• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering

    2020-04-24 05:50:06HanghangWANG王行行LiyanZHANG張麗艷WenqiLU陸文琪andJunXU徐軍
    Plasma Science and Technology 2020年3期
    關(guān)鍵詞:徐軍行行

    Hanghang WANG (王行行),Liyan ZHANG (張麗艷),Wenqi LU (陸文琪) and Jun XU (徐軍)

    1 Key Laboratory of Materials Modification by Laser,Ion and Electron Beams,Ministry of Education,School of Physics,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 School of Chemical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    Abstract

    Keywords:continuous compositional spread method,silicon carbide,optical band gap,magnetron sputtering,Raman and IR spectra

    1.Introduction

    Due to its excellent physical and chemical properties,silicon carbide(SiC)has been or is being widely used in most hi-tech fields such as aerospace,aviation,military,and nuclear power[1–4].The key properties of SiC include high melting point,high thermal conductivity,high hardness,resistance against corrosion and wear,low thermal expansion and semiconducting nature.The properties such as optical band gap of SixCythin films are strongly dependent on the Si?C bond density,and the formation of Si?C bonds is directly related to the composition of SixCythin films.

    The composition change of SixCythin films not only determines the optical bang gap,but also determines other properties such as carrier density,conductivity and induced spin polarization,all these properties depend on the structure,which in turn depends on the composition.The change of the carbon content y of SixCythin films results in variations of its structure and leads to a complex relationship between the properties and compositions [5–7].In order to shed light on this relationship,SixCythin films with different compositions have been deposited by a variety of techniques,such as plasma enhanced chemical vapor deposition,radio frequency(RF) sputtering,pulsed laser deposition,ion implantation,direct current reactive magnetron sputtering [6–10].Among various methods,the magnetron sputtering appears to be very attractive due to its relative simplicity,high deposition rates and wide application in industry [11].Furthermore,magnetron sputtering technique can simplify the investigation of the relationship between the properties and compositions by depositing hydrogen-free SixCythin films.The compositions of hydrogen-free SixCythin films deposited by magnetron sputtering techniques can be changed by controlling the power of target,area ratio of silicon to graphite sections of a composite target and even the driving frequency of RF power supply [11–17].In the present study,continuous compositional spread method,a kind of combinatorial material methodology,has been used to deposit SixCythin films with different compositions by controlling deposition position.Compared with the conventional magnetron sputtering methods,the major advantage of the continuous compositional spread method is that a range of SixCythin films with different compositions can be prepared in a single deposition and the optimal parameters can be obtained quickly [18,19].

    In this paper,the continuous compositional spread method is employed to investigate the relationship of optical band gap and compositions.The compositions of the thin films are changed by controlling the deposition position.The present work is focused on the variation of the composition with deposition position and the influence of compositions on chemical structure and the optical band gap of SixCythin films.

    Figure 1.The schematic diagram of co-sputtering system.

    2.Experimental details

    The SixCythin films were deposited by Microwave Electron Cyclotron Resonance plasma enhanced RF (13.56 MHz)magnetron co-sputtering;the deposition system schematic is illustrated in figure 1.A horizontal deposition distance L is defined as the horizontal distance of sample to the left side of silicon target,as shown in figure 1.Both the angles between the targets and the substrates are 37°.The distance between the center of silicon target and substrate changes from 128.2 to 180.6 mm with the L changing from 85 to 175 mm,while the distance between the center of graphite target and substrate changes from 180.6 to 128.2 mm with L changing from 85 to 175 mm.The left silicon (diameter:68 mm,purity:99.999%) and the right graphite (68 mm,99.999%) magnetron targets were sputtered singly or simultaneously:(1) for silicon thin films,only the silicon target was sputtered and the RF power of target was set to 150 W;(2) for carbon thin films,only the graphite target was sputtered and the RF power of target was set to 500 W;(3) for SixCythin films,the two targets were sputtered simultaneously and the RF power of silicon and graphite targets was set to 150 W and 500 W,respectively.For all of the sputtering process described above,a microwave plasma source was set as 250 W to get high plasma density near the substrate and maintain discharge during sputtering process [20].Before introducing the sputtering argon gas (99.999%),the system was pumped to a pressure of 2.6×10–3Pa,and then the sputtering pressure was set as 0.22 Pa.The flow rate of the argon gas was kept constant at 20 sccm.All thin films were deposited on square Si and glass substrates,10 mm on a side,at room temperature for different characterizations:Si substrates deposited for 120 min were used for deposition rate,composition and chemical structure measurement,and the glass substrates deposited for 20 min were used for transmittance measurement.

