观看国产h片| 国产精品一区二区精品视频观看| 国产精品久久久人人做人人爽| 国产熟女欧美一区二区| 爱豆传媒免费全集在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲专区中文字幕在线 | 亚洲欧美精品自产自拍| 久久久久精品人妻al黑| 高清视频免费观看一区二区| videosex国产| 男女之事视频高清在线观看 | 免费观看av网站的网址| 精品久久蜜臀av无| 日韩 亚洲 欧美在线| 99久国产av精品国产电影| 亚洲少妇的诱惑av| 亚洲第一区二区三区不卡| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 美女视频免费永久观看网站| 岛国毛片在线播放| 久久这里只有精品19| 久久精品久久精品一区二区三区| 自线自在国产av| 国产欧美亚洲国产| 一区二区av电影网| 午夜福利影视在线免费观看| 少妇精品久久久久久久| 国产伦人伦偷精品视频| 啦啦啦在线观看免费高清www| av不卡在线播放| 在线观看人妻少妇| 国产成人精品无人区| 在线观看三级黄色| 亚洲一区中文字幕在线| 久久毛片免费看一区二区三区| 美女大奶头黄色视频| 亚洲精品国产一区二区精华液| 免费在线观看视频国产中文字幕亚洲 | 欧美精品一区二区免费开放| 日韩成人av中文字幕在线观看| 亚洲成人一二三区av| 亚洲在久久综合| 欧美精品一区二区免费开放| 91精品伊人久久大香线蕉| 国产爽快片一区二区三区| 国产欧美亚洲国产| 久久精品久久久久久噜噜老黄| 久久99热这里只频精品6学生| 麻豆乱淫一区二区| 人妻一区二区av| 一区二区三区精品91| 亚洲国产精品一区三区| 18禁观看日本| 欧美激情高清一区二区三区 | 免费看不卡的av| 久久久亚洲精品成人影院| 啦啦啦在线观看免费高清www| 中文乱码字字幕精品一区二区三区| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜制服| 伦理电影免费视频| 久久人人爽人人片av| 国产成人午夜福利电影在线观看| 超色免费av| 黄片播放在线免费| www.自偷自拍.com| 国产成人精品久久二区二区91 | 国产日韩欧美亚洲二区| av网站免费在线观看视频| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 欧美黄色片欧美黄色片| 一区二区av电影网| 超碰成人久久| kizo精华| 久久精品久久久久久噜噜老黄| 午夜日韩欧美国产| 秋霞伦理黄片| 午夜av观看不卡| 丰满迷人的少妇在线观看| 另类精品久久| 亚洲成人av在线免费| 男人爽女人下面视频在线观看| 国产精品蜜桃在线观看| 欧美最新免费一区二区三区| 国产精品三级大全| 丁香六月欧美| 女性被躁到高潮视频| 女的被弄到高潮叫床怎么办| 美女中出高潮动态图| videosex国产| 日韩一本色道免费dvd| 少妇人妻久久综合中文| 两个人看的免费小视频| 久久久久网色| 成年av动漫网址| 久久久久精品人妻al黑| 中文字幕色久视频| 亚洲熟女毛片儿| 久久av网站| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| 中国国产av一级| 日本爱情动作片www.在线观看| 国产精品免费视频内射| 国产色婷婷99| 国产一区二区三区综合在线观看| 伦理电影大哥的女人| 成年美女黄网站色视频大全免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美另类一区| 老司机亚洲免费影院| 欧美成人精品欧美一级黄| videosex国产| 熟女少妇亚洲综合色aaa.| 久久久久国产精品人妻一区二区| 亚洲成色77777| 国产成人欧美在线观看 | 国产精品久久久久久久久免| 天堂中文最新版在线下载| 国产男人的电影天堂91| 久久久久久久大尺度免费视频| 国产成人精品在线电影| 激情五月婷婷亚洲| 国产乱人偷精品视频| 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| 亚洲av在线观看美女高潮| 天堂中文最新版在线下载| 久久ye,这里只有精品| 啦啦啦啦在线视频资源| 国产免费现黄频在线看| 大片电影免费在线观看免费| 久久久精品区二区三区| 在线看a的网站| 久久久久精品国产欧美久久久 | 女的被弄到高潮叫床怎么办| 母亲3免费完整高清在线观看| 亚洲情色 制服丝袜| 自线自在国产av| 亚洲七黄色美女视频| 中国国产av一级| 熟妇人妻不卡中文字幕| 一级,二级,三级黄色视频| 国产成人av激情在线播放| 乱人伦中国视频| 国产成人精品久久二区二区91 | 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲四区av| 