• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Weighted Local Contrast Method for Infrared Small Target Detection

    2024-03-18 09:00:06PenggeMaJiangnanWangDongdongPangTaoShanJunlingSunQiuchunJin

    Pengge Ma, Jiangnan Wang, Dongdong Pang, Tao Shan, Junling Sun, Qiuchun Jin

    Abstract: In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background, an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First, the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then, a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally, the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate, the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles (UAV).

    Keywords: infrared small target; unmanned aerial vehicles (UAV); local contrast; target detection

    1 Introduction

    Infrared small target detection is one of the key technologies of infrared search and tracking(IRST).It has a wide range of applications in the fields of accurate guidance and maritime surveillance [1-3].Due to long-range imaging,infrared (IR) small targets lack detailed shape and texture information.In addition, severe interference such as high-brightness background,edges of background and pixel-sized noises with high brightness (PNHB) exist in complex lowaltitude backgrounds, which make the detection very challenging.

    In the field of IR small target detection, the methods of IR small target detection are mainly divided into single-frame detection method and sequential detection method.The single-frame detection method is usually used in infrared search and tracking system, we mainly study single-frame detection method in this paper.Tophat [4], Max-mean [5], and Max-median are single-frame detection methods based on morphological filtering.The core idea of these methods is to construct filtering operators that extract the target or background.These methods demonstrate high detection accuracy in scenes with simple backgrounds but are prone to high false alarm rates in scene with complex background.

    In recent years, inspired by human visual system (HVS).IR small target detection methods based on local contrast have been extensively studied to achieve detection by measuring the difference between target and local background.Han et al.[6] proposed a relative local contrast measure (RLCM) that effectively suppresses different types of interference.Wei et al.[7] proposed a multi-scale patch-based contrast measure (MPCM), which combines the local grayscale differences in two corresponding directions to improve the detection performance.Deng et al.[8] proposed a detection method based on the average absolute gray difference (AAGD),which effectively improves the SNR of target by weighting local entropy with the gray difference.Wan et al.[9] proposed a method based on local gradient and directional curvature (LGDC) to detect single-frame infrared small targets, which significantly improved the contrast between target and background.In addition, methods based on low-rank and sparse decomposition are introduced into IR small target detection.These methods predict the position of target by an iterative optimization process.Gao et al.[10] proposed an infrared patch-image (IPI) method,which translates target detection into an optimization problem of recovering a low-rank and sparse matrix.Dai et al.[11] designed a weighted infrared patch tensor (IPT) model that integrates weighted infrared patch tensor with edge structural information.The model formulates the separation of target and background as a lowrank tensor recovery problem.Zhang et al.[12]proposed a method based on partial sum of tensor nuclear norm (PSTNN).When multiple targets with sparse structures exist in the scene and the background is complex, these methods exhibit low detection efficiency and typically result in high false alarm rates.

    To address the challenge of detecting infrared small targets in complex low-altitude background, we propose a novel infrared small target detection method based on improved weighted local contrast [13].Firstly, the ratio information of target and local background is used as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then, a local product weighted method is designed based on the spatial dissimilarity between target and background [14].The final saliency map is obtained by multiplying local contrast and weighted function.Finally, the target is extracted through threshold segmentation.This method demonstrates strong detection performance in complex low-altitude backgrounds.

    2 Improved Weighted Local Contrast Method for Infrared Small Target Detection

    Fig.1 shows the general algorithm flow chart of this paper.The specific calculation process is mainly divided into three parts.

    Fig.1 Algorithm flowchart

    1) The block ratio-difference contrast(BRDC) is calculated by combining the homogeneity of target region with the heterogeneity between target and background regions.The local product weighted (LPW) mapping is computed based on spatial dissimilarity between target and background.

    2) LPW realize the weighted enhancement of BRDC to obtain the final saliency map WRDC.

    3) The target is extracted through threshold segmentation operation.