    The film thickness was measured by Dektak 6M surface profiler.The infrared absorption spectra of the SixCythin films were measured by Nicolet 6700 FTIR in the wavenumber range of 400–4000 cm?1with a spectral resolution of 4 cm?1.The Raman spectra were measured by Renishaw inVia instrument and a 532 nm line of a 10 mW laser as the exciting source.The Raman spectra range was 200–2000 cm?1and corrected by deducting the background signal.The optical transmittance of the films was investigated by a DH-2000-BAL type ultraviolet–visible spectrophotometer.The compositions were analyzed by ESCALABTM250Xi x-ray photoelectron spectrometer.

    3.Results and discussion

    Silicon (Si),carbon (C) and SixCythin films have been deposited on Si substrates,respectively.The deposition rate of these thin films is plotted as a function of horizontal deposition distance L in figure 2(a).It can be seen that the deposition rate of Si films decreases almost linearly with the increasing L.In contrast,the deposition rate of C films increases almost linearly with L.Similar results have been reported in [21,22].The co-sputtering of the silicon and graphite targets leads to the deposition rate of SixCyfilms as shown in figure 2(a),firstly decreases and then increases with the increasing L.Thus,we can expect that the compositions of the SixCythin films should gradually vary with L.In order to verify the expected result,the compositions of the SixCythin films obtained from x-ray photoelectron spectroscopy (XPS)measurements are plotted as a function of L in figure 2(b).It is clear that the carbon content increases linearly from 0.28 to 0.72 with the deposition position changed from 85 to 175 mm,and the stoichiometric SiC thin film could be found at the cross point of two dot lines shown in figure 2(b)with L value of 130 mm.The SixCythin film composition changes from C poor to C rich with increasing y.Due to a nearly linear relation between L and y,L can be used as a reference for the carbon content of the SixCythin films.

    Figure 2.(a)The deposition rates of the thin films as a function of L,(b) the element content of the SixCy thin films as a function of L.

    Figure 3.The infrared absorption spectra of the SixCy films with increasing y.

    The infrared absorption spectra of the SixCythin films with increasing carbon content y are shown in figure 3.The spectra exhibit one main absorption band centered around 790 cm?1,which is assigned to vibrational modes of Si?C[8],while the weak band around 1400 cm?1appeared when y value is larger than 0.49 might due to sp2C?C bonds [12,23].

    The Si?C bond density NSi?Ccan be calculated from the following formula based on the peak area of Si?C stretching mode [17]:

    Figure 4.(a)The Si?C bond densities vary with increasing y,(b)the FWHM and peak position of Si?C bands vary with increasing y.The inset is a typical fitting result of the Si?C band.

    where As=2.13×1019cm?2is the conversion factor of Si–C stretching bond,ν is the wavenumber and α(ν) is the absorption coefficient.

    The Si?C bond density of the SixCythin films varying with increasing y is plotted in figure 4(a).Figure 4(a) shows that the Si?C bond density increases firstly and then decreases with increasing carbon content y.For y<0.5,C poor composition regime,the Si?Si bonds are replaced by Si?C bonds with increasing y;whereas for y>0.5,C rich regime,the Si?C bonds are replaced by C?C bonds with increasing y [6].The cross point of two regimes leads to a maximum Si?C bond density of 11.7×1022cm?3appearing at y=0.49.

