• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake*

    2018-05-07 06:07:27LIYunkai李云凱ZHANGYuying張毓穎XUJun徐軍ZHANGShuo張碩
    Journal of Oceanology and Limnology 2018年2期
    關鍵詞:徐軍

    LI Yunkai (李云凱) , ZHANG Yuying (張毓穎) , XU Jun (徐軍) , ZHANG Shuo (張碩)

    1 College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China

    2 Marine Sciences Program, School of Environment, Arts and Society, Florida International University, 3000 NE 151st St., North Miami, Florida 33181, USA

    3 Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

    1 INTRODUCTION

    Lakes are complex aquatic ecosystems consisting of distinct subsystems or habitats with large environmental heterogeneity (Arcagni et al., 2015).Such spatial heterogeneity may be associated with strong variations in environmental conditions and resource availability, possibly resulting in different contribution of planktonic and benthic production to food webs (Zambrano et al., 2010; Vander Zanden et al., 2011; Xu et al., 2014). Such variation is usually related to anthropogenic sources of sewage (Steff y and Kilham, 2004) or proximity to areas of increased urban populations (Harvey and Kitchell, 2000). For instance, agricultural, urban, and industrial development has led to the release of a relative abundance of nutrients to aquatic environments,which influences the abundance and nutritional quality of organisms at the base of the food web,thereby affecting the overall condition of upper-level consumers (Hebert et al., 2006; Ofukany et al., 2015).Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In reality, differences in food web structures have often been observed in large lakes with strong environmental gradients(Guzzo et al., 2011; Hobson et al., 2012).

    Stable carbon and nitrogen isotopes are increasingly employed to characterize the food web structure of aquatic ecosystems and isotope ratios (13C/12C and15N/14N, referred to as δ13C and δ15N, respectively) can reveal distinct components of an organism’s dietary niche (Post, 2002; Fry, 2006; Layman et al., 2007;Shiff man et al., 2012). δ13C values change little (0–1‰) as carbon moves up the food chain, thus they can be used to trace the ultimate food sources of an organism (Peterson and Fry, 1987). δ15N values show a predictable stepwise enrichment (2‰–4‰) from prey to predator, providing a means to quantify the trophic position of an organism (Minagawa and Wada,1984; Post, 2002; Caut et al., 2009; Hussey et al.,2014). This approach has been used to elucidate major pathways of energy flow to organisms (Vander Zanden et al., 2011), regime shifts in freshwater ecosystems(Xu et al., 2014), impacts of eutrophication (Hobson et al., 2012), and has allowed spatial heterogeneity to be identified within a single lake (Zambrano et al.,2010; Guzzo et al., 2011).

    Taihu Lake is the third largest freshwater lake in China, with an area of 2 338 km2and a mean depth of 1.9 m. The lake has provided drinking water, tourism,fisheries, and shipping services for centuries (Qin et al., 2007; Li et al., 2009). Gross Domestic Product(GDP) in the lake drainage area is about one-seventh of the total GDP of China (Qin et al., 2007). Due to the rapid development of the economy and the intensive use of the lake, pollution has become increasingly serious in Taihu Lake since the 1980s, and this has rapidly accelerated the eutrophication of the lake (Li et al., 2009). different degrees of economic growth and urbanization around the lake have resulted in a large trophic gradient from southern to northern Taihu Lake(Qin et al., 2007). Therefore, two sub-basins with distinct morphometry and trophic status can be found in Taihu Lake; Meiliang Bay (MB) and East Taihu Lake (ETL). MB is relatively large with phytoplankton as the main primary producer. ETL is located in the southeast of Taihu Lake and is covered with a dense population of vascular plants and referred to as a macrophyte-type lake (Wu et al., 2006). Although the eutrophication and changes within the planktonic community have been the focus of previous trophic studies on Taihu Lake (Wu et al., 2006; Tan et al.,2009), and studies related to fish populations have emerged in recent years (Zhou et al., 2011; Mao et al.,2012), most of these studies were not comprehensive at the spatial or community-wide levels (Xu et al.,2011; Mao et al., 2012; Li and Gong, 2014), though a high degree of spatial heterogeneity within the ecosystem was observed (He et al., 2012). This may provide misleading information when examining trophic interactions among key species at a whole lake scale or making comparisons of food web structures among lakes. Additionally, the consideration of such spatial heterogeneity will be helpful for policy decisions in restoration and ecosystem-based fishery management (Li et al., 2009).

    Fig.1 Map of Taihu Lake and the sampling stations between August and October, 2012

    The objectives of this research are; (1) to evaluate the spatial heterogeneity of δ13C and δ15N values of organisms, and compare the food web attributes between different lake sub-basins, and (2) to elucidate the major pathways of energy flow through the food web. Stable isotope data will provide baseline information for comparison with future food web studies and aid researchers in predicting how changes in eutrophication will affect fish community structures and fisheries resources.

    2 MATERIAL AND METHOD

    2.1 Study sites

    Taihu Lake (119°53′45″to 120°36′15″E and 22°00′to 27°10′N) is a eutrophic system with a mean depth of 1.9 m. The annual precipitation in the area is 1 100–1 400 mm, and the mean temperature is approximately 16°C. We randomly selected three sampling sites in MB (sampling sites: MB1, MB2,MB3) and ETL (sampling site: E1, E2, E3), (Fig.1).Inter-site distance within each basin was approximately 5 km. MB is in the northwest part of Taihu Lake and is considered to be one of the most hypereutrophic parts of the lake due to the heavy allochthonous inputs from the surrounding terrestrial ecosystem.Microcystisblooms occur annually from June to October (Qin et al., 2007). Conversely, ETL is a relatively small sub-basin with clear water and abundant submerged macrophytes.

    2.2 Field collections

    Water samples, plankton, macrophytes, benthic invertebrates, and fish were collected at each site every month from August to October 2012. Floating and submerged leaves of macrophytes were collected by hand at each site. Phytoplankton and zooplankton samples were collected by hauling plankton nets(mesh size 47 μm and 64 μm for phytoplankton and zooplankton, respectively) vertically through the entire water column. Benthic invertebrates, mainly snails and mussels, were collected using a bottom trawl at a speed of 2 km/h for 10 min. Fish were collected by fishermen using a casting net and a bottom trawl net. For each fish captured, total length(TL) was recorded.

