• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of UAV Target Based on Continuous Radon Transform and Matched Filtering Process for Passive Bistatic Radar

    2024-03-18 09:00:16LuoZuoYuefeiYanJunWangXinSangYanWangDongmingGeLihaoPingZhihaiWangCongsiWang

    Luo Zuo, Yuefei Yan, Jun Wang, Xin Sang, Yan Wang, Dongming Ge,Lihao Ping, Zhihai Wang, Congsi Wang

    Abstract: Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle (UAV) in the passive bistatic radar (PBR), while range migration (RM) and Doppler frequency migration (DFM) may have a major effect due to the target maneuverability.This paper proposed an innovative long-time coherent integration approach,regarded as Continuous Radon-matched filtering process (CRMFP), for low-observable UAV target in passive bistatic radar.It not only mitigates the RM by collaborative research in range and velocity dimensions but also compensates the DFM and ensures the coherent integration through the matched filtering process (MFP).Numerical and real-life data following detailed analysis verify that the proposed method can overcome the Doppler mismatch influence and acquire comparable detection performance.

    Keywords: passive bistatic radar; unmanned aerial vehicle; long-time coherent integration; Radonmatched filtering process

    1 Introduction

    In recent years, the massive emergency of unmanned aerial vehicle (UAV) has posed a serious threat to air route safety and urban security [1].The identification of the UAV target is increasingly necessary for the surveillance field.However, robust and efficient detection of UAV is a more challenging problem due to its typical feature of the low-observable target, i.e., low or ultra-low flight altitude, slow-moving velocity,and micro-size [2].With tremendous advances in the radar system and signal processing, passive bistatic radar (PBR) systems have drawn substantial attention in UAV target detections.As there is no need for the deployment of expensive transmitting hardware, the PBR can operate in covert mode [3, 4].Further, PBR system has other features such as the superior low-altitude coverage capability, and it is harmless to the electromagnetic environment [5].All these features show that PBRs have the natural advantage to detect the low-observable target.

    In general, target detection is committed by calculating of cross-correlation of the surveillance and reference signal in PBR system [6].Integration results are distributed in range Doppler (RD) units and the unit size is defined by the signal bandwidth and the coherent processing interval (CPI).However, the target maneuverability and low radar cross-section(RCS) of low-observable target pose considerable challenges in target detection, which causes the weak radar return and thus seriously reduces the target’s integration energy [7, 8].Increasing the integration time can enhance the target detection ability by means of coherent integration technique, i.e., RD processing [9].However,range migration (RM) and Doppler frequency migration (DFM) effects will occur because of the complex motion characteristics of velocity and acceleration of maneuvering UAV target within one long CPI, which severely limit the integration performance of the conventional RD processing [10, 11].

    There are three popular long-time coherent detection methods for RM and DFM effect elimination.The first method exploits keystone transform (KT) to realize coherent accumulation [12].The second method achieves target energy focusing by dividing continuous time to conduct crosscorrelation and performing two-step Doppler processing (CC-TDP) [13].The premise of these two methods is the construction of intra- and interpulse time dimensions, i.e., the continuous wave(CW) signals which should first be divided into multiple time slots to imitate pulse radar.Nevertheless, when the illuminator of PBR emits a phase modulation signal, the Doppler mismatch effect will result in the performance loss of pulse compression (PC), which limits the target integration energy.The third method utilizes timedomain stretch processing (SPT) for target energy accumulation [14].Although the method provides RM and DFM correction, it has a significant computing overhead when the compensating scope of Doppler frequency is broad.

    In order to solve the above problems, a novel method based on continuous Radon-Matched filtering process (CRMFP) is presented to achieve fast long-time coherent accumulation for maneuvering UAV target.More specifically, the presented method may not only eliminate RM impact via collaborative research in range and velocity dimensions, but also compensate the DFM resulting from the radial acceleration and obtain the coherent integration through the matched filtering process (MFP).The simulated and real-life data are supplied to demonstrate the efficiency of the proposed method, which shows superior performance compared with existed methods.

    2 Signal Model and Problem Formulation

    Assume that the PBR signal uses the technique of orthogonal frequency division multiplexing(OFDM).After the reconstruction operation, the complex envelope of the baseband reference signal may be modeled as follows

    wherefcis the carrier frequency;τris an illumination signal propagation delay from the station to the receiver;x(t) is the complex signal envelope, i.e., the OFDM baseband signal, as

    whereTsdenotes the OFDM signal length;Kis the carrier number;ckis information-bearing constellation symbol; Δfdenotes the subcarrier spacing to ensure orthogonality.