    2.1 Infrared Small Target Detection

    2.1.1 BRDC Calculation

    The ratio of target and local background is used as the enhancement factor of target in this paper.The saliency map of BRDC is calculated as the difference between the grayscale values of the enhanced target region and the original target region, which simultaneously enhances target and suppresses complex background.BRDC is defined as follows

    wheremB(i) denotes the average of grayscale values of thei-th background block,Njdenotes the average of thejlargest pixel grayscale values of the central block, and theNjvalues at different scales are defined as follows

    whereLis the length of unit block in sliding window,Iikis the gray value of thek-th pixel in thei-th block,jis the number of maximum gray value of central block,is thek-th maximum gray value of central block T.

    The design motivation of BRDC is as follows.

    1) Some PNHB exist in complex low-altitude background, which interferes with detection of small targets.Some methods that use the maximum value of center block when calculating contrast in ratio form will identify PNHB as a target as well, which increases the false alarm rate.The use ofNjenhances precise representation of grayscale features of center block.It focuses more on local contrast between target and background rather than brightness.This method demonstrates a decent effect in suppressing PNHB.

    2) The proposed method uses mean value of maximum gray value ofjpixels inNjof central block in the ratio operation, which further enhances the local contrast compared to traditional method using mean gray value of central block, and the effect of enhancing target is more obvious.

    3) As shown in Eq.(1), the enhancement factor of the center block in different directions is obtained by the ratio operation ofNjandmB(i).The high brightness background can be effectively eliminated by using the formulato calculate the difference between enhanced grayscale value and initial grayscale value of center block.

    The saliency map BRDC is calculated by traversing the entire image through a sliding window shown in Fig.2.According to Eq.(1), when the central block T passes through the target,since the real target is usually locally salient, we can get,which is used to enhance the target.When the central block T passes through background and surrounding blocks are target or background, since the background is usually continuous, we can get minwhich is used to suppress the background.

    Fig.2 Sliding window

    2.1.2 LPW Calculation

    The calculation of the weighted function is mainly based on the spatial characteristics of the target and background and the difference between them.Typically, target follows a Gaussian distribution and exhibits minimal similarity to background.Therefore, an increase in the dissimilarity between central region and neighboring regions indicates high probability that central block is target.Local product weighted mapping is used to further suppress background.LPW is defined as follows

    wheremTdenotes the average gray value of the central block T.LPW is the product value obtained by multiplying the difference between the gray average values of the central block and the eight neighboring blocks.

    When the central block T passes through the target, since the difference between the target region and surrounding block is large,d(T,Bi)>0.Then, we get a large local product weighted mapping LPW to enhance the target.When the central block T passes through background.Since the background is a uniform area with some noise in the local region,d(T,Bi) ≤0.Then, we get a negative local product weighted mapping LPW to suppress the background.Therefore, LPW can realize the weighted enhancement of BRDC.The final saliency map WRDC is expressed as follows:

    2.1.3 Multi-Scale WRDC Calculation

    The local contrast can be measured more accurately when the size of the sliding window is approximately the same as target.A multi-scale calculation method is used to improve the algorithm’s robustness to the target of different size in this paper.The lengthLof the detection window are set to 3, 5, 7, 9.The formula for the multiscale calculation is defined as follows

    wheremdenotes them-th scale,ldenotes the number of scales.

    2.2 Extraction of Small Infrared Target

    The WRDC saliency map is computed based on the calculations mentioned above.The real target is typically the most salient.To distinguish target from background, we define the threshold Th as

    whereμis the mean of WRDC saliency map,kis a threshold factor with an optimal range of 0.6-0.8 andσis the standard deviation of WRDC saliency map.

    3 Experiments and Results Analysis

    In this section, the key parameterNin Eq.(3) is discussed and selected first.In this paper, a multi-scale sliding window of sizeL×Lis used for detection, where the size of target does not exceedL×L.It is experimentally verified that the optimal values ofNare 4, 12, 16, 24 whenL= 3,5, 7, 9.Then the proposed method is compared with six advanced algorithms on six sets of real IR sequences.The comparison algorithms used in the experiment are: Tophat [4], RLCM [6],MPCM [7], IPI [10], PSTNN [12], LGDC [9].In this experiment, six sets of IR image sequences in low-altitude scenes were used as the experimental datasets.The six datasets are denoted as Scene1-Scene6.Tab.1 shows the detailed description of the IR image datasets.A series of evaluation metrics are also used to evaluate the detection performance of different methods in order to verify the effectiveness and robustness of the proposed method.