    2.3 Sample preparation and stable isotope analysis(SIA)

    Nutrient concentrations were determined immediately after collecting water samples (total nitrogen (TN), total phosphorus (TP), and chlorophyllaconcentrations (Chl-a) were measured). TN and TP were analyzed using the alkalinepotassium persulfate digestion-UV spectrophotometric method and the potassium persulfate digestion-ammonium molybdate spectrophotometric method, respectively, (Fu et al.,2014). Chl-awas determined using the 90% acetone extraction method (Mantoura and Llewellyn, 1983).

    A total of 553 organisms were sampled for SIA from three plant groups, seven invertebrate groups,and nine fish groups. Species categorized into groups and sample sizes are listed in Table 1. All the samples were frozen whole and brought back to the lab in thermally sealed plastic bags. The foot tissues of snails and mussels were dissected for SIA. Individual snails and mussels with similar body weights (grouped by 1 g increments using their weight data) were pooled for processing. Dorsal muscle (white muscle)was removed from each fish since it has less variability in terms of δ13C and δ15N than other tissues (Pinnegar and Polunin, 1999), rinsed with water, placed in cryovials, and frozen at -20°C for subsequent SIA.

    Prior to SIA, all the samples were freeze-dried at-55°C for at least 48 hours using a Christ Alpha 1-4 LD plus Freeze Dryer (Martin Christ; Osterode am Harz, Germany) and homogenized using a Retsch Mixer Mill MM 400 (Retsch; Haan, Germany).Samples were weighed (1 200–1 600 μg) into 0.3 mg tin capsules and analyzed using an IsoPrime 100 isotope ratio mass spectrometer (Isoprime Corporation, Cheadle, UK) and vario ISOTOPE cube elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Reference standards USGS 24 (-16.1‰ V-PDB) and USGS 26 (53.7‰AIR) were used for quantification of stable isotope values of carbon and nitrogen, respectively. Every tenth sample was a triplicate lab reference standard(Protein: δ15N: 5.9‰ and δ13C: -27.0‰) to assess intra-run precision, and a blank sample was run every ten samples to clear off residual gases. The analytical error for samples was approximately 0.1‰.

    2.4 Isotope-mixing model

    Primary consumers (snails and mussels) were considered to be a better proxy of isotopic baseline for inshore and off shore food chains, respectively(Vander Zanden et al., 1999; Post, 2002). An isotopemixing model was used to calculate the contribution of planktonic secondary production to fish by using the equation below:

    whereαrepresents the planktonic contribution to the isotopic composition of the fish. δ13CFish, δ13CBenthicand δ13CPlanktonicare the mean δ13C values of fish, benthic baseline consumer (snail) and planktonic baseline consumer (mussel), respectively.

    Trophic levels of fish species (TLFish) were calculated using the equation below:

    whereλis the trophic level of selected baseline consumers (in this case,λ=2 is used for the primary consumers). δ15NFish, δ15NBenthicand δ15NPlanktonicare the mean δ15N values of fish, benthic baseline consumer(snail), and planktonic baseline consumer (mussel),respectively. Δ15N represents the trophic level enrichment of δ15N value. In this study, we used the generally assumed value of 3.4 from Post (2002).

    Table 1a Stable isotope values and estimated trophic levels of organisms in the food web of Meiliang Bay

    2.5 Statistical analysis

    The statistical analyses were performed using R(Version 3.1.2; R Development Core Team, 2014).differences in nutrient concentrations between basins were examined using the Studentt-test. The stable isotope values of organisms were displayed using conventional bi-plots (δ15N versus δ13C). Paired t tests were applied on the averaged stable isotopic values of species to determine whether there were significant differences in isotope values of the same species between the two basins. Comparison of baseline species (snails and mussels) isotope values between basins were conducted usingt-test as well. Equality of variances of isotope values were examined before t test analysis. Averaged trophic level of carnivorous fish species between basins were compared using pairedt-test. Community niche analysis variables from Layman et al. (2007) including δ15N range (NR),δ13C range (CR), and total niche area (TA, the total area in the food web space occupied by the whole community) were used to quantitatively compare food web structures between basins. NR and CR are the differences between the mean δ15N and δ13C values of two species with the highest and lowest isotope values, respectively, which represent the vertical and horizontal structure of the food web. TA is the convex hull area estimated from the δ13C–δ15N bi-plot using the mean isotopic values. This can represent the total amount of niche space of all the species in the food web.

    3 RESULT

    In order to examine the spatial heterogeneity in structural and functional traits of Taihu Lake, we compared SIA data from different regions of the lake with contrasting environments. We observed a significant spatial effect on nutrient concentrations,Chl-avalues and aquatic organism isotope values between the two regions of the lake (Tables 1 and 2).TN, TP and Chl-ain MB were much higher than those in ETL (t-test s, TN:t=5.60; df=25;P<0.01; TP:t=7.43; df=25;P<0.01; Chl-a:t=16.33; df=25;P<0.01; Table 2). Fish from MB had significantly higher δ15N and δ13C mean values than those of fishfrom ETL (pairedttests, δ15N:t=13.06; df=8;P<0.01;δ13C:t=2.93; df=8;P<0.05; Table 1). Similar trends were also observed in the invertebrate primary consumers (snail (Bellamyaaeruginosa) and mussel(Corbiculafluminea)), as the isotopic values of both species were significantly higher in MB than those in ETL (t-test s, for snail, δ15N:t=33.58; df=104.5;P<0.01; δ13C:t=14.65; df=133.9;P<0.01; for mussel,δ15N:t=41.78; df=94.7;P<0.01; δ13C:t=17.41;df=117.2;P<0.01) (Table 1).