    For the purpose of simplicity, a single moving target echo with initial rangerIatt=0 is considered in the surveillance channel.Ignoring the high-order components and assuming the target moves with uniform acceleration, the instantaneous slant distance between PBR and the target can be written as

    wherevIandaIdenote the radial velocity and acceleration, respectively.Therefore, the baseband surveillance signal complex envelope can be represented as

    wherecis the speed of radio wave in air;ρ=[c-(2vI+aIt)]/cis defined, and denotes the time companding factor (scaling factor).Further,ρcan be rewritten as (c-2vI)/cfor the acceleration andaIis very small in real UAV detection system.

    By (4), it is obvious that the scaling factorρwill cause scale-effect of the signal envelopex(t)(time stretching or shrinking) because of the UAV’s maneuvering feature.The scale-effect of the signal complex envelope will be aggravated as time and velocity increase, causing signal deformation.When the offset caused byρexceeds the range resolution ΔR, i.e., ΔR=c/[2Bcos(β/2)],whereBandβare signal bandwidth and the bistatic angle, respectively, the RM effect will occur in RD processing results.Moreover, the third exponential term in (4) is the Doppler modulation phase induced by the target maneuverability (the target’s radial acceleration),which results in DFM effect and causes target’s energy to be defocused.The coherent integration of target energy in typical RD processing would be severely affected due to the RM and DFM effects.As a result, a suitable long-time coherent integration technique is highly desirable.

    3 Coherent Integration via CRMFP

    The detailed procedures of the proposed approach, CRMFP, are described in this section based on the standard Radon-Fourier transform(RFT) and MFP.Furthermore, we compare the computational complexity of the proposed method with SPT.

    3.1 Definition of RFT

    For the sake of improving radar detection performance, RFT method is proposed with its definition as shown below.Suppose a two-dimensional(2-D) complex functionf(t,rs)∈C is defined in(t,rs) plane and a line equationrs=r+vtis utilized for the search of arbitrary lines in the plane[15].The RFT is represented as

    whereεis a known constant aboutf(t,rs).

    In the range versus time plane (t,rs), RFT can obtain the desired results by traversing for motion parameters.As a result, the RFT is not affected by the RM effect, and the signal to interference plus noise ratio (SNR) may be increased over a longer dwell time.However, the RFT will be invalid because of the target’s maneuvering features (DFM effect) in many actual circumstances.

    3.2 Definition of Matched Filtering Process

    For the maneuvering UAV target, the DFM effect is caused by the radial acceleration of the target.From (4), the phase in the azimuth dimension can be treated as a chirp signal with its definition given below.Suppose a linear frequency modulated (LFM) signal represented as

    whereA,f0andγ0denote the complex amplitude,the centroid Doppler frequency and the chirp constant (chirp rate) of the LFM signal, respectively.

    For estimation of the chirp phase with low calculation, the matched filtering function can be defined as

    whereγis the searching rate.

    The desired chirp rate can be obtained by passing through the matched filter, whenγ=γ0is satisfied, as

    whereF(·) is Fourier transform operator;fdis the center frequency of Doppler-filtering;Tis the CPI.

    By (8), it is noted that the MFP is able to concentrate the LFM signal energy on the same Doppler cell and the estimated function ofγ, i.e.γ0which can be achieved as

    3.3 Description of CRMFP

    In pulse radar field, the operation of RFT is based on the fast-slow time property.On the contrary, the PBR signal is transmitted in the form of CW.Therefore, we have introduced a novel method called CRMFP that creatively combines the fundamental principles of standard RFT and MFP.This innovative approach enables long-time coherent integration of maneuvering UAV targets, providing enhanced detecting and tracking capabilities.

    Without loss of generality, the definition of CRMFP is given as follows.Consider a 2-D complex functionf(t,r)∈C is defined in (t,r) plane and a line equationr(t) =r0+vtrepresenting the motion trail of UAV is implemented for searching lines in the range versus time plane.Note that since the acceleration of UAV target is relatively small, i.e.the RM effect caused by the acceleration less than the range resolution ΔR, its influence on the searching line equation can be ignored.Then the CRMFP is descripted as follows:

    1) Range-Dimension Coherent Processing(RCP)

    RCP is performed by calculating the conjugate dot product between the time-delayed reference signal and surveillance signal and is shown as

    whereτis the target propagation delay.

    From (10), it is noted that the RCP result is a 2-D matrix.When the target moving distance exceeds the range resolutionvIT>ΔR, the range informationτof the target is no longer a fixed value, which will change over time.That is,the range informationτis determined byrIandvI.