    The full width at half maximum (FWHM) and peak position of the Si?C bands varying with increasing y are plotted in figure 4(b).Both the FWHM and peak position were obtained from the peak fitting with a Gaussian function.A typical fitting result of the Si?C band with y=0.57 is given in the inset of figure 4(b).The experimental and fitted results are plotted by circle and solid lines,respectively.Figure 4(b)shows that the Si?C peak FWHM increases from 212 to 294 cm?1and peak position increases from 753 to 813 cm?1with increasing y.The increase of FWHM indicates that the degree of disorder for the SixCythin films increases with increasing carbon content y [16].The increase of peak position is due to the higher electronegativity of carbon respect to the substituted silicon atoms [24].

    The Raman spectrum of the SixCythin films is shown in figure 5.The spectra exhibit three main bands located at 260–590 cm?1,590–1050 cm?1and 1100–1750 cm?1,respectively.The band centered around 468 cm?1is due to Si?Si bonds and the band centered around 800 cm?1is attributed to Si?C bonds [17,25].The last band centered around 1450 cm?1is due to the C?C bond [17,24,25].The C?C band is probably a result of intimately mixed diamondlike sp3and graphite-like sp2bonds in deposited films[9,25].The decrease of Si?Si bands intensity and the increase of C?C bands intensity indicate that the C atoms replace the Si atoms in the SixCynetwork with increasing y.This result agrees well with the infrared result discussed above.

    Figure 5.The Raman spectrum of the SixCy films with increasing y.

    Figure 6.The G peak position and the intensity ratio I(D)/I(G)vary with increasing y.

    The C?C band intensity and width increase significantly with carbon content y,and this band can be fitted by two Gaussian peaks labeled D and G,as shown in the inset of figure 5.The D peak centered around 1348 cm?1is due to disordered sp2C bonds in the graphitic structure,while the G peak is duo to ring-like and chain-like graphite structures[25,26].The G peak position and the intensity ratio I(D)/I(G)are the two key parameters to monitor carbon bonds.The G peak position and the intensity ratio I(D)/I(G) vary with increasing y are plotted in figure 6.It is shown that the G peak position linearly increases from 1450 to 1505 cm?1with increasing carbon content y.This phenomenon has also been reported for amorphous SixCy:H [27].The increase of intensity ratio I(D)/I(G)with y shown in figure 6 indicates that the disordered carbon in thin films increases and the sp3carbon content decreases [27,28].

    Figure 7.(a)The transmittance of the SixCy thin films,(b)the optical band gap varies with increasing y.The inset is the deposition rate of the SixCy thin films deposited on glass substrate.

    The typical transmittance spectra of the SixCythin films are shown in figure 7(a),the marks on each spectrum act as the indicator of carbon content y.The deposition rate of the SixCythin films deposited on glass substrate is plotted as a function of carbon content y in the inset of figure 7(b).The optical band gap of the thin films was derived from the ultraviolet–visible spectroscopy (UV–vis) spectra by Tauc’s plotting method [6].The optical band gap of SixCythin films varying with carbon content y is shown in figure 7(b).It shows that the optical band gap increases initially and reaches to a maximum,and then it decreases rapidly.The maximum optical band gap value of 1.99 eV appears around y=0.5.Compare with figure 4(a),the variation of Si?C bond density and optical band gap with carbon content y are similar,which indicates that the optical band gap depends on Si?C bond density:at y<0.5 regime,the optical band gap increases with y due to the fact that the Si?Si bonds are gradually replaced by the Si–C bonds;at the C rich regime,y>0.5,the optical band gap decreases with y due to two reasons:(1)the sp3Si?C bonds are replaced by sp2C?C bonds [7],(2) the increase of disordered carbon and the decrease of sp3carbon content narrow the optical band gap [29].Above results demonstrate that the optical band gap of SixCyfilms could be changed in the range of 1.27?1.99 eV with carbon content y changing from 0.28 to 0.72.

    4.Conclusions

    SixCyfilms with different carbon contents have been prepared by the continuous compositional spread method.The carbon content y is changed from 0.28 to 0.72 by controlling the deposition position.Nearly linear relationship between L and y is obtained.When y<0.5,the Si?Si bonds are replaced by Si?C bonds with increasing y,which increases the Si?C bond density,leads to the optical band gap increase;whereas for y>0.5,the Si?C bonds are replaced by C?C bonds with increasing y,which reduces the Si?C bond density,leads to the lower optical band gap.The maximum optical band gap value of 1.99 eV appears around y=0.5.