    Table 1b Stable isotope values and estimated trophic levels of organisms in the food web of East Taihu Lake

    All stable isotope data for the organisms sampled in both basins are presented as a bi-plot in Fig.2. δ15N and δ13C values of organisms in the basins differed and the fish communities occupied different isotopic spaces in the bi-plot. We observed a mean shift of 3.2‰ and 6.3‰ in δ13C and δ15N values of the primary consumers, snails (3.3‰ for δ13C and 6.1‰ for δ15N)and mussels (3.0‰ for δ13C and 6.4‰ for δ15N) from ETL to MB, respectively. Such shifts were also detected in the mean isotopic values of zooplankton and phytoplankton (zooplankton: 3.9‰ for δ13C and 6.5‰ for δ15N; phytoplankton: 4.0‰ for δ13C and 5.0‰ for δ15N). No significant differences were foundin the mean δ13C values of macrophytes between the two basins though a change in δ15N values of 7.2‰was observed.

    Table 2 Mean values±SD of TN, TP and chlorophyll- a concentrations for water samples at each sampling site of Taihu Lake from August to October 2012

    Using the isotope-mixing model, the average trophic position and the mean percent contribution of benthic prey to fish diet was estimated (Table 1). The average trophic levels of carnivorous fish species in MB were significantly lower than those of the same carnivorous fish in ETL (pairedttests,t=-3.13; df=4;P<0.05). In general, benthic foods were more important to fish. Moreover, although the δ15N values of the fish communities had a similar range between both basins, the CR of fish was smaller in MB versus ETL. difference was also found in TA value between basins (Table 3; Fig.3b).

    Fig.2 δ 15 N and δ 13 C values of organisms sampled in Meiliang Bay (MB) and East Taihu Lake (ETL)

    Table 3 Community niche variables of Meiliang Bay (MB)and East Taihu Lake (ETL)

    4 DISCUSSION

    Spatial variation in δ13C and δ15N values was observed despite the fact that our samples were collected from sites of similar depth in both basins of Taihu Lake. The δ13C and δ15N values of organisms in Taihu Lake exhibited isotopic differences between MB and ETL. This finding was in agreement with previous studies that suggested MB and ETL should be considered as separate ecological entities (Qin et al., 2007; Li and Gong, 2014).

    different nutrient concentrations across basins(Table 2) were likely driving the significant spatial isotopic baseline differences in primary consumers(Fig.3a). Increases in food web baseline δ15N values have often been associated with increased sewage inputs (Cabana and Rasmussen, 1996; Hobson et al.,2012). MB is the most hyper-eutrophic part of Taihu Lake, receiving large amounts of15N-enriched nitrogen annually due to the intensive development of surrounding terrestrial industry and agriculture (Qin et al., 2007). Sewage and fertilizer runoff bring nitrogen and phosphorus into the water, contributing to cyanobacteria blooms in the warm season (Paerl et al., 2010). Moreover, cyanobacteria have a faster turnover rate than other phytoplankton species, their increased biomass is stimulated by high temperatures and nutrient availability, typically resulting in less negative δ13C values than for other algae (Schindler et al., 1997; Hobson et al., 2012). In addition, due to the high production of cyanobacteria and its dominance in the upper layer of the water, the growth of benthic algae and macrophytes in MB is restricted by light limitation, in turn leading to a low coverage of macrophytes and resulting trophic pathways starting being dependent upon phytoplankton. In contrast,ETL has relatively less nutrient inputs from the terrestrial system (Li and Gong, 2014), and is dominated by benthic algae and macrophytes.Considering the distinct δ13C values of phytoplankton and submerged macrophytes, the differences observed in δ13C values of organisms between the two basins could be explained. Generally, phytoplankton fractionates less13C to a lesser degree compared to submerged macrophytes resulting a lower δ13C values in phytoplankton (Graham et al., 2010).

    Fig.3 Mean values (±SD) of δ 15 N and δ 13 C of species sampled in Meiliang Bay (MB) (hollow diamond) and East Taihu Lake(ELT) (black diamond) (a); total area (convex hull area) of δ 15 N and δ 13 C bi-plots of MB and ETL of Taihu Lake (b)

    Isotope mixing models are frequently used to estimate trophic position and inshore/off shore food source contribution to lake organisms (Vander Zanden et al., 2011; Xu et al., 2011; Zhou et al., 2011).However, these models require an accurate assessment of isotopic baselines. This could be problematic for large carnivorous fish which may move over large distances thereby integrating different isotopic baselines associated with different areas. In Taihu Lake,Erythroculterilishaeformisis considered to be the top predator. Analyses of gut contents from that species revealed thatCoiliaectenestaihuensiscontributes more than 80% (wet weight) of theE.ilishaeformisdiet (Liu, 2008). Similar δ13C values of these two species confirmed their predator-prey relationship. However, it is unexpected that the mean differences in δ15N values of these two species were less than 1‰ in both basins, far less than one trophic level. One possible reason to explain such small differences could be the high degree of movement ofE.ilishaeformiswhich potentially migrate over larger spatial areas for food than smaller fish (Xu, 1984),and thus will integrate isotopic information from different foraging areas with large baseline isotopic variation. Another possible reason could be the differences in muscle turnover rate of these two species. Large fish such asE.ilishaeformis, have slower turnover and growth rates than smaller fish.Thus, the isotope values ofE.ilishaeformisreported in this study may reflect their dietary integration over several months whereas the isotope values ofC.ectenestaihuensismay reflect dietary integration over a shorter period, although this is expected to be altered by both fish size and growth stage (Martínez del Rio et al., 2009).

    Regarding eutrophication, clearly, the isotopic information of smaller fish with low mobility and high tissue turnover rates could be a better proxy to track spatial changes in nutrient inputs to the lake and the degree of eutrophication compared with the highly mobile top predators (Perga and Gerdeaux,2004; Hobson et al., 2012; Mayer and Wassenaar,2012). Using the food web isotopic values reported in this study, a possible means of detecting future alterations due to eutrophication would be to routinely monitor the δ13C and δ15N values of a small species likeC.ectenestaihuensisfrom the same locations over time.