    2) Matched Filtering Process

    Since the target propagation delayτis timevarying, the subsequent matched filtering process should be performed along an oblique line defined byr(t) =r0+vt, which can be expressed as

    From (11), it is obvious that for the UAV target moving at a uniform acceleration, when the searching ranger0, velocityvand accelerationγare equal to the realrI,vI, andaIrespectively, the proposed CRMFP method can obtain its peak value.The target energy distributed along multiple RD cells could be accumulated during the long CPI.In the case that the peak value of (10) is greater than the specified threshold, the target motion parameters could be obtained.In addition, the searching scopes ofvandγare defined as [vmin,vmax] and [γmin,γmax], where the searching intervals are Δv=c/(2Tfc) (Tis CPI) and Δγ=c/(2T2fc) respectively.

    4 Performance Analysis

    4.1 Properties of CRMFP

    It is obvious that CRMFP satisfies several important properties based on the above analysis as follows:

    1) Inear Additivity

    Firstly, the CRMFP is linear as

    wherea1anda2are the constant coefficients.The linear additivity indicates that the CRMFP meets the superposition rule, which is an advantage for detecting multiple maneuvering target.Further, (12) can be extended as

    2) Similarity

    Consider thatg(t,r)=h(a3t,r), in whicha3is a nonzero real number, and the CRMFP will satisfy the following rule

    4.2 Computational Complexity

    In this section, the computational complexity of the proposed method is investigated.For simplicity, complex multiplication (CM) is only considered.Without loss of generality, multi-rate conversion is performed on the RD processing result.We assume that the coherent time, sampling frequency, the observation range cells, the observation Doppler frequency cells and the searching acceleration number areT,fs,Mr,MdandMarespectively.Note that the signal sampling length isN, whereN=Tfsand the signal sampling length after multi-rate conversion isNm.For the proposed method, the range processing is firstly applied to reference and surveillance signals,which requiresMr(N+Nm) CMs.Then, the implementation of algorithm CRMFP can be divided into two steps: 1) the matched filtering process based on target motion modelr(t) requiresNmMdMrMaCMs; 2) the coherent integration via FT costs (Nm/2log2Nm)MdMrMaCMs.For comparison,MdNlog2N+MrMd(N+Nm)+MrMdMa(Nm+Nm/2log2Nm) CMs are required for the SPT method.Assume that the digital television terrestrial multimedia broadcasting (DTMB) is exploited as the illuminator, and the relevant system parameters are set as follow:T= 1 s,fs= 8 MHz,Nm= 8 000,Mr= 300,Md= 600,Ma= 50.We introduce theηas the computational complexity ratio between the CRMFP and the SPT method, and therefore the computational complexity ratio is calculated asη≈ 25%, which suggests that the CRMFP is more efficient.

    4.3 Some Remarks

    According to the above analysis, some advantages and differences of CRMFP compared with existing methods are given as follows:

    1) The CRMFP is a linear transform which means it wouldn’t be affected by the cross-term interference based on its definition in (10).Further, CRMFP combines the ideas of RFT and MFP.Thus it not only has the distinct accumulation ability but also works well as a useful tool for non-stationary and time-varying target echo detecting.

    2) Compared with the popular integration algorithm, such as RD processing and KT, the proposed CRMFP method takes into account the influence of acceleration and has a more accurate representation of the maneuvering movement of the UAV.The PBR detection performance is reduced by the DFM effect because of the UAV acceleration.As CRMFP can correct RM and DFM well, it outperforms the RD processing and KT methods over a reasonably long integration time.

    3) The CRMFP realizes the long-time coherent integration via traversing the motion parameters, which can make maximum use of the target energy.Therefore, CRMFP can be viewed as a special Doppler filter bank, which can simultaneously represent and compensate the target’s velocity and acceleration.Compared with CCTDP method, CRMFP doesn’t require the support of intra- and inter-pluse time, so it is a continuous transform.It will not be subject to the Doppler mismatch and can obtain better integration performance.

    5 Results

    To evaluate the long-time coherent integration performance of the CRMFP method in the presence of maneuvering UAV target, numerical and measured data are presented in this section.

    5.1 Numerical Results and Analysis

    In this simulation, the DTMB is considered as the PBR signal, and the simulation parameters are shown in Tab.1.A weak target return with DFM effect is synthesized in the surveillance channel to emulate the maneuvering UAV.The UAV target is at the vicinity of bistatic ranger0= 1.2 km, radial velocityv= 50 m/s and accelerationa= 3 m/s2with SNR = -40 dB.