    ORCID iDs

    猜你喜歡
    徐軍行行
    Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
    Crystal growth,spectral properties and Judd–Ofelt analysis of Pr: CaF2-YF3?
    醫(yī)者頌
    一場(chǎng)車(chē)禍
    行行重行行
    Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake*
    行行重行行
    千王之變
    連云港方言動(dòng)詞體標(biāo)記“行行”
    文教資料(2014年2期)2014-08-21 03:02:45
    日韩一卡2卡3卡4卡2021年| 一级毛片电影观看| 国产成人精品福利久久| 岛国毛片在线播放| 性高湖久久久久久久久免费观看| 80岁老熟妇乱子伦牲交| 高清视频免费观看一区二区| 丁香六月天网| 999久久久国产精品视频| 狠狠精品人妻久久久久久综合| 日本欧美国产在线视频| 国产av国产精品国产| 毛片一级片免费看久久久久| 国产精品一区二区在线不卡| 亚洲欧美成人综合另类久久久| a级毛片在线看网站| 热99久久久久精品小说推荐| 国产深夜福利视频在线观看| 国产黄色视频一区二区在线观看| 亚洲婷婷狠狠爱综合网| 丰满少妇做爰视频| 热re99久久精品国产66热6| 麻豆精品久久久久久蜜桃| 久久久久网色| 久久国内精品自在自线图片| av卡一久久| 久久久久久久久免费视频了| 色哟哟·www| 国产日韩一区二区三区精品不卡| 一级片'在线观看视频| 97在线视频观看| 亚洲美女视频黄频| 亚洲av.av天堂| av一本久久久久| 亚洲av.av天堂| 国产欧美日韩综合在线一区二区| 伊人亚洲综合成人网| 91午夜精品亚洲一区二区三区| 天堂中文最新版在线下载| 寂寞人妻少妇视频99o| www.av在线官网国产| 亚洲久久久国产精品| 欧美+日韩+精品| 少妇的逼水好多| 久久久久精品人妻al黑| 91精品三级在线观看| 亚洲欧美成人精品一区二区| 精品少妇黑人巨大在线播放| 18禁国产床啪视频网站| 亚洲国产毛片av蜜桃av| 男人添女人高潮全过程视频| 欧美97在线视频| 中文字幕制服av| 黄网站色视频无遮挡免费观看| 欧美亚洲日本最大视频资源| 久久久久国产精品人妻一区二区| 亚洲国产色片| a级毛片黄视频| 日韩 亚洲 欧美在线| 久久精品久久久久久久性| 韩国精品一区二区三区| av电影中文网址| av电影中文网址| 久久国内精品自在自线图片| 一二三四在线观看免费中文在| 韩国精品一区二区三区| 十八禁高潮呻吟视频| 国产av一区二区精品久久| 狠狠婷婷综合久久久久久88av| 精品久久久久久电影网| 精品少妇内射三级| 久久精品国产a三级三级三级| 黄色配什么色好看| 香蕉国产在线看| 搡老乐熟女国产| 免费黄色在线免费观看| 考比视频在线观看| 亚洲av中文av极速乱| 多毛熟女@视频| 欧美国产精品va在线观看不卡| 久久久a久久爽久久v久久| 精品国产一区二区三区四区第35| 免费观看在线日韩| 欧美少妇被猛烈插入视频| 丝袜脚勾引网站| 久久狼人影院| 亚洲一码二码三码区别大吗| 男女国产视频网站| 性色av一级| 久久精品国产亚洲av涩爱| 国产精品一国产av| 亚洲精品av麻豆狂野| 晚上一个人看的免费电影| 十八禁网站网址无遮挡| 搡女人真爽免费视频火全软件| 国产成人a∨麻豆精品| 狠狠精品人妻久久久久久综合| 国产一区二区激情短视频 | 日本猛色少妇xxxxx猛交久久| 黄色视频在线播放观看不卡| 精品一品国产午夜福利视频| 亚洲人成电影观看| 久久97久久精品| 中文字幕制服av| 波野结衣二区三区在线| xxx大片免费视频| 成年人午夜在线观看视频| 日韩视频在线欧美| 亚洲人成电影观看| 精品少妇内射三级| 久热这里只有精品99| 国产精品成人在线| 性色avwww在线观看| 国产精品麻豆人妻色哟哟久久| 久久人妻熟女aⅴ| 一区二区av电影网| 日本爱情动作片www.