• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of UAV Target Based on Continuous Radon Transform and Matched Filtering Process for Passive Bistatic Radar

    2024-03-18 09:00:16LuoZuoYuefeiYanJunWangXinSangYanWangDongmingGeLihaoPingZhihaiWangCongsiWang

    Luo Zuo, Yuefei Yan, Jun Wang, Xin Sang, Yan Wang, Dongming Ge,Lihao Ping, Zhihai Wang, Congsi Wang

    Abstract: Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle (UAV) in the passive bistatic radar (PBR), while range migration (RM) and Doppler frequency migration (DFM) may have a major effect due to the target maneuverability.This paper proposed an innovative long-time coherent integration approach,regarded as Continuous Radon-matched filtering process (CRMFP), for low-observable UAV target in passive bistatic radar.It not only mitigates the RM by collaborative research in range and velocity dimensions but also compensates the DFM and ensures the coherent integration through the matched filtering process (MFP).Numerical and real-life data following detailed analysis verify that the proposed method can overcome the Doppler mismatch influence and acquire comparable detection performance.

    Keywords: passive bistatic radar; unmanned aerial vehicle; long-time coherent integration; Radonmatched filtering process

    1 Introduction

    In recent years, the massive emergency of unmanned aerial vehicle (UAV) has posed a serious threat to air route safety and urban security [1].The identification of the UAV target is increasingly necessary for the surveillance field.However, robust and efficient detection of UAV is a more challenging problem due to its typical feature of the low-observable target, i.e., low or ultra-low flight altitude, slow-moving velocity,and micro-size [2].With tremendous advances in the radar system and signal processing, passive bistatic radar (PBR) systems have drawn substantial attention in UAV target detections.As there is no need for the deployment of expensive transmitting hardware, the PBR can operate in covert mode [3, 4].Further, PBR system has other features such as the superior low-altitude coverage capability, and it is harmless to the electromagnetic environment [5].All these features show that PBRs have the natural advantage to detect the low-observable target.

    In general, target detection is committed by calculating of cross-correlation of the surveillance and reference signal in PBR system [6].Integration results are distributed in range Doppler (RD) units and the unit size is defined by the signal bandwidth and the coherent processing interval (CPI).However, the target maneuverability and low radar cross-section(RCS) of low-observable target pose considerable challenges in target detection, which causes the weak radar return and thus seriously reduces the target’s integration energy [7, 8].Increasing the integration time can enhance the target detection ability by means of coherent integration technique, i.e., RD processing [9].However,range migration (RM) and Doppler frequency migration (DFM) effects will occur because of the complex motion characteristics of velocity and acceleration of maneuvering UAV target within one long CPI, which severely limit the integration performance of the conventional RD processing [10, 11].

    There are three popular long-time coherent detection methods for RM and DFM effect elimination.The first method exploits keystone transform (KT) to realize coherent accumulation [12].The second method achieves target energy focusing by dividing continuous time to conduct crosscorrelation and performing two-step Doppler processing (CC-TDP) [13].The premise of these two methods is the construction of intra- and interpulse time dimensions, i.e., the continuous wave(CW) signals which should first be divided into multiple time slots to imitate pulse radar.Nevertheless, when the illuminator of PBR emits a phase modulation signal, the Doppler mismatch effect will result in the performance loss of pulse compression (PC), which limits the target integration energy.The third method utilizes timedomain stretch processing (SPT) for target energy accumulation [14].Although the method provides RM and DFM correction, it has a significant computing overhead when the compensating scope of Doppler frequency is broad.

    In order to solve the above problems, a novel method based on continuous Radon-Matched filtering process (CRMFP) is presented to achieve fast long-time coherent accumulation for maneuvering UAV target.More specifically, the presented method may not only eliminate RM impact via collaborative research in range and velocity dimensions, but also compensate the DFM resulting from the radial acceleration and obtain the coherent integration through the matched filtering process (MFP).The simulated and real-life data are supplied to demonstrate the efficiency of the proposed method, which shows superior performance compared with existed methods.