    The results obtained using the isotope-mixing model revealed distinct trophic pathways contributing to fish diets in the two basins. Although phytoplankton rather than macrophytes are often considered to be the primary carbon source in aquatic ecosystems, it is worth noting that the estimated contribution of benthic carbon to most fish species was higher in ETL in comparison with MB, suggesting that macrophytes could make an important contribution to the organic carbon pool though they may not be the direct food source for fish species (Keough et al., 1996).

    Extreme nutrient loading, as a consequence of urban and industrial development and agricultural fertilizer runoff , is most likely the driver of within system isotopic variation in Taihu Lake. TA was reported to be negatively related to nutrient loading in the aquatic community (Zambrano et al., 2010). The smaller NR, CR and TA of MB suggested a potential effect of anthropogenic nutrient inputs on food web structure, which may reduce the diversity of the resource base and therefore reduce the area occupied by the community in isotope niche space (Xu et al.,2014).

    5 CONCLUSION

    Stable isotope analysis has been increasingly employed to provide insights into trophic interactions among species and to reveal the structural and functional traits of large aquatic ecosystems. Variation in stable isotope values within large ecosystems is associated with chemical and physical environmental conditions. In this study, spatial heterogeneity in environmental and food web properties was detected within Taihu Lake. In this study, spatial heterogeneities in environmental and food web properties were detected within Taihu Lake. These differences with resultant effects on isotopic values in organisms are likely related to local spatial variation in nutrient loadings to lake waters and possibly to differences in trophic pathways. This information highlights the importance of considering isotopic variability in food web studies for ecosystem-based management in large lakes.

    Arcagni M, Rizzo A, Campbell L M, Arribére M A, Juncos R,Reissig M, Kyser K, Barriga J P, Battini M, Guevara S R.2015. Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultraoligotrophic lake in Northwest Patagonia.J.GreatLakesRes.,41(3):916-925.

    Cabana G, Rasmussen J B. 1996. Comparison of aquatic food chains using nitrogen isotopes.Proc.Natl.Acad.Sci.U.S.A.,93(20): 10 844-10 847.

    Caut S, Angulo E, Courchamp F. 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction.J.Appl.Ecol.,46(2): 443-453.

    Fry B. 2006. Stable Isotope Ecology. Springer, New York.308p.

    Fu D F, Gong W J, Xu Y, Singh R P, Surampalli R Y, Zhang T C. 2014. Nutrient mitigation capacity of agricultural drainage ditches in Tai lake basin.Ecol.Eng.,71: 101-107.

    Graham B S, Koch P L, Newsome S D, McMahon K W,Aurioles. 2010. Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems.In: West J B, Bowen G J, Dawson T E, Tu K P eds. Isoscapes: understanding movement, pattern and process on earth through isotope mapping. Springer, New York. p.299-318.

    Guzzo M M, Haff ner G D, Sorge S, Rush S A, Fisk A T. 2011.Spatial and temporal variabilities of δ13C and δ15N within lower trophic levels of a large lake: implications for estimating trophic relationships of consumers.Hydrobiologia,675(1): 41-53.

    Harvey C J, Kitchell J F. 2000. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web.Can.J.Fish.Aquat.Sci.,57(7): 1 395-1 403.

    He H, Yu J L, Zhang M, Liu Z W, Li K Y. 2012. Characteristic of nitrogen stable isotope inBellamyaaeruginosain different bays of Lake Taihu, China.J.LakeSci.,24(2):282-286. (in Chinese with English abstract)

    Hebert C E, Arts M T, Weseloh D V C. 2006. Ecological tracers can quantify food web structure and change.Environ.Sci.Technol.,40(18): 5 618-5 623.

    Hobson K A, Ofukany A, Soto D X, Wassenaar L I. 2012. An isotopic baseline (δ13C, δ15N) for fishes of Lake Winnipeg:implications for investigating impacts of eutrophication and invasive species.J.GreatLakesRes.,38(S3): 58-65.

    Hussey N E, MacNeil M A, McMeans B C, Olin J A, Dudley S J F, Cliff G, Wintner S P, Fennessy S T, Fisk A T. 2014.Rescaling the trophic structure of marine food webs.Ecol.Lett.,17(2): 239-250.

    Keough J R, Sierszen M E, Hagley C A. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques.Limnol.Oceanogr.,41(1): 136-146.

    Layman C A, Arrington D A, Monta?a C G, Post D M. 2007.Can stable isotope ratios provide for community-wide measures of trophic structure.Ecology,88(1): 42-48.

    Li Y K, Chen Y, Song B, Olson D, Yu N, Chen L Q. 2009.Ecosystem structure and functioning of Lake Taihu(China) and the impacts of fishing.Fish.Res.,95(2-3):309-324.

    Li Y K, Gong Y. 2014. Food web structure of the East Lake Taihu by analysis of stable carbon and nitrogen isotopes.Chin.J.Ecol.,33(6): 1 534-1 538. (in Chinese with English abstract)

    Liu E S. 2008. A study on diet composition of dominant fishes in Lake Taihu.J.Fish.China,32(3): 395-401. (in Chinese with English abstract)

    Mantoura R F C, Llewellyn C A. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high performance liquid chromatography.Analytica ChimicaActa,151: 293-314.

    Mao Z G, Gu X H, Zeng Q F, Zhou L H, Sun M B. 2012. Food web structure of a shallow eutrophic lake (Lake Taihu,China) assessed by stable isotope analysis.Hydrobiologia,683(1): 173-183.

    Martínez del Rio C, Wolf N, Carleton S A, Gannes L Z. 2009.Isotopic ecology ten years after a call for more laboratory experiments.Biol.Rev.,84(1): 91-111.

    Mayer B, Wassenaar L I. 2012. Isotopic characterization of nitrate sources and transformations in Lake Winnipeg and its contributing rivers, Manitoba, Canada.J.GreatLakes Res.,38(S3): 135-146.

    Minagawa M, Wada E. 1984. Stepwise enrichment of15N along food chains: further evidence and the relation between δ15N and animal age.Geochim.Cosmochim.Acta,48(5): 1 135-1 140.