    The coherent integration results of UAV target via RD processing, KT, CC-TDP, SPT and the proposed CRMFP method are presented in Fig.1.Fig.1(a) gives the integration result of conventional RD processing in which the target energy is discretized into different RD cells dueto RM and DFM influence.The integration results for CRMFP and SPT are shown in Fig.1(b)and Fig.1(c) respectively, which indicate that the target energy is well integrated and forms an obvious peak.However, the computational burden of CRMFP is much lower than SPT.Fig.1(d)and Fig.1 (e) provide the integration result of KT and RFT, respectively, and because of the DFM effect, it cannot fully accumulate the target energy.Moreover, the integration result of CC-TDP is also given in Fig.1 (f).Although the target’s energy is focused, the integration gain is reduced due to the Doppler mismatch in PC.In order to better illustrate the long-term accumulation performance of the above methods, Tab.2 shows the SNR corresponding to the respective algorithms.Observing Tab.2, it can be seen that compared with traditional RD, the signal-to-noise ratio of the target processed by the proposed method is increased by 11.43 dB, which will greatly improve the detection performance of the system.

    Tab.1 Parameters of PBR system

    Fig.1 Coherent integration results of RD processing, CRMFP, SPT, KT, and CC-TDP: (a) RD processing method; (b) CRMFP;(c) SPT; (d) KT; (e) RFT; (f) CC-TDP

    Tab.2 The SNR of different methods

    5.2 Detection Performance Analysis

    In this section, the detection performance of the abovementioned methods with different SNRs is further investigated via Monte Carlo trials.The simulation parameters are consistent with the previous subsection.Subsequently, we add 10 dB of complex Gaussian white noise to the echo and set the constant false alarm ratio (CFAR) asPfa=10-5.The detection probabilities of the different methods in various input SNRs are shown in Fig.2.The input SNR changes with the interval 1 dB from -50 dB to -30 dB.Obviously, the detection ability of the proposed CRMFP method is better than RD processing, KT and CC-TDP methods because it can correct the RM and DFM effect as well as obtain superior performance on signal accumulation.Moreover, it achieves performance comparable to SPT with a lower computing overhead.

    5.3 Measured Results and Analysis

    The practical feasibility of the presented method was validated in this part using field experimental data gathered from a DTMB-based PBR system.The experiment was conducted on August 10, 2020, near an open space at Xidian University.Fig.3 shows the PBR system and experimental situation.The PBR system utilizes the Xi’an television tower as the illuminator.The reference and surveillance channels are formed by an eight-element line array and the system operating parameters are shown in Tab.1.This experiment is to assess the capability in detecting the maneuvering UAV target by the proposed CRMFP method.The UAV target is specifical DJI INSPIRE 1 with 20 m/s and the flight altitude less than 100 m.

    Fig.4 shows the measured data results of the typical RD processing method.The integration results in the range and Doppler dimension are shown in Fig.4(a) and Fig.4(b), respectively.It is clear that the RM and DFM effect occurs and the target energy disperses in multiple RD cells.The integration results of RFT are given in Fig.5, since the presence of DFM effect cannot fully accumulate the target energy.Fig.6 gives the experimental results of the proposed CRMFP method.In particular, the target accumulation results in range and Doppler domain are given in Fig.6(a) and Fig.6(b) respectively,in which the target formed a noticeable peak in one RD cell, which means the RM and DFM effects have been corrected.Further, the target’s SNR increased by about 4.6 dB by means of the proposed method, which will significantly enhance the target detection probability.

    Fig.4 Coherent integration via RD processing: (a) range dimension; (b) Doppler dimension

    Fig.5 Coherent integration via RFT: (a) range dimension;(b) Doppler dimension

    6 Conclusion

    This letter presented a novel long-time coherent integration method, i.e., CRMFP, for low-observable UAV target in PBR system.Both the RM and DFM effects can be eliminated and the PBR detection capability can thus be enhanced by performing the CRMFP coherent method.More specifically, CRMFP realizes the signal extraction on the integration results of range dimension with a 2-D traversing along the directions of range and radial velocity.After that, MFP is performed to compensate the DFM and achieve coherent accumulation of the UAV target echo.Finally, the effectiveness of the proposed method is verified by simulated and real-life data.In general, the CRMFP is superior to the RD processing, KT, and CC-TDP methods in detection ability and requires a lower computation cost than SPT.