    Tab.1 Detailed description of the infrared image dataset

    3.1 Visualization of Test Results Analysis

    As shown in Fig.3, the detection results of six representative images are selected for visualization.These images contain detection results of each method in six datasets and the 3D distribution of detection results.

    Scene1 shows an experimental scene containing dark sky and high-brightness ground background.The target is small and only occupies a few pixels, but the background is relatively uniform and dark.Therefore, the target is more prominent in the local region.Tophat based on morphological filtering can enhance target, but fail to adequately suppress high-brightness clutter in background, resulting in poor detection results.The proposed method can fully suppress the high-brightness background, while enhancing the target.It has better detection results.Scene2 shows the experimental results of different methods in scenarios with interference from complex clouds.Small infrared targets are submerged in bright cloud backgrounds and are difficult to detect.It can be seen from the result of the proposed method that the background of bright cloud is basically suppressed.The target is significantly enhanced.Tophat and MPCM fail to detect the target.MPCM has poor background suppression effect.There are interfering targets in Scene3, and the comparison method detects the targets, but the interfering targets are also retained in the detection result.The proposed method uses the spatial dissimilarity of weighted local contrast to suppress the background region where interfering targets exist for accurate target detection.Scene4 shows a low-altitude scene with complex background.RLCM enhances the target, but the original shape of the target is not retained.The background noise is also enhanced.IPI and PSTNN will lead to a high false alarm rate When high-brightness edges or sparse points exist in the background.Scene5 shows the experimental results of different methods for the background with strong interference.The background brightness of these strong interference is even higher than the target.The part of the background is similar to the target, resulting in false detection.The relatively continuous highbrightness background clutters exist in scene6.Many background clutters still exist in the detection results of Tophat, RLCM and PSTNN.The proposed method can suppress high-brightness background clutter and detect the target accurately.From the 3D distribution diagram, it can be seen that the most comparison methods can detect the target, but more background clutter remains in detection results, resulting in higher false alarm rate.The detection results of the proposed method are almost no background clutter,and target can be detected accurately.These visualization results demonstrate that the proposed method possesses strong target responsiveness and background suppression capability.

    3.2 Comparative Analysis of Target Enhancement and Background Suppression Performance

    In order to quantitatively evaluate the target enhancement capability and background suppression capability of all methods.The calculation formulas of signal-to-noise ratio gain (SNRG)and background suppression factor (BSF) are introduced:

    Fig.3 Visualize the result graph: (a) scene1; (b) scene2; (c) scene3; (d) scene4; (e) scene5; (f) scene6

    where SNRoutand SNRindenote the SNR of WRDC and original image.

    whereCin,Coutdenote the standard deviation of the gray value of original image and WRDC.

    The SNRG and BSF for all methods tested on the six sets of IR images are presented in Tab.2 and Tab.3.The bolded numbers indicate the maximum values.The proposed method combines local contrast with weighted function and achieves the maximum SNRG and BSF in most scenes.LGDC combines gradient features and directional curvature to calculate local contrast and achieves the maximum SNRG and BSF in a few scenes.It can be concluded from the analysis that the proposed method exhibits strong back-ground suppression and target enhancement capability.

    Tab.2 Different algorithms for SNRG

    3.3 Comparative Analysis of Testing Performance

    In the field of IR small target detection, receiver operating characteristic (ROC) curve is widely used to evaluate the robustness of algorithm,while reflecting the variation relationship between probabilities of detection (Pd) and false alarm (Pf).

    whereNdis the number of correctly detected small targets,Ntis sum of the number of real small targets,Nfis the number of falsely detected small targets, andMis the total number of detected targets.