免费在线观看完整版高清| 日韩伦理黄色片| 老司机深夜福利视频在线观看 | 日韩 欧美 亚洲 中文字幕| 大香蕉久久成人网| 色婷婷久久久亚洲欧美| 日韩,欧美,国产一区二区三区| 色婷婷av一区二区三区视频| 亚洲三区欧美一区| 免费观看人在逋| 精品一区在线观看国产| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜制服| 最近中文字幕高清免费大全6| 丁香六月天网| 国产 一区精品| 精品久久久精品久久久| 免费看不卡的av| 日本wwww免费看| 五月天丁香电影| 欧美黄色片欧美黄色片| 日韩大片免费观看网站| 久久久久久人人人人人| 国产女主播在线喷水免费视频网站| 精品一区二区三区av网在线观看 | 欧美人与性动交α欧美精品济南到| 亚洲国产最新在线播放| 国产在线视频一区二区| av一本久久久久| 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 久久国产亚洲av麻豆专区| 日韩精品免费视频一区二区三区| 婷婷色综合大香蕉| 丝袜脚勾引网站| 日韩,欧美,国产一区二区三区| 国产一区亚洲一区在线观看| 九九爱精品视频在线观看| 天天操日日干夜夜撸| 免费观看性生交大片5| 一级爰片在线观看| 久久精品亚洲av国产电影网| 男人爽女人下面视频在线观看| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 亚洲精品中文字幕在线视频| 国产av精品麻豆| 色精品久久人妻99蜜桃| 亚洲av福利一区| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| 一本色道久久久久久精品综合| 久久久久久免费高清国产稀缺| 国产av码专区亚洲av| 两个人看的免费小视频| 两个人免费观看高清视频| 人人妻人人澡人人看| 少妇 在线观看| 老司机影院毛片| 国产精品一区二区在线不卡| avwww免费| 日韩伦理黄色片| 亚洲欧美精品综合一区二区三区| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| 精品一区二区三区四区五区乱码 | 韩国精品一区二区三区| 中文欧美无线码| 老司机影院成人| 成年人免费黄色播放视频| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 午夜老司机福利片| 亚洲av综合色区一区| 成年美女黄网站色视频大全免费| 好男人视频免费观看在线| 久久天堂一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| 国产无遮挡羞羞视频在线观看| 亚洲国产精品一区二区三区在线| 一级毛片我不卡| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 日本欧美视频一区| 国产精品亚洲av一区麻豆 | 亚洲成国产人片在线观看| 黄色 视频免费看| 高清黄色对白视频在线免费看| 91精品国产国语对白视频| 少妇被粗大的猛进出69影院| 一边亲一边摸免费视频| 欧美av亚洲av综合av国产av | 日韩视频在线欧美| 免费不卡黄色视频| 999久久久国产精品视频| 18在线观看网站| 热99国产精品久久久久久7| 黄色一级大片看看| 国产成人av激情在线播放| 在线观看免费视频网站a站| 国产麻豆69| 国产精品一二三区在线看| 午夜福利网站1000一区二区三区| 我要看黄色一级片免费的| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| av视频免费观看在线观看| 成人国语在线视频| 亚洲精品一区蜜桃| 久久久久精品久久久久真实原创| 欧美日韩亚洲高清精品| av在线观看视频网站免费| av女优亚洲男人天堂| 最近中文字幕2019免费版| 精品少妇久久久久久888优播| 在线观看免费视频网站a站| 色吧在线观看| av在线app专区| 观看av在线不卡| 亚洲精品第二区| 男女免费视频国产| 国产精品久久久久成人av| 在线天堂中文资源库| 青春草亚洲视频在线观看| 精品一区二区三卡| av网站在线播放免费| 熟妇人妻不卡中文字幕| 久久久久精品久久久久真实原创| 天堂俺去俺来也www色官网| 欧美激情极品国产一区二区三区| www.