    国产av一区二区精品久久| 大香蕉久久网| 999久久久国产精品视频| 午夜日韩欧美国产| 国产高清国产精品国产三级| 国产精品 欧美亚洲| 丰满人妻熟妇乱又伦精品不卡| 色综合欧美亚洲国产小说| 成人国语在线视频| 国产一区二区在线观看av| 天天躁夜夜躁狠狠久久av| 久久天躁狠狠躁夜夜2o2o | 黑人猛操日本美女一级片| 久久久精品94久久精品| 一边摸一边做爽爽视频免费| 狂野欧美激情性xxxx| 十八禁网站网址无遮挡| 另类精品久久| 天天躁日日躁夜夜躁夜夜| 多毛熟女@视频| 亚洲精品日韩在线中文字幕| 91麻豆精品激情在线观看国产 | 97在线人人人人妻| 无限看片的www在线观看| 一级毛片 在线播放| 国产国语露脸激情在线看| 在线观看免费午夜福利视频| 国产精品偷伦视频观看了| 人成视频在线观看免费观看| 麻豆av在线久日| 亚洲av成人精品一二三区| 欧美精品一区二区免费开放| 国产免费现黄频在线看| 国产一区二区激情短视频 | 丝袜喷水一区| 日韩欧美一区视频在线观看| 国产精品二区激情视频| 亚洲成av片中文字幕在线观看| 亚洲精品美女久久av网站| 免费在线观看完整版高清| 宅男免费午夜| 深夜精品福利| 性色av乱码一区二区三区2| 人人妻人人爽人人添夜夜欢视频| 亚洲精品在线美女| 欧美 日韩 精品 国产| 亚洲专区国产一区二区| 黄色视频在线播放观看不卡| 好男人视频免费观看在线| 一级a爱视频在线免费观看| 曰老女人黄片| 国产精品熟女久久久久浪| 99国产精品99久久久久| 国产1区2区3区精品| 日本av手机在线免费观看| 最近手机中文字幕大全| 国产精品久久久久成人av| 国产1区2区3区精品| 国产高清国产精品国产三级| 国产精品秋霞免费鲁丝片| 男女下面插进去视频免费观看| 国产高清不卡午夜福利| 日韩熟女老妇一区二区性免费视频| 国产av一区二区精品久久| 精品人妻在线不人妻| 秋霞在线观看毛片| 曰老女人黄片| 亚洲欧美精品综合一区二区三区| 久久精品久久久久久久性| 亚洲精品在线美女| 老司机亚洲免费影院| 一级毛片我不卡| 美女中出高潮动态图| 国产精品国产三级国产专区5o| 9191精品国产免费久久| 少妇猛男粗大的猛烈进出视频| 免费av中文字幕在线| 制服人妻中文乱码| 成人18禁高潮啪啪吃奶动态图| xxxhd国产人妻xxx| 啦啦啦在线免费观看视频4| 人人澡人人妻人| 99国产精品99久久久久| 五月天丁香电影| 老司机在亚洲福利影院| 一边摸一边做爽爽视频免费| 精品亚洲成国产av| h视频一区二区三区| 黄片小视频在线播放| 51午夜福利影视在线观看| 中文字幕人妻熟女乱码| 一级片免费观看大全| 日韩一本色道免费dvd| 免费高清在线观看视频在线观看| 国产福利在线免费观看视频| 国产精品偷伦视频观看了| 一级毛片 在线播放| 老司机午夜十八禁免费视频| 欧美精品av麻豆av| 中文字幕av电影在线播放| 精品卡一卡二卡四卡免费| 久久久久久久久免费视频了| 99久久综合免费| 亚洲欧美中文字幕日韩二区| 纯流量卡能插随身wifi吗| 黑人巨大精品欧美一区二区蜜桃| av在线app专区| 国产真人三级小视频在线观看| 亚洲av在线观看美女高潮| 久久亚洲精品不卡| 19禁男女啪啪无遮挡网站| 亚洲av日韩在线播放| 一区二区三区精品91| 少妇人妻 视频| 午夜久久久在线观看| 丰满迷人的少妇在线观看| 啦啦啦在线免费观看视频4| 黄片播放在线免费| 久久99热这里只频精品6学生| 国产99久久九九免费精品| 美国免费a级毛片| 久久国产精品影院| 97精品久久久久久久久久精品| 无限看片的www在线观看| 成年人午夜在线观看视频| 一级黄片播放器| 纯流量卡能插随身wifi吗| 一区二区日韩欧美中文字幕| 亚洲av美国av| 久久人妻熟女aⅴ| 99国产精品一区二区蜜桃av | 久久中文字幕一级| 十八禁人妻一区二区| 少妇人妻 视频| 夫妻午夜视频| 黑人猛操日本美女一级片| 日韩中文字幕视频在线看片| 99久久精品国产亚洲精品| 青草久久国产| 国产精品秋霞免费鲁丝片| 亚洲国产av影院在线观看| 成人三级做爰电影| 黄色怎么调成土黄色| 人妻人人澡人人爽人人| 国产片特级美女逼逼视频| 久久精品亚洲av国产电影网| 婷婷色综合大香蕉| 日韩伦理黄色片| 中文字幕色久视频| 久久国产精品人妻蜜桃| 欧美性长视频在线观看| 狠狠精品人妻久久久久久综合| 久久亚洲国产成人精品v| 欧美在线一区亚洲| 少妇的丰满在线观看| 精品视频人人做人人爽| 欧美日韩精品网址| 国产精品久久久av美女十八| 免费观看人在逋| 亚洲国产av影院在线观看| 在线观看免费高清a一片| 下体分泌物呈黄色| 精品少妇一区二区三区视频日本电影| 欧美 日韩 精品 国产| 波多野结衣av一区二区av| 