    Ofukany A F A, Hobson K A, Wassenaar L I, Bond A L. 2015.The efficacy of scale sampling for monitoring trace element concentrations and stable isotopes in commercially harvested walleye (Sandervitreus).IsotopesEnviron.HealthStud.,51(3): 359-371.

    Paerl H W, Xu H, McCarthy M J, Zhu G W, Qin B Q, Li Y P,Gardner W S. 2010. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.WaterRes.,45(8): 1 973-1 983.

    Perga M E, Gerdeaux D. 2004. Changes in the δ13C of pelagic food webs: the influence of lake area and trophic status on the isotopic signature of whitefish (Coregonuslavaretus).Can.J.Fish.Aquat.Sci.,61(8): 1 485-1 492.

    Peterson B J, Fry B. 1987. Stable isotopes in ecosystem studies.Ann.Rev.Ecol.Syst.,18(1): 293-320.

    Pinnegar J K, Polunin N V C. 1999. differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions.Funct.Ecol.,13(2): 225-231.

    Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions.Ecology,83(3): 703-718.

    Qin B Q, Xu P Z, Wu Q L, Luo L C, Zhang Y L. 2007.Environmental issues of Lake Taihu, China.Hydrobiologia,581(1): 3-14.

    Schindler D W, Carpenter S R, Cole J J, Kitchell J F, Pace M L. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere.Science,277(5323): 248-251.

    Shiff man D S, Gallagher A J, Boyle M D, Hammerschlag-Peyer C M, Hammerschlag N. 2012. Stable isotope analysis as a tool for elasmobranch conservation research:a primer for non-specialists.Mar.FreshwaterRes.,63(7):635-643.

    Steff y L Y, Kilham S S. 2004. Elevated δ15N in stream biota in areas with septic tank systems in an urban watershed.Ecol.Appl.,14(3): 637-641.

    Tan X, Kong F X, Zeng Q F, Cao H S, Qian S Q, Zhang M.2009. Seasonal variation ofMicrocystisin Lake Taihu and its relationships with environmental factors.J.Environ.Sci.,21(7): 892-899.

    Vander Zanden M J, Shuter B J, Lester N, Rasmussen J B.1999. Patterns of food chain length in lakes: a stable isotope study.Am.Nat.,154(4): 406-416.

    Vander Zanden M J, Vadeboncoeur Y, Chandra S. 2011. Fish reliance on littoral-benthic resources and the distribution of primary production in lakes.Ecosystems,14(6): 894-903.

    Wu J L, Lin L, Gagan M K, Schleser G H, Wang S M. 2006.Organic matter stable isotope (δ13C, δ15N) response to historical eutrophication of Lake Taihu, China.Hydrobiologia,563(1): 19-29.

    Xu J, Wen Z R, Ke Z X, Zhang M, Zhang M, Guo N C, Hansson L A, Xie P. 2014. Contrasting energy pathways at the community level as a consequence of regime shifts.Oecologia,175(1): 231-241.

    Xu J, Zhang M, Xie P. 2011. Sympatric variability of isotopic baselines influences modeling of fish trophic patterns.Limnology,12(2): 107-115.

    Xu P C. 1984. The biology of the whitefish (Erythroculter ilishaeformisBleeker) and the significance for prupagation in Tai Hu Lake.J.Fish.China,8(4): 275-286. (in Chinese with English abstract)

    Zambrano L, Valiente E, Vander Zanden M J. 2010. Stable isotope variation of a highly heterogeneous shallow freshwater system.Hydrobiologia,646(1): 327-336.

    Zhou Q, Xie P, Xu J, Liang X F, Qin J H, Cao T, Chen F Z.2011. Seasonal trophic shift of littoral consumers in Eutrophic Lake Taihu (China) revealed by a two-source mixing model.Sci.WorldJ.,11: 1 442-1 454, https://doi.org/10.1100/tsw.2011.134.