    Fig.4 shows the ROC curves of the averageperformance of each method in six datasets.It can be seen that the overall detection performance of the proposed method is the strongest,with high probabilities of detection while ensuring a low false alarm rate.It outperforms other comparison methods on most of the test images,which further demonstrates the effectiveness of the proposed method.

    Tab.3 Different algorithms for BSF

    Fig.4 ROC curves of different algorithms: (a) scene1; (b) scene2; (c) scene3; (d) scene4; (e) scene5; (f) scene6

    3.4 Average Calculation Time Comparison Analysis

    In addition, all experiments were implemented on a computer equipped with an Intel Core 2.9-GHz i5-9400 CPU and 16-GB memory, and the testing software was MATLAB R2018b.

    To verify the real-time performance of the proposed method, Tab.4 lists the Average calculation time of different algorithms.Among all algorithms, Tophat, MPCM, PSTNN and the proposed method have faster average calculation time.IPI has the slowest calculation time.The proposed method exhibits greater advantages in terms of probabilities of detection and false alarm compared to Top-hat and LGDC, which have similar detection efficiency.Additionally, it possesses strong real-time capability.

    Tab.4 Average calculation time of different algorithms (s)

    4 Conclusion

    In order to improve the accuracy and robustness of IR small target detection in complex low-altitude scenes, we propose an infrared small target detection method based on improved weighted local contrast.It consists of the following components.First, the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then, we designed a weighted function based on the spatial dissimilarity between target and background.The experimental results show the method has obtained good detection results on multiple evaluation metrics, with strong detection performance and robustness in different low-altitude scenes.In future work, the proposed method will be validated in scenes containing multiple targets to provide a more reliable solution for practical applications.