午夜福利,免费看| 捣出白浆h1v1| 国产免费现黄频在线看| 日韩av不卡免费在线播放| 久9热在线精品视频| 亚洲欧洲国产日韩| 欧美日本中文国产一区发布| 久久女婷五月综合色啪小说| 超色免费av| 十分钟在线观看高清视频www| 午夜91福利影院| 美女视频免费永久观看网站| 精品国产一区二区三区四区第35| 欧美黑人欧美精品刺激| 又粗又硬又长又爽又黄的视频| 激情视频va一区二区三区| 免费高清在线观看日韩| 青青草视频在线视频观看| 亚洲少妇的诱惑av| 亚洲美女黄色视频免费看| 精品国产国语对白av| 午夜福利一区二区在线看| 日本一区二区免费在线视频| 一二三四在线观看免费中文在| 久久天堂一区二区三区四区| 亚洲成国产人片在线观看| 一级黄片播放器| 老司机影院毛片| 亚洲欧洲日产国产| 亚洲av成人不卡在线观看播放网 | 青草久久国产| 下体分泌物呈黄色| 久久中文字幕一级| 国产av国产精品国产| 国产精品麻豆人妻色哟哟久久| 久久免费观看电影| 我要看黄色一级片免费的| 80岁老熟妇乱子伦牲交| 国产成人欧美在线观看 | 一级毛片 在线播放| 久久久久国产精品人妻一区二区| 男女之事视频高清在线观看 | 久久久精品免费免费高清| 日本一区二区免费在线视频| 韩国高清视频一区二区三区| 精品福利永久在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲成人国产一区在线观看 | 国产av一区二区精品久久| 精品国产一区二区久久| 国产成人欧美| 丝袜人妻中文字幕| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 国产视频首页在线观看| 精品亚洲成国产av| 亚洲av成人精品一二三区| 侵犯人妻中文字幕一二三四区| 久久国产精品大桥未久av| 亚洲精品国产色婷婷电影| 每晚都被弄得嗷嗷叫到高潮| 色精品久久人妻99蜜桃| 国产免费一区二区三区四区乱码| 在线精品无人区一区二区三| 欧美精品av麻豆av| 午夜福利乱码中文字幕| 狂野欧美激情性xxxx| 国产精品久久久久久精品古装| 欧美激情高清一区二区三区| 91精品伊人久久大香线蕉| 国产午夜精品一二区理论片| 大码成人一级视频| 男女午夜视频在线观看| 亚洲人成电影免费在线| 超碰97精品在线观看| 日本a在线网址| 日日摸夜夜添夜夜爱| 日韩欧美一区视频在线观看| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 高清黄色对白视频在线免费看| 啦啦啦在线免费观看视频4| 成人午夜精彩视频在线观看| 久久久精品国产亚洲av高清涩受| 免费在线观看影片大全网站 | 天天躁日日躁夜夜躁夜夜| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 国产亚洲av片在线观看秒播厂| 青草久久国产| 麻豆乱淫一区二区| 大话2 男鬼变身卡| 丁香六月欧美| 国产伦理片在线播放av一区| 精品一区在线观看国产| 国产淫语在线视频| 少妇的丰满在线观看| 午夜精品国产一区二区电影| 青草久久国产| 亚洲中文字幕日韩| 亚洲欧美一区二区三区黑人| 人妻人人澡人人爽人人| 久久国产精品大桥未久av| 亚洲欧美日韩高清在线视频 | 日本91视频免费播放| 99精品久久久久人妻精品| 又紧又爽又黄一区二区| cao死你这个sao货| 国产精品久久久久成人av| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 久久毛片免费看一区二区三区| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 一级片免费观看大全| 日韩免费高清中文字幕av| 大香蕉久久网| 国精品久久久久久国模美| 国产91精品成人一区二区三区 | 亚洲国产av影院在线观看| 亚洲成人免费电影在线观看 | 黄色 视频免费看| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 国产免费现黄频在线看| 国产精品一区二区免费欧美 | 久久久亚洲精品成人影院| 亚洲精品国产av成人精品| 女性生殖器流出的白浆| 国产99久久九九免费精品| 91麻豆精品激情在线观看国产 | 亚洲午夜精品一区,二区,三区| 国产欧美日韩精品亚洲av| 欧美国产精品一级二级三级| 黄网站色视频无遮挡免费观看| 国产欧美日韩一区二区三 | 亚洲国产精品国产精品| 国产欧美日韩精品亚洲av| 亚洲人成电影观看| 美女扒开内裤让男人捅视频| 日本av手机在线免费观看| 亚洲欧美精品综合一区二区三区| 亚洲国产看品久久| 青草久久国产| 看免费av毛片| 