    猜你喜歡
    徐軍
    Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
    Crystal growth,spectral properties and Judd–Ofelt analysis of Pr: CaF2-YF3?
    GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor?
    碎碎念
    一場車禍
    Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering
    家有“悍父”:看不見的閃光少女笛聲悠悠
    Spectral properties of Pr:CNGG crystals grown by micro-pulling-down method?
    700畝蝦塘親情壯闊:點亮不屈父母的尋子夢想
    千王之變
    成人av在线播放网站| 久久久久九九精品影院| 成人毛片a级毛片在线播放| 99热网站在线观看| 欧美3d第一页| 成人鲁丝片一二三区免费| 丰满人妻一区二区三区视频av| 美女xxoo啪啪120秒动态图| 日韩人妻高清精品专区| 午夜日本视频在线| 国产成人一区二区在线| 久久精品国产亚洲av涩爱| 波野结衣二区三区在线| av专区在线播放| 久久久欧美国产精品| 黄色日韩在线| 欧美三级亚洲精品| 美女大奶头视频| 午夜福利在线在线| 女人久久www免费人成看片| 久久鲁丝午夜福利片| 国产探花在线观看一区二区| 18禁动态无遮挡网站| 久久久色成人| 成人特级av手机在线观看| 欧美丝袜亚洲另类| 99久久精品热视频| 日本黄色片子视频| 国产视频首页在线观看| 精品久久久久久成人av| 久久久久精品性色| 日韩av在线免费看完整版不卡| 久久久久久久久久成人| 在线a可以看的网站| 欧美日韩综合久久久久久| 麻豆久久精品国产亚洲av| 久久精品人妻少妇| 精品国产一区二区三区久久久樱花 | 精品国产一区二区三区久久久樱花 | 91精品国产九色| 少妇人妻精品综合一区二区| 亚洲av免费高清在线观看| 国产视频首页在线观看| 免费无遮挡裸体视频| 少妇熟女欧美另类| 欧美性感艳星| av在线天堂中文字幕| 日韩欧美 国产精品| 人妻制服诱惑在线中文字幕| 国产成人精品福利久久| 欧美变态另类bdsm刘玥| 建设人人有责人人尽责人人享有的 | 三级男女做爰猛烈吃奶摸视频| 最近最新中文字幕大全电影3| 又爽又黄无遮挡网站| 久久99热这里只频精品6学生| 综合色av麻豆| 亚洲精品自拍成人| 插逼视频在线观看| 青春草国产在线视频| 日韩大片免费观看网站| 亚洲欧美日韩东京热| 99热全是精品| 亚洲精品国产成人久久av| 久久久久久九九精品二区国产| 国产午夜福利久久久久久| 中文在线观看免费www的网站| 女的被弄到高潮叫床怎么办| 国产精品一区二区性色av| 日本一本二区三区精品| 舔av片在线| 久久国产乱子免费精品| www.av在线官网国产| 久久久久久久久久久免费av| 黄色欧美视频在线观看| 欧美高清性xxxxhd video| 最近最新中文字幕大全电影3| 国产精品伦人一区二区| 国产精品一二三区在线看| 亚洲精品第二区| 婷婷色综合www| 嫩草影院入口| 午夜老司机福利剧场| 舔av片在线| 美女xxoo啪啪120秒动态图| 一区二区三区四区激情视频| 国产成年人精品一区二区| 天天躁夜夜躁狠狠久久av| 岛国毛片在线播放| 又黄又爽又刺激的免费视频.| 熟女人妻精品中文字幕| 在线观看人妻少妇| 久久久久久久亚洲中文字幕| 一级爰片在线观看| 建设人人有责人人尽责人人享有的 | 两个人视频免费观看高清| 淫秽高清视频在线观看| 国产一区亚洲一区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人毛片a级毛片在线播放| 欧美变态另类bdsm刘玥| 尤物成人国产欧美一区二区三区| 亚洲国产精品成人综合色| or卡值多少钱| av国产久精品久网站免费入址| 在线观看一区二区三区| 日日啪夜夜撸| 欧美三级亚洲精品| 可以在线观看毛片的网站| 国产在线一区二区三区精| 欧美成人精品欧美一级黄| 国产黄色视频一区二区在线观看| 亚洲精品国产av成人精品| 一区二区三区四区激情视频| 免费观看无遮挡的男女| 国产一区二区亚洲精品在线观看| 亚洲美女视频黄频| 国产午夜精品久久久久久一区二区三区| 国内少妇人妻偷人精品xxx网站| 日本-黄色视频高清免费观看| 国产极品天堂在线| 亚洲电影在线观看av| 亚洲欧美日韩东京热| 国产女主播在线喷水免费视频网站 | 菩萨蛮人人尽说江南好唐韦庄| 精品国产露脸久久av麻豆 | 婷婷色麻豆天堂久久| 久久99精品国语久久久| 国产免费视频播放在线视频 | 禁无遮挡网站| 日日撸夜夜添| 久久久成人免费电影| 久久精品国产自在天天线| 免费观看精品视频网站| 午夜福利视频精品| 亚洲国产欧美在线一区| av国产免费在线观看| 身体一侧抽搐| 免费看光身美女| 亚洲人成网站在线观看播放| 18禁在线无遮挡免费观看视频| 在线免费观看的www视频| 欧美bdsm另类| 亚洲乱码一区二区免费版| 日韩精品青青久久久久久| 80岁老熟妇乱子伦牲交| 大香蕉97超碰在线| 亚洲婷婷狠狠爱综合网| 精品久久久久久电影网| 亚洲精品成人久久久久久| 免费高清在线观看视频在线观看| 一级爰片在线观看| 99热全是精品| 2022亚洲国产成人精品| 国产乱人视频| 看黄色毛片网站| 淫秽高清视频在线观看| 熟女电影av网| 成人综合一区亚洲| 日本三级黄在线观看| 欧美成人午夜免费资源| 亚洲精品国产av蜜桃| 九九爱精品视频在线观看| 18禁动态无遮挡网站| 欧美极品一区二区三区四区| 内地一区二区视频在线| 亚洲av电影不卡..