    2 Signal Model and Problem Formulation

    Assume that the PBR signal uses the technique of orthogonal frequency division multiplexing(OFDM).After the reconstruction operation, the complex envelope of the baseband reference signal may be modeled as follows

    wherefcis the carrier frequency;τris an illumination signal propagation delay from the station to the receiver;x(t) is the complex signal envelope, i.e., the OFDM baseband signal, as

    whereTsdenotes the OFDM signal length;Kis the carrier number;ckis information-bearing constellation symbol; Δfdenotes the subcarrier spacing to ensure orthogonality.

    For the purpose of simplicity, a single moving target echo with initial rangerIatt=0 is considered in the surveillance channel.Ignoring the high-order components and assuming the target moves with uniform acceleration, the instantaneous slant distance between PBR and the target can be written as

    wherevIandaIdenote the radial velocity and acceleration, respectively.Therefore, the baseband surveillance signal complex envelope can be represented as

    wherecis the speed of radio wave in air;ρ=[c-(2vI+aIt)]/cis defined, and denotes the time companding factor (scaling factor).Further,ρcan be rewritten as (c-2vI)/cfor the acceleration andaIis very small in real UAV detection system.

    By (4), it is obvious that the scaling factorρwill cause scale-effect of the signal envelopex(t)(time stretching or shrinking) because of the UAV’s maneuvering feature.The scale-effect of the signal complex envelope will be aggravated as time and velocity increase, causing signal deformation.When the offset caused byρexceeds the range resolution ΔR, i.e., ΔR=c/[2Bcos(β/2)],whereBandβare signal bandwidth and the bistatic angle, respectively, the RM effect will occur in RD processing results.Moreover, the third exponential term in (4) is the Doppler modulation phase induced by the target maneuverability (the target’s radial acceleration),which results in DFM effect and causes target’s energy to be defocused.The coherent integration of target energy in typical RD processing would be severely affected due to the RM and DFM effects.As a result, a suitable long-time coherent integration technique is highly desirable.

    3 Coherent Integration via CRMFP

    The detailed procedures of the proposed approach, CRMFP, are described in this section based on the standard Radon-Fourier transform(RFT) and MFP.Furthermore, we compare the computational complexity of the proposed method with SPT.

    3.1 Definition of RFT

    For the sake of improving radar detection performance, RFT method is proposed with its definition as shown below.Suppose a two-dimensional(2-D) complex functionf(t,rs)∈C is defined in(t,rs) plane and a line equationrs=r+vtis utilized for the search of arbitrary lines in the plane[15].The RFT is represented as

    whereεis a known constant aboutf(t,rs).

    In the range versus time plane (t,rs), RFT can obtain the desired results by traversing for motion parameters.As a result, the RFT is not affected by the RM effect, and the signal to interference plus noise ratio (SNR) may be increased over a longer dwell time.However, the RFT will be invalid because of the target’s maneuvering features (DFM effect) in many actual circumstances.

    3.2 Definition of Matched Filtering Process

    For the maneuvering UAV target, the DFM effect is caused by the radial acceleration of the target.From (4), the phase in the azimuth dimension can be treated as a chirp signal with its definition given below.Suppose a linear frequency modulated (LFM) signal represented as

    whereA,f0andγ0denote the complex amplitude,the centroid Doppler frequency and the chirp constant (chirp rate) of the LFM signal, respectively.

    For estimation of the chirp phase with low calculation, the matched filtering function can be defined as

    whereγis the searching rate.

    The desired chirp rate can be obtained by passing through the matched filter, whenγ=γ0is satisfied, as

    whereF(·) is Fourier transform operator;fdis the center frequency of Doppler-filtering;Tis the CPI.

    By (8), it is noted that the MFP is able to concentrate the LFM signal energy on the same Doppler cell and the estimated function ofγ, i.e.γ0which can be achieved as

    3.3 Description of CRMFP

    In pulse radar field, the operation of RFT is based on the fast-slow time property.On the contrary, the PBR signal is transmitted in the form of CW.Therefore, we have introduced a novel method called CRMFP that creatively combines the fundamental principles of standard RFT and MFP.This innovative approach enables long-time coherent integration of maneuvering UAV targets, providing enhanced detecting and tracking capabilities.