在线观看| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 伦理电影大哥的女人| 亚洲在久久综合| 欧美精品一区二区大全| 成人国产av品久久久| 狠狠精品人妻久久久久久综合| 国产又爽黄色视频| 精品国产露脸久久av麻豆| 亚洲av欧美aⅴ国产| 成人国语在线视频| 亚洲 欧美一区二区三区| 国产黄色视频一区二区在线观看| 国产亚洲av片在线观看秒播厂| 日韩在线高清观看一区二区三区| 交换朋友夫妻互换小说| 久久人妻熟女aⅴ| 91成人精品电影| 欧美日韩一区二区视频在线观看视频在线| 久久久精品94久久精品| 热re99久久精品国产66热6| 欧美日本中文国产一区发布| 各种免费的搞黄视频| videossex国产| 亚洲精品国产av蜜桃| 国产一区有黄有色的免费视频| 天天躁日日躁夜夜躁夜夜| 最近的中文字幕免费完整| videos熟女内射| 国产成人午夜福利电影在线观看| 黄色配什么色好看| 99国产综合亚洲精品| 久久免费观看电影| 亚洲国产av影院在线观看| 性色avwww在线观看| 精品视频人人做人人爽| 欧美日韩一级在线毛片| 色婷婷久久久亚洲欧美| 免费在线观看完整版高清| 日韩中字成人| 欧美日韩av久久| 人人妻人人爽人人添夜夜欢视频| 最黄视频免费看| 久久午夜福利片| 亚洲欧美色中文字幕在线| 美女大奶头黄色视频| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 国产免费现黄频在线看| 国产精品三级大全| 亚洲av在线观看美女高潮| 一级毛片黄色毛片免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 三上悠亚av全集在线观看| 亚洲成人av在线免费| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 捣出白浆h1v1| 99久久中文字幕三级久久日本| 久久久久精品性色| 看十八女毛片水多多多| 国产视频首页在线观看| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 久久青草综合色| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| 精品少妇久久久久久888优播| 新久久久久国产一级毛片| 午夜福利在线观看免费完整高清在| 久久久国产一区二区| 黄网站色视频无遮挡免费观看| 性高湖久久久久久久久免费观看| 国产精品 欧美亚洲| 久久久久久人人人人人| 亚洲av国产av综合av卡| 欧美国产精品va在线观看不卡| 久久亚洲国产成人精品v| 精品国产一区二区久久| 一区二区三区激情视频| 久久99一区二区三区| 国产日韩一区二区三区精品不卡| 久久久久久久亚洲中文字幕| 婷婷色综合大香蕉| 国产精品99久久99久久久不卡 | 男人操女人黄网站| 亚洲国产色片| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看| 国产亚洲精品第一综合不卡| 国产 一区精品| 一本久久精品| 看免费成人av毛片| 在线观看国产h片| 国产野战对白在线观看| 亚洲人成电影观看| 欧美日韩av久久| 女性生殖器流出的白浆| 国产综合精华液| 精品亚洲成国产av| 久久久久精品久久久久真实原创| 激情视频va一区二区三区| 叶爱在线成人免费视频播放| 高清不卡的av网站| 午夜福利乱码中文字幕| 中国三级夫妇交换| 丝瓜视频免费看黄片| 久久久亚洲精品成人影院| 黄色毛片三级朝国网站| 国产精品国产av在线观看| 亚洲伊人久久精品综合| 