    大话2 男鬼变身卡| 国产不卡av网站在线观看| 亚洲成av片中文字幕在线观看| 男女之事视频高清在线观看 | 久久精品亚洲av国产电影网| 欧美久久黑人一区二区| 亚洲欧美一区二区三区国产| 午夜福利一区二区在线看| 国产高清不卡午夜福利| av福利片在线| 青青草视频在线视频观看| 亚洲国产精品成人久久小说| 一级爰片在线观看| 国产女主播在线喷水免费视频网站| 日本vs欧美在线观看视频| 国产免费视频播放在线视频| 飞空精品影院首页| 亚洲成av片中文字幕在线观看| 午夜日本视频在线| 成人漫画全彩无遮挡| 狂野欧美激情性bbbbbb| 赤兔流量卡办理| 人成视频在线观看免费观看| www.熟女人妻精品国产| 男人爽女人下面视频在线观看| 丝袜喷水一区| 男女下面插进去视频免费观看| e午夜精品久久久久久久| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 午夜福利,免费看| 色精品久久人妻99蜜桃| 亚洲国产精品一区三区| 亚洲三区欧美一区| 欧美人与善性xxx| 亚洲精品自拍成人| 久久影院123| 亚洲五月色婷婷综合| 久久精品aⅴ一区二区三区四区| 制服丝袜香蕉在线| 多毛熟女@视频| 免费日韩欧美在线观看| 一区二区日韩欧美中文字幕| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 色婷婷久久久亚洲欧美| 男人添女人高潮全过程视频| 亚洲av中文av极速乱| 一级毛片电影观看| 亚洲精品国产av成人精品| 在线亚洲精品国产二区图片欧美| 精品一区二区三卡| 久久婷婷青草| 亚洲av男天堂| 成人影院久久| 下体分泌物呈黄色| 国产在线一区二区三区精| 久久久欧美国产精品| 国产成人精品久久二区二区91 | 男女边吃奶边做爰视频| 黄片无遮挡物在线观看| 色精品久久人妻99蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲精品一区二区精品久久久 | 国产毛片在线视频| 亚洲欧美精品自产自拍| 日本色播在线视频| 成人三级做爰电影| 高清不卡的av网站| 亚洲国产精品成人久久小说| 免费黄网站久久成人精品| 国产av一区二区精品久久| 色94色欧美一区二区| 色精品久久人妻99蜜桃| 99久久精品国产亚洲精品| av天堂久久9| 亚洲国产最新在线播放| 亚洲三区欧美一区| 日本91视频免费播放| 不卡视频在线观看欧美| 国产免费福利视频在线观看| 看非洲黑人一级黄片| 免费久久久久久久精品成人欧美视频| 天堂8中文在线网| 最近手机中文字幕大全| 妹子高潮喷水视频| 欧美精品高潮呻吟av久久| 久久久久久久久久久免费av| 午夜av观看不卡| 国产成人欧美在线观看 | 69精品国产乱码久久久| 少妇的丰满在线观看| 熟女少妇亚洲综合色aaa.| 丰满乱子伦码专区| 国产成人精品久久久久久| 只有这里有精品99| 极品人妻少妇av视频| 亚洲综合色网址| av天堂久久9| 国产精品久久久久成人av| 秋霞在线观看毛片| 免费黄网站久久成人精品| 国产午夜精品一二区理论片| 欧美最新免费一区二区三区| 色精品久久人妻99蜜桃| 成人国产av品久久久| 中国三级夫妇交换| 搡老乐熟女国产| 啦啦啦中文免费视频观看日本| 在线 av 中文字幕| 日韩 欧美 亚洲 中文字幕| 国产福利在线免费观看视频| 中国国产av一级| 超碰97精品在线观看| 欧美激情极品国产一区二区三区| 成人国产av品久久久| 国产精品久久久久久人妻精品电影 | 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花| 国产精品人妻久久久影院| a级毛片黄视频| 国产精品国产av在线观看| 汤姆久久久久久久影院中文字幕| 色播在线永久视频| 国产av一区二区精品久久| 国产精品成人在线| 亚洲综合精品二区| 18禁国产床啪视频网站| 亚洲美女视频黄频| 欧美日韩av久久| a级片在线免费高清观看视频| 午夜av观看不卡| 午夜日韩欧美国产| 国产又爽黄色视频| 在线观看免费日韩欧美大片| 久久国产亚洲av麻豆专区| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| av国产精品久久久久影院| 99久久人妻综合| 国产伦人伦偷精品视频| 免费av中文字幕在线| 亚洲精品在线美女| 51午夜福利影视在线观看| 亚洲欧洲日产国产| 伊人久久大香线蕉亚洲五| 黑丝袜美女国产一区| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| 亚洲精品aⅴ在线观看| 久久ye,这里只有精品| 老司机靠b影院| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级| 