    Without loss of generality, the definition of CRMFP is given as follows.Consider a 2-D complex functionf(t,r)∈C is defined in (t,r) plane and a line equationr(t) =r0+vtrepresenting the motion trail of UAV is implemented for searching lines in the range versus time plane.Note that since the acceleration of UAV target is relatively small, i.e.the RM effect caused by the acceleration less than the range resolution ΔR, its influence on the searching line equation can be ignored.Then the CRMFP is descripted as follows:

    1) Range-Dimension Coherent Processing(RCP)

    RCP is performed by calculating the conjugate dot product between the time-delayed reference signal and surveillance signal and is shown as

    whereτis the target propagation delay.

    From (10), it is noted that the RCP result is a 2-D matrix.When the target moving distance exceeds the range resolutionvIT>ΔR, the range informationτof the target is no longer a fixed value, which will change over time.That is,the range informationτis determined byrIandvI.

    2) Matched Filtering Process

    Since the target propagation delayτis timevarying, the subsequent matched filtering process should be performed along an oblique line defined byr(t) =r0+vt, which can be expressed as

    From (11), it is obvious that for the UAV target moving at a uniform acceleration, when the searching ranger0, velocityvand accelerationγare equal to the realrI,vI, andaIrespectively, the proposed CRMFP method can obtain its peak value.The target energy distributed along multiple RD cells could be accumulated during the long CPI.In the case that the peak value of (10) is greater than the specified threshold, the target motion parameters could be obtained.In addition, the searching scopes ofvandγare defined as [vmin,vmax] and [γmin,γmax], where the searching intervals are Δv=c/(2Tfc) (Tis CPI) and Δγ=c/(2T2fc) respectively.

    4 Performance Analysis

    4.1 Properties of CRMFP

    It is obvious that CRMFP satisfies several important properties based on the above analysis as follows:

    1) Inear Additivity

    Firstly, the CRMFP is linear as

    wherea1anda2are the constant coefficients.The linear additivity indicates that the CRMFP meets the superposition rule, which is an advantage for detecting multiple maneuvering target.Further, (12) can be extended as

    2) Similarity

    Consider thatg(t,r)=h(a3t,r), in whicha3is a nonzero real number, and the CRMFP will satisfy the following rule

    4.2 Computational Complexity

    In this section, the computational complexity of the proposed method is investigated.For simplicity, complex multiplication (CM) is only considered.Without loss of generality, multi-rate conversion is performed on the RD processing result.We assume that the coherent time, sampling frequency, the observation range cells, the observation Doppler frequency cells and the searching acceleration number areT,fs,Mr,MdandMarespectively.Note that the signal sampling length isN, whereN=Tfsand the signal sampling length after multi-rate conversion isNm.For the proposed method, the range processing is firstly applied to reference and surveillance signals,which requiresMr(N+Nm) CMs.Then, the implementation of algorithm CRMFP can be divided into two steps: 1) the matched filtering process based on target motion modelr(t) requiresNmMdMrMaCMs; 2) the coherent integration via FT costs (Nm/2log2Nm)MdMrMaCMs.For comparison,MdNlog2N+MrMd(N+Nm)+MrMdMa(Nm+Nm/2log2Nm) CMs are required for the SPT method.Assume that the digital television terrestrial multimedia broadcasting (DTMB) is exploited as the illuminator, and the relevant system parameters are set as follow:T= 1 s,fs= 8 MHz,Nm= 8 000,Mr= 300,Md= 600,Ma= 50.We introduce theηas the computational complexity ratio between the CRMFP and the SPT method, and therefore the computational complexity ratio is calculated asη≈ 25%, which suggests that the CRMFP is more efficient.

    4.3 Some Remarks

    According to the above analysis, some advantages and differences of CRMFP compared with existing methods are given as follows:

    1) The CRMFP is a linear transform which means it wouldn’t be affected by the cross-term interference based on its definition in (10).Further, CRMFP combines the ideas of RFT and MFP.Thus it not only has the distinct accumulation ability but also works well as a useful tool for non-stationary and time-varying target echo detecting.

    2) Compared with the popular integration algorithm, such as RD processing and KT, the proposed CRMFP method takes into account the influence of acceleration and has a more accurate representation of the maneuvering movement of the UAV.The PBR detection performance is reduced by the DFM effect because of the UAV acceleration.As CRMFP can correct RM and DFM well, it outperforms the RD processing and KT methods over a reasonably long integration time.