亚洲精品成人av观看孕妇| av有码第一页| 又大又黄又爽视频免费| 在线观看国产h片| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品一二三| 亚洲av片天天在线观看| 无遮挡黄片免费观看| 伊人亚洲综合成人网| 青春草亚洲视频在线观看| 婷婷成人精品国产| 日韩熟女老妇一区二区性免费视频| 国产成人啪精品午夜网站| av在线app专区| 午夜老司机福利片| 成年av动漫网址| 国产熟女午夜一区二区三区| 久久精品久久久久久久性| 伊人亚洲综合成人网| www日本在线高清视频| 大陆偷拍与自拍| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| av天堂久久9| h视频一区二区三区| 啦啦啦在线观看免费高清www| 波多野结衣av一区二区av| 午夜老司机福利片| 午夜免费成人在线视频| 最新在线观看一区二区三区 | 伊人亚洲综合成人网| 我要看黄色一级片免费的| 亚洲av电影在线进入| 久久 成人 亚洲| 九草在线视频观看| 91精品国产国语对白视频| 亚洲久久久国产精品| 久久久久精品国产欧美久久久 | 国产精品二区激情视频| 久久99热这里只频精品6学生| 亚洲,欧美,日韩| 人人澡人人妻人| 国产成人一区二区在线| 黄色a级毛片大全视频| 尾随美女入室| xxxhd国产人妻xxx| 国产精品.久久久| 久久国产亚洲av麻豆专区| 久久鲁丝午夜福利片| 黄色怎么调成土黄色| 99re6热这里在线精品视频| 久久午夜综合久久蜜桃| www.999成人在线观看| 欧美大码av| 国产精品国产av在线观看| www.熟女人妻精品国产| 熟女av电影| 成人18禁高潮啪啪吃奶动态图| 国产91精品成人一区二区三区 | 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| 激情五月婷婷亚洲| 尾随美女入室| av国产精品久久久久影院| 成年人免费黄色播放视频| 免费在线观看日本一区| 女人久久www免费人成看片| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 精品高清国产在线一区| 90打野战视频偷拍视频| 咕卡用的链子| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| 欧美精品人与动牲交sv欧美| 秋霞在线观看毛片| 成人黄色视频免费在线看| 亚洲国产欧美日韩在线播放| 精品国产一区二区久久| 欧美av亚洲av综合av国产av| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 脱女人内裤的视频| 国产成人精品在线电影| 亚洲精品国产av成人精品| 免费女性裸体啪啪无遮挡网站| 日本欧美国产在线视频| 男的添女的下面高潮视频| 亚洲欧美中文字幕日韩二区| 亚洲av欧美aⅴ国产| 日韩 亚洲 欧美在线| 精品福利永久在线观看| 亚洲精品第二区| 汤姆久久久久久久影院中文字幕| 精品国产超薄肉色丝袜足j| 一区二区三区精品91| 在线观看www视频免费| 亚洲五月婷婷丁香| 女人被躁到高潮嗷嗷叫费观| 久久久精品国产亚洲av高清涩受| 丁香六月天网| 一级片'在线观看视频| 午夜福利乱码中文字幕| 9色porny在线观看| 亚洲中文av在线| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 亚洲欧美中文字幕日韩二区| 91国产中文字幕| 欧美亚洲日本最大视频资源| 视频区图区小说| 久久精品国产a三级三级三级| 日本wwww免费看| 亚洲成人免费av在线播放| 精品欧美一区二区三区在线| 两个人免费观看高清视频| 久久国产精品人妻蜜桃| 久久鲁丝午夜福利片| 久久国产亚洲av麻豆专区| 99国产综合亚洲精品| 国产精品熟女久久久久浪| 伊人亚洲综合成人网| 亚洲五月色婷婷综合| 亚洲熟女精品中文字幕| 久久人人97超碰香蕉20202| 亚洲伊人久久精品综合| 丁香六月天网| 男女高潮啪啪啪动态图| 亚洲,欧美,日韩| 午夜福利视频精品| 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区国产| 久9热在线精品视频| 国产在线一区二区三区精| 女人精品久久久久毛片| 国产在线观看jvid| 亚洲精品国产一区二区精华液| 1024香蕉在线观看| 国产日韩一区二区三区精品不卡| 国产三级黄色录像| 校园人妻丝袜中文字幕| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 十八禁人妻一区二区| 亚洲国产成人一精品久久久| 少妇的丰满在线观看| 久热这里只有精品99| 