新久久久久国产一级毛片| 欧美在线一区亚洲| 亚洲成人手机| av视频免费观看在线观看| av免费观看日本| 丰满少妇做爰视频| 亚洲精品久久成人aⅴ小说| 一区二区三区精品91| 丁香六月欧美| 在线观看一区二区三区激情| 日本色播在线视频| 热99国产精品久久久久久7| 亚洲视频免费观看视频| 成人国语在线视频| 亚洲成人一二三区av| 捣出白浆h1v1| 免费观看人在逋| 中文字幕人妻熟女乱码| 国产成人91sexporn| 天美传媒精品一区二区| 国产精品国产三级国产专区5o| 人妻 亚洲 视频| 麻豆av在线久日| 欧美精品av麻豆av| 亚洲欧美精品综合一区二区三区| 精品一区二区三卡| 亚洲国产精品一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久精品精品| 青春草国产在线视频| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 日本vs欧美在线观看视频| www.精华液| 2021少妇久久久久久久久久久| 欧美 日韩 精品 国产| 午夜福利视频在线观看免费| 亚洲成av片中文字幕在线观看| 国产免费福利视频在线观看| 欧美日韩视频精品一区| 伦理电影免费视频| 成年人午夜在线观看视频| 老汉色∧v一级毛片| 精品一区二区三卡| 日韩熟女老妇一区二区性免费视频| 性高湖久久久久久久久免费观看| 中文欧美无线码| av又黄又爽大尺度在线免费看| 成人影院久久| 热99国产精品久久久久久7| 国产又爽黄色视频| 1024视频免费在线观看| 欧美中文综合在线视频| 日本欧美国产在线视频| 免费黄频网站在线观看国产| 99精国产麻豆久久婷婷| 国产成人91sexporn| 啦啦啦在线免费观看视频4| 麻豆乱淫一区二区| 一区二区日韩欧美中文字幕| 国产熟女欧美一区二区| 99香蕉大伊视频| 久久人人爽av亚洲精品天堂| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 久久久久视频综合| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 精品卡一卡二卡四卡免费| 免费看不卡的av| 七月丁香在线播放| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| 婷婷色综合www| 国产精品国产av在线观看| 99热网站在线观看| 久久久久久久大尺度免费视频| 亚洲精品aⅴ在线观看| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| 亚洲一级一片aⅴ在线观看| 久久久精品区二区三区| 亚洲av欧美aⅴ国产| 美女福利国产在线| a级片在线免费高清观看视频| 最近最新中文字幕免费大全7| 婷婷色av中文字幕| 婷婷色麻豆天堂久久| 精品国产国语对白av| 亚洲精品一二三| 日日撸夜夜添| 韩国精品一区二区三区| 制服诱惑二区| 最近的中文字幕免费完整| 人体艺术视频欧美日本| 在线观看免费高清a一片| kizo精华| 亚洲欧洲日产国产| 国产免费又黄又爽又色| 国产麻豆69| 天堂俺去俺来也www色官网| 欧美xxⅹ黑人| 美国免费a级毛片| 男女床上黄色一级片免费看| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| e午夜精品久久久久久久| 国产一级毛片在线| 18在线观看网站| 热99国产精品久久久久久7| 伦理电影大哥的女人| 久久影院123| 久久国产精品男人的天堂亚洲| 美女主播在线视频| 啦啦啦啦在线视频资源| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久成人av| 国产在线免费精品| 日本av手机在线免费观看| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 男人舔女人的私密视频| 一区在线观看完整版| 97精品久久久久久久久久精品| 国产av码专区亚洲av| 啦啦啦在线免费观看视频4| 亚洲视频免费观看视频| svipshipincom国产片| 国产日韩欧美亚洲二区| 中文字幕人妻熟女乱码| 黄色 视频免费看| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 九草在线视频观看| 看免费av毛片| 捣出白浆h1v1| 久久99热这里只频精品6学生| 赤兔流量卡办理| av又黄又爽大尺度在线免费看| 亚洲av在线观看美女高潮| 亚洲色图 男人天堂 中文字幕| 国产精品免费视频内射| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 久久国产精品大桥未久av| 观看美女的网站| 