在线观看| 欧美极品一区二区三区四区| 欧美极品一区二区三区四区| 99久久人妻综合| videos熟女内射| 丝袜喷水一区| 女人被狂操c到高潮| 国产亚洲精品久久久com| 深爱激情五月婷婷| 搡老乐熟女国产| 深爱激情五月婷婷| 男人和女人高潮做爰伦理| 国产精品伦人一区二区| 精品一区二区三卡| 久久精品国产亚洲av涩爱| 永久网站在线| 自拍偷自拍亚洲精品老妇| 日韩大片免费观看网站| 免费高清在线观看视频在线观看| 熟妇人妻久久中文字幕3abv| 精品少妇黑人巨大在线播放| 午夜精品一区二区三区免费看| 又爽又黄a免费视频| 亚洲精品一二三| 人人妻人人澡人人爽人人夜夜 | 黑人高潮一二区| 国产精品三级大全| 99久久精品热视频| 深爱激情五月婷婷| 女人十人毛片免费观看3o分钟| 校园人妻丝袜中文字幕| 久久6这里有精品| 久久久久网色| 久久久久久久国产电影| 国产色婷婷99| 精品少妇黑人巨大在线播放| 国产有黄有色有爽视频| 久久99精品国语久久久| 日韩不卡一区二区三区视频在线| 国产精品人妻久久久影院| 综合色丁香网| 毛片一级片免费看久久久久| 91久久精品国产一区二区成人| 麻豆国产97在线/欧美| 欧美另类一区| 久久人人爽人人爽人人片va| 热99在线观看视频| 亚洲经典国产精华液单| 亚洲欧美日韩东京热| 亚洲成人av在线免费| 大陆偷拍与自拍| 欧美三级亚洲精品| 亚洲精品视频女| 国产av在哪里看| 亚洲欧美成人综合另类久久久| 免费av毛片视频| 中国国产av一级| 国产精品嫩草影院av在线观看| 简卡轻食公司| 好男人在线观看高清免费视频| 国产中年淑女户外野战色| 亚洲精品一区蜜桃| 中文字幕久久专区| 少妇熟女aⅴ在线视频| 国产欧美日韩精品一区二区| 成人一区二区视频在线观看| 99久久精品一区二区三区| 中文字幕av在线有码专区| 免费无遮挡裸体视频| 男女啪啪激烈高潮av片| 大话2 男鬼变身卡| 91午夜精品亚洲一区二区三区| 亚洲精品自拍成人| 国产大屁股一区二区在线视频| 免费少妇av软件| 午夜免费男女啪啪视频观看| 国产成人一区二区在线| 人体艺术视频欧美日本| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 热99在线观看视频| 成人特级av手机在线观看| 日本一二三区视频观看| 欧美成人午夜免费资源| 久久精品熟女亚洲av麻豆精品 | 免费观看精品视频网站| 国产白丝娇喘喷水9色精品| 三级经典国产精品| ponron亚洲| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 麻豆成人午夜福利视频| 久久久a久久爽久久v久久| 国产伦理片在线播放av一区| 国产爱豆传媒在线观看| 国产av不卡久久| 久久午夜福利片| av卡一久久| 国产精品一区www在线观看| a级毛色黄片| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| av福利片在线观看| 国产av在哪里看| 久久久久久久久久黄片| 最近中文字幕高清免费大全6| 成人无遮挡网站| 久久精品久久久久久久性| 免费观看精品视频网站| 日韩欧美 国产精品| 久久人人爽人人爽人人片va| 一级二级三级毛片免费看| 国产综合精华液| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 3wmmmm亚洲av在线观看| av在线播放精品| 丝瓜视频免费看黄片| 国产精品1区2区在线观看.| 99久久精品热视频| 亚洲精品影视一区二区三区av| 99热这里只有是精品在线观看| 国内少妇人妻偷人精品xxx网站| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 看黄色毛片网站| 亚洲精品日韩在线中文字幕| 狂野欧美激情性xxxx在线观看| 久99久视频精品免费| 天堂av国产一区二区熟女人妻| 成人毛片a级毛片在线播放| 国产成人免费观看mmmm| 美女cb高潮喷水在线观看| 18禁动态无遮挡网站| 99热这里只有是精品在线观看| 国产大屁股一区二区在线视频| 麻豆精品久久久久久蜜桃| 久久久色成人| 久久97久久精品| 三级国产精品片| 内射极品少妇av片p| 大话2 男鬼变身卡| 国产午夜精品论理片| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 天美传媒精品一区二区| 好男人视频免费观看在线| 亚洲av免费高清在线观看| av在线老鸭窝| 亚洲av不卡在线观看| 亚洲av不卡在线观看| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 97人妻精品一区二区三区麻豆| 亚洲精品日韩在线中文字幕| www.av在线官网国产| 国产精品1区2区在线观看.| 日韩精品有码人妻一区| 国产成年人精品一区二区| 国产精品女同一区二区软件| 精华霜和精华液先用哪个| 九九久久精品国产亚洲av麻豆| 亚洲欧洲日产国产| 99热全是精品| 亚洲av免费高清在线观看| 日韩欧美国产在线观看| 亚洲国产欧美人成| 少妇丰满av| 国产精品精品国产色婷婷| 91在线精品国自产拍蜜月| 天美传媒精品一区二区| 午夜爱爱视频在线播放| 狂野欧美白嫩少妇大欣赏| a级毛色黄片| 毛片女人毛片| 欧美bdsm另类| 亚洲精品乱码久久久久久按摩| 免费电影在线观看免费观看| 久久久久久国产a免费观看| 午夜福利视频精品| 国产精品国产三级国产专区5o| 最近的中文字幕免费完整| 一级毛片我不卡| 老师上课跳d突然被开到最大视频| 成人美女网站在线观看视频| 国产成人aa在线观看| 久久久久久久国产电影| 免费人成在线观看视频色| 午夜福利在线观看免费完整高清在| 久久热精品热| 久久久久久久久大av| 久久久色成人| 久久久a久久爽久久v久久| 99久久九九国产精品国产免费| 女人久久www免费人成看片| 国产精品福利在线免费观看| 精品久久久久久久久av| 好男人在线观看高清免费视频| 久久久欧美国产精品| 人妻夜夜爽99麻豆av| 97在线视频观看| 亚洲国产精品成人综合色| 乱系列少妇在线播放| 欧美极品一区二区三区四区| 午夜视频国产福利| 草草在线视频免费看| 99久久中文字幕三级久久日本| av在线天堂中文字幕| 亚洲国产精品成人久久小说| 国产在线男女| 亚洲欧洲国产日韩| 青春草亚洲视频在线观看| 超碰97精品在线观看| 国产精品久久久久久久久免| 熟女人妻精品中文字幕| 欧美 日韩 精品 国产| 中文在线观看免费www的网站| 国产伦精品一区二区三区四那| 黄色一级大片看看| 只有这里有精品99| 草草在线视频免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久av不卡| 国产黄色视频一区二区在线观看| 秋霞伦理黄片| 伦理电影大哥的女人| 亚洲丝袜综合中文字幕| 色尼玛亚洲综合影院| 成人欧美大片| 国产成人一区二区在线| 午夜爱爱视频在线播放| 欧美成人一区二区免费高清观看| 亚洲婷婷狠狠爱综合网| 久久久久久久久大av| 