    3) The CRMFP realizes the long-time coherent integration via traversing the motion parameters, which can make maximum use of the target energy.Therefore, CRMFP can be viewed as a special Doppler filter bank, which can simultaneously represent and compensate the target’s velocity and acceleration.Compared with CCTDP method, CRMFP doesn’t require the support of intra- and inter-pluse time, so it is a continuous transform.It will not be subject to the Doppler mismatch and can obtain better integration performance.

    5 Results

    To evaluate the long-time coherent integration performance of the CRMFP method in the presence of maneuvering UAV target, numerical and measured data are presented in this section.

    5.1 Numerical Results and Analysis

    In this simulation, the DTMB is considered as the PBR signal, and the simulation parameters are shown in Tab.1.A weak target return with DFM effect is synthesized in the surveillance channel to emulate the maneuvering UAV.The UAV target is at the vicinity of bistatic ranger0= 1.2 km, radial velocityv= 50 m/s and accelerationa= 3 m/s2with SNR = -40 dB.

    The coherent integration results of UAV target via RD processing, KT, CC-TDP, SPT and the proposed CRMFP method are presented in Fig.1.Fig.1(a) gives the integration result of conventional RD processing in which the target energy is discretized into different RD cells dueto RM and DFM influence.The integration results for CRMFP and SPT are shown in Fig.1(b)and Fig.1(c) respectively, which indicate that the target energy is well integrated and forms an obvious peak.However, the computational burden of CRMFP is much lower than SPT.Fig.1(d)and Fig.1 (e) provide the integration result of KT and RFT, respectively, and because of the DFM effect, it cannot fully accumulate the target energy.Moreover, the integration result of CC-TDP is also given in Fig.1 (f).Although the target’s energy is focused, the integration gain is reduced due to the Doppler mismatch in PC.In order to better illustrate the long-term accumulation performance of the above methods, Tab.2 shows the SNR corresponding to the respective algorithms.Observing Tab.2, it can be seen that compared with traditional RD, the signal-to-noise ratio of the target processed by the proposed method is increased by 11.43 dB, which will greatly improve the detection performance of the system.

    Tab.1 Parameters of PBR system

    Fig.1 Coherent integration results of RD processing, CRMFP, SPT, KT, and CC-TDP: (a) RD processing method; (b) CRMFP;(c) SPT; (d) KT; (e) RFT; (f) CC-TDP

    Tab.2 The SNR of different methods

    5.2 Detection Performance Analysis

    In this section, the detection performance of the abovementioned methods with different SNRs is further investigated via Monte Carlo trials.The simulation parameters are consistent with the previous subsection.Subsequently, we add 10 dB of complex Gaussian white noise to the echo and set the constant false alarm ratio (CFAR) asPfa=10-5.The detection probabilities of the different methods in various input SNRs are shown in Fig.2.The input SNR changes with the interval 1 dB from -50 dB to -30 dB.Obviously, the detection ability of the proposed CRMFP method is better than RD processing, KT and CC-TDP methods because it can correct the RM and DFM effect as well as obtain superior performance on signal accumulation.Moreover, it achieves performance comparable to SPT with a lower computing overhead.

    5.3 Measured Results and Analysis

    The practical feasibility of the presented method was validated in this part using field experimental data gathered from a DTMB-based PBR system.The experiment was conducted on August 10, 2020, near an open space at Xidian University.Fig.3 shows the PBR system and experimental situation.The PBR system utilizes the Xi’an television tower as the illuminator.The reference and surveillance channels are formed by an eight-element line array and the system operating parameters are shown in Tab.1.This experiment is to assess the capability in detecting the maneuvering UAV target by the proposed CRMFP method.The UAV target is specifical DJI INSPIRE 1 with 20 m/s and the flight altitude less than 100 m.

    Fig.4 shows the measured data results of the typical RD processing method.The integration results in the range and Doppler dimension are shown in Fig.4(a) and Fig.4(b), respectively.It is clear that the RM and DFM effect occurs and the target energy disperses in multiple RD cells.The integration results of RFT are given in Fig.5, since the presence of DFM effect cannot fully accumulate the target energy.Fig.6 gives the experimental results of the proposed CRMFP method.In particular, the target accumulation results in range and Doppler domain are given in Fig.6(a) and Fig.6(b) respectively,in which the target formed a noticeable peak in one RD cell, which means the RM and DFM effects have been corrected.Further, the target’s SNR increased by about 4.6 dB by means of the proposed method, which will significantly enhance the target detection probability.