纯流量卡能插随身wifi吗| 国产成人精品无人区| 啦啦啦在线免费观看视频4| 成年动漫av网址| 免费在线观看黄色视频的| 国产片特级美女逼逼视频| 精品酒店卫生间| 色哟哟·www| 老熟女久久久| 国产精品偷伦视频观看了| 热99国产精品久久久久久7| 91精品三级在线观看| 大片电影免费在线观看免费| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 久久精品夜色国产| 交换朋友夫妻互换小说| av不卡在线播放| 成年人免费黄色播放视频| 国产精品免费大片| 十八禁高潮呻吟视频| 国产精品无大码| 欧美日韩av久久| 国产高清不卡午夜福利| 久久国产亚洲av麻豆专区| 午夜免费男女啪啪视频观看| av又黄又爽大尺度在线免费看| 欧美日韩亚洲高清精品| 国产极品天堂在线| 久久久久精品性色| 国产成人精品久久久久久| 天堂8中文在线网| 亚洲第一av免费看| 美女国产视频在线观看| 天天躁夜夜躁狠狠躁躁| 日本色播在线视频| 国产日韩欧美视频二区| 久久免费观看电影| 国精品久久久久久国模美| 人妻 亚洲 视频| 最近最新中文字幕免费大全7| 久久久久久免费高清国产稀缺| 边亲边吃奶的免费视频| 免费在线观看视频国产中文字幕亚洲 | 熟女少妇亚洲综合色aaa.| av线在线观看网站| 街头女战士在线观看网站| 国产片特级美女逼逼视频| 亚洲成人av在线免费| 我的亚洲天堂| 欧美变态另类bdsm刘玥| 色哟哟·www| 丝袜喷水一区| 哪个播放器可以免费观看大片| 26uuu在线亚洲综合色| 精品一区二区三区四区五区乱码 | 日韩三级伦理在线观看| 日韩av在线免费看完整版不卡| 春色校园在线视频观看| 久久久国产精品麻豆| 97人妻天天添夜夜摸| 国产成人aa在线观看| 日韩制服丝袜自拍偷拍| 国产免费视频播放在线视频| 美女国产视频在线观看| 亚洲av欧美aⅴ国产| 精品久久久久久电影网| 亚洲av.av天堂| 这个男人来自地球电影免费观看 | 久久久欧美国产精品| 国产精品一区二区在线观看99| 国产精品一国产av| 电影成人av| 女人久久www免费人成看片| 亚洲精品在线美女| 五月天丁香电影| 热99国产精品久久久久久7| 久久97久久精品| 日本av手机在线免费观看| 久久久久国产精品人妻一区二区| 黑丝袜美女国产一区| 伦理电影免费视频| 国产成人精品一,二区| 日本午夜av视频| 五月天丁香电影| 色94色欧美一区二区| 夫妻性生交免费视频一级片| 午夜福利,免费看| 天天影视国产精品| 尾随美女入室| www.自偷自拍.com| 亚洲欧美中文字幕日韩二区| 最近手机中文字幕大全| 欧美人与性动交α欧美软件| 高清欧美精品videossex| 热re99久久国产66热| 午夜福利视频精品| 丝袜美足系列| 日韩成人av中文字幕在线观看| 边亲边吃奶的免费视频| 一区二区三区激情视频| 国产国语露脸激情在线看| 精品国产露脸久久av麻豆| 精品人妻在线不人妻| 亚洲精品在线美女| 一区二区三区四区激情视频| 日韩大片免费观看网站| 日韩不卡一区二区三区视频在线| 电影成人av| 大香蕉久久网| 亚洲人成网站在线观看播放| 飞空精品影院首页| 纯流量卡能插随身wifi吗| www.自偷自拍.com| 伊人久久国产一区二区| 亚洲成人一二三区av| 亚洲精品自拍成人| 精品国产一区二区三区久久久樱花| 国产精品国产av在线观看| 亚洲美女黄色视频免费看| 青春草国产在线视频| 9191精品国产免费久久| 欧美日韩亚洲国产一区二区在线观看 | 飞空精品影院首页| 最新的欧美精品一区二区| 国产老妇伦熟女老妇高清| 伊人久久国产一区二区| 在线观看一区二区三区激情| 丝瓜视频免费看黄片| 国产在线一区二区三区精| 精品一区二区三卡| 黑人巨大精品欧美一区二区蜜桃| 三上悠亚av全集在线观看| 乱人伦中国视频| 亚洲国产看品久久| 午夜福利在线免费观看网站| 啦啦啦中文免费视频观看日本| 亚洲,欧美精品.| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲最大av| 色哟哟·www| 一级片'在线观看视频| av免费在线看不卡| 亚洲熟女精品中文字幕| 2022亚洲国产成人精品| 免费高清在线观看日韩| 欧美激情极品国产一区二区三区| 国产不卡av网站在线观看| 国产男女超爽视频在线观看| 男女边摸边吃奶| 亚洲av.av天堂| 两个人看的免费小视频| 一级黄片播放器| 久久久久久久久久久久大奶| a 毛片基地| 男女下面插进去视频免费观看| 日韩欧美精品免费久久| 欧美激情高清一区二区三区 | 麻豆精品久久久久久蜜桃| 电影成人av| 美女国产高潮福利片在线看| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 最近中文字幕2019免费版| 91精品国产国语对白视频| 18禁国产床啪视频网站| 久久人人爽av亚洲精品天堂| 欧美人与善性xxx| 久久影院123| av视频免费观看在线观看| 国产精品 欧美亚洲| 欧美97在线视频| 又粗又硬又长又爽又黄的视频| 亚洲欧美色中文字幕在线| 爱豆传媒免费全集在线观看| 韩国精品一区二区三区| 亚洲av成人精品一二三区| 18禁观看日本| 少妇人妻 视频| 免费黄网站久久成人精品| 久久久久精品久久久久真实原创| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人看| 飞空精品影院首页| 看非洲黑人一级黄片| 亚洲国产欧美日韩在线播放| 日本午夜av视频| 亚洲精品第二区| 亚洲av国产av综合av卡| 啦啦啦啦在线视频资源| 香蕉国产在线看| 国产成人欧美| 久久精品久久久久久噜噜老黄| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 精品亚洲成国产av| 中文字幕色久视频| 日韩一区二区视频免费看| √禁漫天堂资源中文www| 国产午夜精品一二区理论片| 国产人伦9x9x在线观看 | 午夜免费鲁丝| 性高湖久久久久久久久免费观看| 国产精品久久久久久av不卡| 精品国产乱码久久久久久男人| videossex国产| 国产av码专区亚洲av| 春色校园在线视频观看| 久久精品国产亚洲av高清一级| 女性被躁到高潮视频| 国产福利在线免费观看视频| 亚洲欧美中文字幕日韩二区| 欧美精品人与动牲交sv欧美| 韩国av在线不卡| 麻豆av在线久日| 侵犯人妻中文字幕一二三四区| 最近最新中文字幕大全免费视频 | 国产1区2区3区精品| 九草在线视频观看| 亚洲欧美一区二区三区久久| 大话2 男鬼变身卡| 久久久久国产精品人妻一区二区| 大香蕉久久成人网| 久久久久久久国产电影| 国产成人免费观看mmmm| 久久狼人影院| 国产日韩一区二区三区精品不卡| 99国产精品免费福利视频| 我的亚洲天堂| 亚洲av电影在线进入| 男女午夜视频在线观看| av片东京热男人的天堂| 久久精品国产鲁丝片午夜精品| 亚洲一级一片aⅴ在线观看| 青春草视频在线免费观看| 亚洲色图 男人天堂 中文字幕| 国产一区二区 视频在线| 精品少妇久久久久久888优播| 免费在线观看视频国产中文字幕亚洲 | 久久久国产欧美日韩av| 精品一品国产午夜福利视频| 国产免费现黄频在线看| 丰满乱子伦码专区| 十八禁高潮呻吟视频| 亚洲精品,欧美精品| 不卡av一区二区三区| 亚洲国产日韩一区二区| 一级毛片电影观看| 丝袜脚勾引网站| 丝袜美腿诱惑在线| 亚洲色图综合在线观看| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 天天躁狠狠躁夜夜躁狠狠躁| √禁漫天堂资源中文www| 亚洲,欧美精品.