国产av不卡久久| 亚洲欧洲日产国产| 又大又黄又爽视频免费| 免费不卡的大黄色大毛片视频在线观看 | av女优亚洲男人天堂| 99久久人妻综合| 亚洲人与动物交配视频| 久热久热在线精品观看| 男人狂女人下面高潮的视频| 尤物成人国产欧美一区二区三区| a级一级毛片免费在线观看| 久久久欧美国产精品| 白带黄色成豆腐渣| 最近中文字幕2019免费版| 日韩一本色道免费dvd| 国产真实伦视频高清在线观看| 亚州av有码| 69人妻影院| 大香蕉97超碰在线| 亚洲欧美一区二区三区国产| 精品久久久久久成人av| 老师上课跳d突然被开到最大视频| 亚洲精品一二三| 亚洲成色77777| 国产三级在线视频| 一级片'在线观看视频| 日韩强制内射视频| 久久韩国三级中文字幕| 国产日韩欧美在线精品| 亚洲,欧美,日韩| 22中文网久久字幕| 婷婷色综合大香蕉| 国产精品人妻久久久影院| 国产探花在线观看一区二区| 秋霞伦理黄片| 少妇熟女aⅴ在线视频| 三级经典国产精品| 亚洲乱码一区二区免费版| 黑人高潮一二区| 好男人视频免费观看在线| 啦啦啦啦在线视频资源| 欧美日韩亚洲高清精品| 国产 一区 欧美 日韩| 成人亚洲欧美一区二区av| 亚洲精品aⅴ在线观看| 国内揄拍国产精品人妻在线| 青春草亚洲视频在线观看| 五月天丁香电影| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久久久| 国产高潮美女av| 色吧在线观看| 少妇裸体淫交视频免费看高清| 午夜福利高清视频| 亚洲国产成人一精品久久久| 国产日韩欧美在线精品| 人体艺术视频欧美日本| 禁无遮挡网站| 久久久久久久大尺度免费视频| 久久这里有精品视频免费| 内射极品少妇av片p| 色综合亚洲欧美另类图片| 国产免费视频播放在线视频 | 岛国毛片在线播放| 在线观看人妻少妇| 国产伦理片在线播放av一区| 日本黄大片高清| 国产高清国产精品国产三级 | 一级片'在线观看视频| 六月丁香七月| 91精品国产九色| 天天一区二区日本电影三级| 日本与韩国留学比较| 免费看美女性在线毛片视频| 中文在线观看免费www的网站| 免费av不卡在线播放| 听说在线观看完整版免费高清| 久久精品夜色国产| 精品久久久久久久久久久久久| 内地一区二区视频在线| 久久久亚洲精品成人影院| 日本与韩国留学比较| 男女边吃奶边做爰视频| 国产在视频线精品| 天堂影院成人在线观看| 久久久精品免费免费高清| 美女脱内裤让男人舔精品视频| 久久久久久久久久久免费av| 最近视频中文字幕2019在线8| 久久久色成人| 国产精品久久久久久精品电影小说 | 最近视频中文字幕2019在线8| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 欧美人与善性xxx| 国产女主播在线喷水免费视频网站 | 久久精品综合一区二区三区| 一级片'在线观看视频| 亚洲熟女精品中文字幕| 国产成人精品婷婷| 亚洲伊人久久精品综合| 亚洲最大成人av| 成人性生交大片免费视频hd| 精品久久久久久久久久久久久| 国产精品一区二区在线观看99 | 亚洲av成人精品一二三区| 国产高清有码在线观看视频| 99热6这里只有精品| 一级毛片aaaaaa免费看小| 精品一区二区三区人妻视频| 免费电影在线观看免费观看| 久久综合国产亚洲精品| 亚洲国产最新在线播放| 日韩欧美三级三区| 91久久精品国产一区二区三区| 欧美成人a在线观看| 秋霞在线观看毛片| 嫩草影院入口| 少妇丰满av| 日本爱情动作片www.在线观看| 男人和女人高潮做爰伦理| 51国产日韩欧美| 真实男女啪啪啪动态图| 三级经典国产精品| 日韩大片免费观看网站| 毛片一级片免费看久久久久| 亚洲av在线观看美女高潮| 少妇熟女aⅴ在线视频| 在线观看一区二区三区| 亚洲av一区综合| 人妻少妇偷人精品九色| 久久久久性生活片| 成人欧美大片| 插逼视频在线观看| 神马国产精品三级电影在线观看| 高清在线视频一区二区三区| av.在线天堂| 日韩av在线免费看完整版不卡| 精品久久久精品久久久| 国产黄色小视频在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲在久久综合| 免费观看无遮挡的男女| 久久精品综合一区二区三区| 亚洲av国产av综合av卡| 嘟嘟电影网在线观看| 国产精品久久久久久av不卡| 69人妻影院| 亚洲经典国产精华液单| 97在线视频观看| 亚洲av电影在线观看一区二区三区 | 久久人人爽人人爽人人片va| 女人十人毛片免费观看3o分钟| 九九在线视频观看精品| 大陆偷拍与自拍| 熟妇人妻久久中文字幕3abv| 国产三级在线视频| 久久久久久九九精品二区国产| 亚洲伊人久久精品综合| av国产免费在线观看| 爱豆传媒免费全集在线观看| 少妇人妻一区二区三区视频| 国产一区亚洲一区在线观看| 久久国内精品自在自线图片| av线在线观看网站| 成年女人在线观看亚洲视频 | 国产免费一级a男人的天堂| 99久久九九国产精品国产免费| 国产亚洲精品av在线| 亚洲,欧美,日韩| videos熟女内射| 97超视频在线观看视频| 国产熟女欧美一区二区| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 亚洲精品国产av蜜桃| 人妻一区二区av| 成人高潮视频无遮挡免费网站| 成人一区二区视频在线观看| 国产 一区精品| 男的添女的下面高潮视频| 夫妻午夜视频| 在现免费观看毛片| 联通29元200g的流量卡| 毛片一级片免费看久久久久| 秋霞在线观看毛片| 国产一区二区三区综合在线观看 | 国产激情偷乱视频一区二区| 亚洲国产欧美在线一区| 国产探花在线观看一区二区| 天堂√8在线中文| 国产淫语在线视频| 十八禁网站网址无遮挡 | av女优亚洲男人天堂| 久久久久久久国产电影| 精品人妻熟女av久视频| 晚上一个人看的免费电影| 国产成人a区在线观看| 国产午夜精品论理片| 亚洲欧洲国产日韩| 少妇人妻精品综合一区二区| 欧美日韩视频高清一区二区三区二| 国内精品宾馆在线| 99久久精品一区二区三区| 欧美精品一区二区大全| 天堂√8在线中文| 又粗又硬又长又爽又黄的视频| 一本久久精品| 国产免费视频播放在线视频 | 亚洲欧美中文字幕日韩二区| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 一区二区三区免费毛片| 日本三级黄在线观看| av天堂中文字幕网|