青青草视频在线视频观看| 成人免费观看视频高清| 老司机深夜福利视频在线观看 | 国产成人啪精品午夜网站| 国产伦理片在线播放av一区| 色播在线永久视频| 天天操日日干夜夜撸| 亚洲中文字幕日韩| 精品久久久久久电影网| 成年动漫av网址| 久久影院123| 国产一区二区激情短视频 | 侵犯人妻中文字幕一二三四区| 亚洲欧美精品自产自拍| 国产成人a∨麻豆精品| 免费看不卡的av| 国产成人91sexporn| 一级黄片播放器| 国产福利在线免费观看视频| 日本欧美国产在线视频| 欧美日韩综合久久久久久| av电影中文网址| 美女脱内裤让男人舔精品视频| avwww免费| 日本一区二区免费在线视频| 精品国产超薄肉色丝袜足j| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 天天操日日干夜夜撸| 久久久久网色| 国产成人精品久久久久久| 日韩免费高清中文字幕av| 老司机影院毛片| 午夜日韩欧美国产| videosex国产| 午夜福利视频精品| 女性生殖器流出的白浆| 国产1区2区3区精品| 在线天堂中文资源库| 精品少妇久久久久久888优播| 亚洲精品一二三| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三 | bbb黄色大片| 亚洲国产欧美日韩在线播放| 亚洲欧洲国产日韩| 日韩精品免费视频一区二区三区| av在线播放精品| 久久精品国产亚洲av高清一级| 精品国产超薄肉色丝袜足j| 99久久精品国产亚洲精品| 赤兔流量卡办理| 99国产精品99久久久久| 母亲3免费完整高清在线观看| 亚洲国产成人一精品久久久| 久久久国产一区二区| 亚洲久久久国产精品| 国产在视频线精品| 汤姆久久久久久久影院中文字幕| 人人妻,人人澡人人爽秒播 | 天天影视国产精品| 两个人看的免费小视频| 欧美日韩亚洲综合一区二区三区_| 亚洲专区国产一区二区| 亚洲国产av新网站| 国产欧美日韩一区二区三 | 日韩 亚洲 欧美在线| 成人手机av| 国产欧美日韩一区二区三区在线| 黄色片一级片一级黄色片| 久久精品久久久久久久性| 男人添女人高潮全过程视频| 亚洲久久久国产精品| 国产成人免费无遮挡视频| 天天添夜夜摸| 91九色精品人成在线观看| av欧美777| 在线观看国产h片| 精品国产一区二区三区四区第35| 久久久精品94久久精品| 99国产精品免费福利视频| 美女主播在线视频| 亚洲图色成人| 亚洲综合色网址| 久久毛片免费看一区二区三区| 国产精品一区二区在线不卡| 欧美人与善性xxx| 国产99久久九九免费精品| 欧美激情极品国产一区二区三区| 久久久久久久久久久久大奶| 一级黄色大片毛片| 欧美人与性动交α欧美精品济南到| 精品亚洲乱码少妇综合久久| 熟女少妇亚洲综合色aaa.| 欧美激情 高清一区二区三区| 啦啦啦中文免费视频观看日本| 成年人免费黄色播放视频| 丝袜美足系列| 国产免费现黄频在线看| 国产精品一区二区免费欧美 | 久热这里只有精品99| 欧美另类一区| 一区福利在线观看| 黑人猛操日本美女一级片| 91麻豆精品激情在线观看国产 | 亚洲国产精品999| 人人澡人人妻人| 成人免费观看视频高清| 丰满少妇做爰视频| 香蕉丝袜av| 九色亚洲精品在线播放| 这个男人来自地球电影免费观看| 亚洲精品国产区一区二| 午夜老司机福利片| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品三级大全| 亚洲,欧美精品.| 日韩av在线免费看完整版不卡| 韩国高清视频一区二区三区| 精品欧美一区二区三区在线| 国产精品九九99| 国产精品熟女久久久久浪| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 飞空精品影院首页| 在线av久久热| 免费少妇av软件| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲| 欧美少妇被猛烈插入视频| 黄色一级大片看看| 在现免费观看毛片| 一区二区三区精品91| 欧美成人精品欧美一级黄| 两人在一起打扑克的视频| 两个人免费观看高清视频| 日日夜夜操网爽| 99国产精品一区二区蜜桃av | tube8黄色片| 成人18禁高潮啪啪吃奶动态图| 亚洲成色77777| 丝袜脚勾引网站| 国产色视频综合| 亚洲伊人色综图| 国产视频首页在线观看| 视频区欧美日本亚洲| 精品福利观看| 18禁黄网站禁片午夜丰满| 精品一品国产午夜福利视频| 欧美另类一区| 性高湖久久久久久久久免费观看| 2021少妇久久久久久久久久久| 十八禁人妻一区二区| 亚洲av成人不卡在线观看播放网 | 夫妻午夜视频| 女人久久www免费人成看片|