午夜免费观看性视频| 十分钟在线观看高清视频www| 悠悠久久av| 久久精品亚洲av国产电影网| 建设人人有责人人尽责人人享有的| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 免费在线观看完整版高清| 国产精品 欧美亚洲| 久久国产精品男人的天堂亚洲| 日日撸夜夜添| 国产亚洲精品第一综合不卡| 最新在线观看一区二区三区 | 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| a 毛片基地| 中文字幕人妻丝袜制服| 无限看片的www在线观看| 免费高清在线观看日韩| 99九九在线精品视频| 久久久亚洲精品成人影院| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 国产成人av激情在线播放| 国产成人午夜福利电影在线观看| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 一级毛片电影观看| 国产一卡二卡三卡精品 | 天天躁狠狠躁夜夜躁狠狠躁| 国产精品人妻久久久影院| 精品亚洲成a人片在线观看| 极品人妻少妇av视频| 自线自在国产av| 精品国产乱码久久久久久小说| 国产一级毛片在线| 在线观看免费午夜福利视频| 午夜精品国产一区二区电影| 亚洲欧洲国产日韩| 国产深夜福利视频在线观看| 99热网站在线观看| 一个人免费看片子| 少妇的丰满在线观看| 波多野结衣av一区二区av| 十分钟在线观看高清视频www| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| av在线app专区| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 日韩伦理黄色片| 18禁动态无遮挡网站| 一区在线观看完整版| 国产一级毛片在线| bbb黄色大片| 久久久久久人妻| 午夜av观看不卡| 欧美日韩av久久| 日韩熟女老妇一区二区性免费视频| 国产精品 欧美亚洲| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 国产视频首页在线观看| 亚洲图色成人| 超色免费av| 婷婷色综合www| 99国产精品免费福利视频| 成年女人毛片免费观看观看9 | 亚洲国产欧美在线一区| 蜜桃国产av成人99| 亚洲一码二码三码区别大吗| 啦啦啦中文免费视频观看日本| 日韩精品免费视频一区二区三区| 日本色播在线视频| 丝袜美足系列| 国产毛片在线视频| 啦啦啦在线观看免费高清www| 久久久久久免费高清国产稀缺| 国产成人精品久久久久久| 久久97久久精品| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 丝袜脚勾引网站| 亚洲av电影在线进入| 国产人伦9x9x在线观看| 新久久久久国产一级毛片| 久久99精品国语久久久| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 夫妻午夜视频| 国产亚洲精品第一综合不卡| 成人黄色视频免费在线看| www日本在线高清视频| 捣出白浆h1v1| 国产亚洲欧美精品永久| 久久人人97超碰香蕉20202| 亚洲av中文av极速乱| 中文字幕精品免费在线观看视频| 欧美人与善性xxx| 午夜激情久久久久久久| 嫩草影视91久久| 欧美日韩成人在线一区二区| 一本大道久久a久久精品| 老汉色av国产亚洲站长工具| 免费久久久久久久精品成人欧美视频| 久久久久久久国产电影| 老鸭窝网址在线观看| 一级毛片我不卡| 国产在线视频一区二区| 国产精品免费大片| 国产乱人偷精品视频| 亚洲色图 男人天堂 中文字幕| a级毛片黄视频| 久久久国产精品麻豆| 午夜免费鲁丝| 1024视频免费在线观看| 老司机深夜福利视频在线观看 | 丝袜脚勾引网站| 天天添夜夜摸| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区三区四区第35| 日韩不卡一区二区三区视频在线| 韩国av在线不卡| 男女免费视频国产| 精品国产国语对白av| 美女高潮到喷水免费观看| 国产精品女同一区二区软件| 日韩欧美一区视频在线观看| 性少妇av在线| 国产成人欧美| 欧美日韩成人在线一区二区| 国产黄色视频一区二区在线观看| 国产av码专区亚洲av| 国产成人免费无遮挡视频| 亚洲视频免费观看视频| 可以免费在线观看a视频的电影网站 | 成人亚洲精品一区在线观看| 最近手机中文字幕大全| 亚洲精品自拍成人| 在线亚洲精品国产二区图片欧美| 亚洲成国产人片在线观看| 日韩一区二区视频免费看| 久久热在线av| 免费高清在线观看日韩| 久久精品国产亚洲av涩爱| 国产一区二区三区av在线| 