    Fig.4 Coherent integration via RD processing: (a) range dimension; (b) Doppler dimension

    Fig.5 Coherent integration via RFT: (a) range dimension;(b) Doppler dimension

    6 Conclusion

    This letter presented a novel long-time coherent integration method, i.e., CRMFP, for low-observable UAV target in PBR system.Both the RM and DFM effects can be eliminated and the PBR detection capability can thus be enhanced by performing the CRMFP coherent method.More specifically, CRMFP realizes the signal extraction on the integration results of range dimension with a 2-D traversing along the directions of range and radial velocity.After that, MFP is performed to compensate the DFM and achieve coherent accumulation of the UAV target echo.Finally, the effectiveness of the proposed method is verified by simulated and real-life data.In general, the CRMFP is superior to the RD processing, KT, and CC-TDP methods in detection ability and requires a lower computation cost than SPT.

    一级毛片精品| 99热全是精品| 久久久久久久大尺度免费视频| 久久精品国产亚洲av香蕉五月 | 国产亚洲av片在线观看秒播厂| 亚洲国产精品999| 国产精品自产拍在线观看55亚洲 | 中文字幕另类日韩欧美亚洲嫩草| 免费人妻精品一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利影视在线免费观看| 满18在线观看网站| 国产一区二区三区综合在线观看| 成在线人永久免费视频| 人成视频在线观看免费观看| 国产成人影院久久av| 99精品久久久久人妻精品| 国产欧美日韩综合在线一区二区| 99久久精品国产亚洲精品| 国产精品秋霞免费鲁丝片| 成人国产av品久久久| 日韩视频一区二区在线观看| 成人亚洲精品一区在线观看| 国产一区二区三区在线臀色熟女 | a在线观看视频网站| 十八禁网站免费在线| 亚洲国产看品久久| 无遮挡黄片免费观看| 午夜福利一区二区在线看| 老司机在亚洲福利影院| 国产亚洲欧美在线一区二区| 一二三四在线观看免费中文在| 国产一区二区在线观看av| 国产精品av久久久久免费| 97在线人人人人妻| 不卡一级毛片| 三上悠亚av全集在线观看| 精品亚洲成a人片在线观看| 男人添女人高潮全过程视频| 午夜福利,免费看| 国产在线视频一区二区| 精品视频人人做人人爽| 啪啪无遮挡十八禁网站| 欧美另类亚洲清纯唯美| 在线十欧美十亚洲十日本专区| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 国产黄频视频在线观看| 久久久精品94久久精品| 午夜两性在线视频| 亚洲精品粉嫩美女一区| 一区二区av电影网| 日日爽夜夜爽网站| 午夜福利视频在线观看免费| 丝袜美腿诱惑在线| 大码成人一级视频| 不卡av一区二区三区| 亚洲欧美色中文字幕在线| 国产亚洲欧美在线一区二区| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 日本欧美视频一区| 国产成人精品久久二区二区91| 亚洲免费av在线视频| 久久 成人 亚洲| 亚洲精品久久成人aⅴ小说| 国产91精品成人一区二区三区 | 亚洲国产欧美网| tocl精华| 亚洲精品中文字幕一二三四区 | 国产精品成人在线| 亚洲一码二码三码区别大吗| 涩涩av久久男人的天堂| 一本大道久久a久久精品| 老汉色av国产亚洲站长工具| 天天躁日日躁夜夜躁夜夜| 不卡av一区二区三区| 一边摸一边做爽爽视频免费| 亚洲精品一区蜜桃| 亚洲国产精品999| 