精华液| 亚洲精品中文字幕在线视频| 青草久久国产| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 美女国产高潮福利片在线看| 满18在线观看网站| 好男人视频免费观看在线| 国产在线视频一区二区| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 制服人妻中文乱码| 久久天堂一区二区三区四区| 久久ye,这里只有精品| 日本wwww免费看| 亚洲三区欧美一区| 免费人妻精品一区二区三区视频| 99热全是精品| 国产极品天堂在线| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃| 美国免费a级毛片| 19禁男女啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 精品第一国产精品| 国产毛片在线视频| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 免费观看性生交大片5| 男女床上黄色一级片免费看| 欧美日韩视频高清一区二区三区二| 蜜桃在线观看..| 欧美少妇被猛烈插入视频| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 天天影视国产精品| 亚洲国产欧美在线一区| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| www.自偷自拍.com| 99久久精品国产亚洲精品| 久久精品国产a三级三级三级| 看非洲黑人一级黄片| 欧美 日韩 精品 国产| 街头女战士在线观看网站| 国产乱来视频区| 久久免费观看电影| 美女国产高潮福利片在线看| a级毛片在线看网站| 午夜91福利影院| 欧美在线黄色| 亚洲精品国产区一区二| 男人添女人高潮全过程视频| 电影成人av| 日韩中文字幕视频在线看片| 水蜜桃什么品种好| 一本一本久久a久久精品综合妖精| 国产一区二区在线观看av| 一级a爱视频在线免费观看| 女人久久www免费人成看片| 高清av免费在线| 国产欧美日韩一区二区三区在线| 男女下面插进去视频免费观看| av在线播放精品| 欧美黑人精品巨大| 视频区图区小说| 亚洲精品第二区| 香蕉丝袜av| 久久青草综合色| 一区二区日韩欧美中文字幕| 久久这里只有精品19| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 日韩一本色道免费dvd| 亚洲精品久久午夜乱码| 看免费成人av毛片| 在线观看免费高清a一片| av有码第一页| 午夜91福利影院| 丝袜美腿诱惑在线| 久久精品亚洲熟妇少妇任你| 电影成人av| 免费黄色在线免费观看| 亚洲美女黄色视频免费看| 亚洲精品中文字幕在线视频| 又大又黄又爽视频免费| 十八禁高潮呻吟视频| 七月丁香在线播放| 搡老岳熟女国产| 午夜激情久久久久久久| 久久久欧美国产精品| 亚洲国产精品一区三区| www.av在线官网国产| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 国产精品久久久久成人av| 国产成人精品久久久久久| 美女国产高潮福利片在线看| 十八禁人妻一区二区| 超碰97精品在线观看| 婷婷色综合大香蕉| av在线app专区| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 我的亚洲天堂| 久久女婷五月综合色啪小说| 无限看片的www在线观看| 亚洲国产精品一区二区三区在线| 最近的中文字幕免费完整| 十八禁人妻一区二区| 999精品在线视频| 美女主播在线视频| 极品少妇高潮喷水抽搐| 高清av免费在线| 另类亚洲欧美激情| 久久精品久久精品一区二区三区| 亚洲成色77777| 最近手机中文字幕大全| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 精品国产一区二区久久| 欧美av亚洲av综合av国产av | 精品人妻熟女毛片av久久网站| 日日爽夜夜爽网站| 你懂的网址亚洲精品在线观看| 亚洲一区中文字幕在线| 一区二区三区精品91| 飞空精品影院首页| 七月丁香在线播放| 久久久精品免费免费高清| 国产一区二区 视频在线| 国产一区二区三区综合在线观看| 丰满少妇做爰视频| 电影成人av| 国产亚洲一区二区精品| 成人国产麻豆网| av在线老鸭窝| 欧美少妇被猛烈插入视频| 亚洲男人天堂网一区| 9色porny在线观看| 午夜福利在线免费观看网站| 美女国产高潮福利片在线看| 两性夫妻黄色片| 熟妇人妻不卡中文字幕| 777米奇影视久久| 欧美精品高潮呻吟av久久| 视频区图区小说| 中文字幕制服av| 91aial.com中文字幕在线观看| 一边摸一边抽搐一进一出视频| 欧美人与善性xxx| 欧美精品av麻豆av| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕| 超碰成人久久| 波野结衣二区三区在线| av国产精品久久久久影院| 亚洲成人国产一区在线观看 | 亚洲情色 制服丝袜| 午夜福利一区二区在线看| 一级片'在线观看视频| 丁香六月天网| 日本vs欧美在线观看视频| 亚洲美女搞黄在线观看| 成年美女黄网站色视频大全免费| 亚洲自偷自拍图片 自拍| 男女边摸边吃奶| 国产精品久久久久久精品古装| 成人国产麻豆网| 搡老岳熟女国产| 搡老乐熟女国产| 国产一区二区激情短视频 | 国产成人免费无遮挡视频| av.