嫩草影视91久久| 日韩中文字幕视频在线看片| 80岁老熟妇乱子伦牲交| 国精品久久久久久国模美| 精品国产露脸久久av麻豆| 久久久久精品性色| 男人操女人黄网站| 91成人精品电影| 夫妻午夜视频| 黄色视频不卡| 久久精品亚洲熟妇少妇任你| 久久99精品国语久久久| 亚洲伊人色综图| 中文精品一卡2卡3卡4更新| 一区福利在线观看| 亚洲精品久久午夜乱码| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| 亚洲一区二区三区欧美精品| 999久久久国产精品视频| 少妇的丰满在线观看| 国产精品久久久人人做人人爽| 天美传媒精品一区二区| 国产在视频线精品| 纵有疾风起免费观看全集完整版| 另类精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 晚上一个人看的免费电影| 看非洲黑人一级黄片| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看国产h片| av有码第一页| 曰老女人黄片| av福利片在线| 欧美97在线视频| 人人澡人人妻人| 久久国产精品大桥未久av| 下体分泌物呈黄色| 少妇被粗大猛烈的视频| 日韩 欧美 亚洲 中文字幕| 亚洲情色 制服丝袜| 免费高清在线观看日韩| 一二三四在线观看免费中文在| 99精品久久久久人妻精品| 国产一区有黄有色的免费视频| 搡老乐熟女国产| 亚洲成色77777| 国产片特级美女逼逼视频| 国产精品一国产av| 国产精品麻豆人妻色哟哟久久| 国产高清国产精品国产三级| 波野结衣二区三区在线| 一级a爱视频在线免费观看| 国产熟女午夜一区二区三区| 国产成人系列免费观看| 精品一区二区三区av网在线观看 | 又粗又硬又长又爽又黄的视频| 人人妻人人爽人人添夜夜欢视频| av电影中文网址| 汤姆久久久久久久影院中文字幕| 国产在线一区二区三区精| 欧美国产精品一级二级三级| 看十八女毛片水多多多| 黄色视频在线播放观看不卡| bbb黄色大片| 在线观看免费视频网站a站| 久久97久久精品| 国产福利在线免费观看视频| 欧美日韩亚洲高清精品| 日韩av免费高清视频| 久久鲁丝午夜福利片| 五月天丁香电影| 日本午夜av视频| 一级爰片在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 狂野欧美激情性xxxx| 亚洲第一青青草原| 国产在视频线精品| 国产精品无大码| 国产一区有黄有色的免费视频| 久久人人爽av亚洲精品天堂| 成年美女黄网站色视频大全免费| 婷婷成人精品国产| 日韩中文字幕视频在线看片| 捣出白浆h1v1| 国产精品久久久久久精品电影小说| 国产 一区精品| 欧美在线黄色| 国产99久久九九免费精品| 亚洲七黄色美女视频| 亚洲国产欧美日韩在线播放| 亚洲av福利一区| 啦啦啦 在线观看视频| 下体分泌物呈黄色| 人人妻人人澡人人看| 赤兔流量卡办理| av卡一久久| 亚洲av国产av综合av卡| videos熟女内射| 亚洲av电影在线观看一区二区三区| 伦理电影大哥的女人| 一二三四在线观看免费中文在| 日韩制服骚丝袜av| 国产伦理片在线播放av一区| av不卡在线播放| av免费观看日本| h视频一区二区三区| 一二三四中文在线观看免费高清| 久久天躁狠狠躁夜夜2o2o | 美女脱内裤让男人舔精品视频| 亚洲三区欧美一区| 国产一区亚洲一区在线观看| 19禁男女啪啪无遮挡网站| 丝袜脚勾引网站| 久久久精品国产亚洲av高清涩受| 国产精品久久久人人做人人爽| 亚洲婷婷狠狠爱综合网| 亚洲精品,欧美精品| 午夜影院在线不卡| 亚洲精品av麻豆狂野| 色精品久久人妻99蜜桃| 涩涩av久久男人的天堂| 日韩成人av中文字幕在线观看| 国产女主播在线喷水免费视频网站| 自线自在国产av| 在线观看国产h片| 制服丝袜香蕉在线| 天天躁夜夜躁狠狠躁躁| 欧美精品av麻豆av| 黄频高清免费视频| 久久久久久久国产电影| av天堂久久9| 制服丝袜香蕉在线| 伊人久久大香线蕉亚洲五| 久久久久人妻精品一区果冻| 你懂的网址亚洲精品在线观看| 国产精品久久久久久久久免| 欧美少妇被猛烈插入视频| 亚洲av男天堂| 捣出白浆h1v1| 最近的中文字幕免费完整| 中国三级夫妇交换| 19禁男女啪啪无遮挡网站| 少妇人妻精品综合一区二区| 亚洲成国产人片在线观看| 国产一区二区激情短视频 | 国产片特级美女逼逼视频| 精品一区二区三区四区五区乱码 | 国产熟女欧美一区二区| 飞空精品影院首页| 伦理电影免费视频| 国产成人精品久久久久久| 韩国精品一区二区三区| 久久人人爽av亚洲精品天堂| 国产精品久久久久久人妻精品电影 | 91国产中文字幕| 久久狼人影院| 咕卡用的链子| 99香蕉大伊视频| 亚洲欧美成人精品一区二区|