| 毛片一级片免费看久久久久| 欧美激情高清一区二区三区 | 日韩精品免费视频一区二区三区| 天堂8中文在线网| 亚洲av电影在线进入| 男人爽女人下面视频在线观看| 1024视频免费在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品乱久久久久久| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 国产成人精品久久久久久| 99热全是精品| 日韩制服骚丝袜av| 日韩精品免费视频一区二区三区| 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99| 国产片特级美女逼逼视频| 街头女战士在线观看网站| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| 亚洲精品美女久久av网站| 婷婷色综合www| 男女啪啪激烈高潮av片| 中文字幕制服av| 99久久中文字幕三级久久日本| 亚洲精品久久成人aⅴ小说| 日本爱情动作片www.在线观看| 你懂的网址亚洲精品在线观看| 一二三四在线观看免费中文在| 欧美bdsm另类| 亚洲国产看品久久| av国产精品久久久久影院| 色网站视频免费| 人妻少妇偷人精品九色| 免费观看a级毛片全部| 新久久久久国产一级毛片| 日韩三级伦理在线观看| 久久久久久久亚洲中文字幕| 久久久久视频综合| 久久久a久久爽久久v久久| 最黄视频免费看| 欧美亚洲日本最大视频资源| 国产极品天堂在线| 丝袜脚勾引网站| 大陆偷拍与自拍| 啦啦啦在线免费观看视频4| 久久亚洲国产成人精品v| 大码成人一级视频| 韩国精品一区二区三区| 中文字幕人妻熟女乱码| 老汉色∧v一级毛片| 日本av免费视频播放| 丝袜喷水一区| 国产综合精华液| 免费观看在线日韩| 亚洲精品中文字幕在线视频| 日韩中文字幕视频在线看片| 国产精品二区激情视频| 一本久久精品| 91aial.com中文字幕在线观看| 91成人精品电影| 精品第一国产精品| 欧美激情高清一区二区三区 | 18禁国产床啪视频网站| 日韩欧美精品免费久久| 最新的欧美精品一区二区| 十八禁高潮呻吟视频| 搡老乐熟女国产| 香蕉丝袜av| 国产成人aa在线观看| 久久精品亚洲av国产电影网| 韩国av在线不卡| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 五月天丁香电影| 欧美精品人与动牲交sv欧美| 亚洲精品成人av观看孕妇| 麻豆av在线久日| 亚洲欧美一区二区三区国产| 日韩av在线免费看完整版不卡| 国产 精品1| 日韩av不卡免费在线播放| 国产精品国产三级国产专区5o| 国产一区二区三区av在线| 婷婷色av中文字幕| 国产精品国产av在线观看| 日韩av在线免费看完整版不卡| 国产无遮挡羞羞视频在线观看| 91aial.com中文字幕在线观看| 黄色 视频免费看| 免费在线观看黄色视频的| 97在线人人人人妻| 夫妻午夜视频| 人妻一区二区av| 丝袜美足系列| 交换朋友夫妻互换小说| 欧美亚洲日本最大视频资源| 日本vs欧美在线观看视频| 在线观看免费视频网站a站| 伦理电影免费视频| 免费大片黄手机在线观看| 免费观看无遮挡的男女| 国产av码专区亚洲av| 久久久久精品性色| 大香蕉久久成人网| 成年av动漫网址| 又粗又硬又长又爽又黄的视频| 十分钟在线观看高清视频www| 老女人水多毛片| 大码成人一级视频| 亚洲三级黄色毛片| √禁漫天堂资源中文www| 亚洲视频免费观看视频| 丰满迷人的少妇在线观看| 免费大片黄手机在线观看| 亚洲欧美一区二区三区久久| 亚洲av日韩在线播放| 一二三四在线观看免费中文在| 亚洲美女黄色视频免费看| 女的被弄到高潮叫床怎么办| 日日撸夜夜添| 免费少妇av软件| 精品少妇久久久久久888优播| av网站免费在线观看视频| 新久久久久国产一级毛片| 久久久久久久久免费视频了| 国产成人精品无人区| 伊人久久国产一区二区|