在线天堂| 久久人人爽人人片av| 免费在线观看黄色视频的| 丝袜喷水一区| 亚洲精品国产色婷婷电影| 国产在线视频一区二区| 2021少妇久久久久久久久久久| 18在线观看网站| 伊人久久大香线蕉亚洲五| 国产男人的电影天堂91| 久久ye,这里只有精品| 捣出白浆h1v1| 我要看黄色一级片免费的| 国产黄色免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 久久久国产一区二区| 99re6热这里在线精品视频| 一级毛片我不卡| 亚洲精品自拍成人| 熟妇人妻不卡中文字幕| 日本猛色少妇xxxxx猛交久久| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 狠狠精品人妻久久久久久综合| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 国产精品久久久久久久久免| 观看av在线不卡| 丰满饥渴人妻一区二区三| 伊人亚洲综合成人网| 婷婷色综合www| 国产av精品麻豆| 精品国产国语对白av| 久久女婷五月综合色啪小说| 亚洲婷婷狠狠爱综合网| 亚洲人成77777在线视频| 99久久综合免费| 亚洲人成77777在线视频| 王馨瑶露胸无遮挡在线观看| 国产男女超爽视频在线观看| 99九九在线精品视频| 精品国产露脸久久av麻豆| 亚洲欧美清纯卡通| 黄频高清免费视频| 超碰成人久久| 国产福利在线免费观看视频| 下体分泌物呈黄色| 欧美在线一区亚洲| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 黄片无遮挡物在线观看| 妹子高潮喷水视频| 欧美人与性动交α欧美精品济南到| 三上悠亚av全集在线观看| 久久久精品国产亚洲av高清涩受| 丝瓜视频免费看黄片| av片东京热男人的天堂| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 无遮挡黄片免费观看| 99热国产这里只有精品6| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 亚洲欧美激情在线| av免费观看日本| 老熟女久久久| 亚洲成国产人片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 一级毛片 在线播放| 国产亚洲av片在线观看秒播厂| 国产精品秋霞免费鲁丝片| 日日啪夜夜爽| 可以免费在线观看a视频的电影网站 | 少妇精品久久久久久久| 国产亚洲欧美精品永久| av视频免费观看在线观看| 久久影院123| 日本黄色日本黄色录像| 国产成人a∨麻豆精品| 美女脱内裤让男人舔精品视频| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 黄网站色视频无遮挡免费观看| 免费观看a级毛片全部| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 搡老乐熟女国产| 19禁男女啪啪无遮挡网站| 亚洲国产欧美网| 男女之事视频高清在线观看 | 午夜福利视频精品| 色精品久久人妻99蜜桃| 精品人妻一区二区三区麻豆| 国产成人av激情在线播放| 高清黄色对白视频在线免费看| 国产爽快片一区二区三区| 亚洲精品国产色婷婷电影| 一级毛片黄色毛片免费观看视频| 黄色 视频免费看| 亚洲欧洲日产国产| 人人妻人人澡人人爽人人夜夜| 青春草国产在线视频| av又黄又爽大尺度在线免费看| 国产成人精品福利久久| 亚洲五月色婷婷综合| 午夜老司机福利片| 免费在线观看完整版高清| 女性被躁到高潮视频| 免费在线观看黄色视频的| 免费看不卡的av| 欧美 亚洲 国产 日韩一| 欧美日韩福利视频一区二区| 热99久久久久精品小说推荐| 国产精品久久久久成人av| 日韩伦理黄色片| 国产一卡二卡三卡精品 | 色94色欧美一区二区| 黄网站色视频无遮挡免费观看| 国产男人的电影天堂91| 90打野战视频偷拍视频| 亚洲精品在线美女| 午夜久久久在线观看| 90打野战视频偷拍视频| 久久久久久免费高清国产稀缺| 日本猛色少妇xxxxx猛交久久| 色网站视频免费| 飞空精品影院首页| 久久久久精品国产欧美久久久 | 一区福利在线观看| 精品国产国语对白av| 男人操女人黄网站| 日韩一区二区视频免费看| 一本久久精品| 日本一区二区免费在线视频| 国产不卡av网站在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产在线免费精品| 亚洲欧美激情在线| 高清av免费在线| 国产有黄有色有爽视频|