黄频高清免费视频| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 日本av免费视频播放| 狂野欧美激情性xxxx| 久久午夜综合久久蜜桃| 久久精品亚洲熟妇少妇任你| 悠悠久久av| 久久精品国产亚洲av香蕉五月 | 国产精品一区二区免费欧美 | 9191精品国产免费久久| 在线看a的网站| 啦啦啦啦在线视频资源| 777米奇影视久久| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看| 青青草视频在线视频观看| 成人黄色视频免费在线看| 久久女婷五月综合色啪小说| 99国产精品免费福利视频| 日本精品一区二区三区蜜桃| 最近中文字幕2019免费版| 亚洲精品自拍成人| 人人妻人人澡人人看| 国产高清videossex| 亚洲 欧美一区二区三区| 亚洲国产精品成人久久小说| 久久精品国产a三级三级三级| 1024香蕉在线观看| 肉色欧美久久久久久久蜜桃| 久久性视频一级片| 成年女人毛片免费观看观看9 | 国产成人精品久久二区二区免费| 国产精品一二三区在线看| 国产精品国产av在线观看| 亚洲精品中文字幕一二三四区 | 大片免费播放器 马上看| 亚洲专区国产一区二区| 成人亚洲精品一区在线观看| 人妻久久中文字幕网| 欧美激情久久久久久爽电影 | 久久人妻福利社区极品人妻图片| 欧美日韩一级在线毛片| 精品久久久精品久久久| 80岁老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 我的亚洲天堂| 亚洲精品国产av蜜桃| 大陆偷拍与自拍| 最黄视频免费看| 大片免费播放器 马上看| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 一级毛片女人18水好多| av在线app专区| 国产精品久久久久久人妻精品电影 | 国产欧美日韩一区二区精品| 一本久久精品| 一区福利在线观看| 免费观看a级毛片全部| 美女福利国产在线| 在线观看免费视频网站a站| 久久久久国内视频| 国精品久久久久久国模美| 99国产极品粉嫩在线观看| 中文字幕人妻丝袜制服| 精品第一国产精品| 国产欧美日韩一区二区三区在线| 男女之事视频高清在线观看| 亚洲精品国产一区二区精华液| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲第一欧美日韩一区二区三区 | 女人被躁到高潮嗷嗷叫费观| 久久99一区二区三区| 夫妻午夜视频| 精品国产乱子伦一区二区三区 | xxxhd国产人妻xxx| 国产成人一区二区三区免费视频网站| 亚洲欧美一区二区三区黑人| 在线精品无人区一区二区三| 黑丝袜美女国产一区| 超色免费av| 中文精品一卡2卡3卡4更新| 欧美黑人欧美精品刺激| 欧美日韩亚洲综合一区二区三区_| 制服诱惑二区| 9色porny在线观看| 亚洲精品第二区| 国产精品香港三级国产av潘金莲| 成在线人永久免费视频| 久久精品久久久久久噜噜老黄| 久久青草综合色| 久久久久久免费高清国产稀缺| 丝袜喷水一区| 久久人妻福利社区极品人妻图片| 18禁黄网站禁片午夜丰满| 国产av又大| 少妇被粗大的猛进出69影院| av线在线观看网站| 国产精品久久久av美女十八| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| 日韩制服骚丝袜av| 亚洲av成人一区二区三| 亚洲精品国产av蜜桃| 美女高潮到喷水免费观看| tocl精华| 50天的宝宝边吃奶边哭怎么回事| 亚洲熟女毛片儿| 国产不卡av网站在线观看| 午夜福利在线免费观看网站| 亚洲一区二区三区欧美精品| 中文精品一卡2卡3卡4更新| 无限看片的www在线观看| www.自偷自拍.com| 大香蕉久久网| 久久精品久久久久久噜噜老黄| 天堂8中文在线网| 乱人伦中国视频| 俄罗斯特黄特色一大片| 免费在线观看日本一区| 国产精品国产av在线观看| 国产成人一区二区三区免费视频网站| 天堂俺去俺来也www色官网| 天天添夜夜摸| 黄色a级毛片大全视频| 亚洲国产毛片av蜜桃av| 三级毛片av免费| 亚洲欧美精品综合一区二区三区| 精品久久久久久久毛片微露脸 | 亚洲全国av大片| 亚洲精华国产精华精| 一级毛片女人18水好多| kizo精华| 亚洲avbb在线观看| 日本91视频免费播放| 午夜福利在线观看吧| 啦啦啦视频在线资源免费观看| 国产精品麻豆人妻色哟哟久久| 国产色视频综合| 搡老熟女国产l中国老女人| 日韩欧美一区视频在线观看| 免费不卡黄色视频| 在线亚洲精品国产二区图片欧美| 久久精品成人免费网站| 欧美精品啪啪一区二区三区 | 午夜久久久在线观看| 国产精品久久久久久精品古装| 黄色视频,在线免费观看| 国产高清国产精品国产三级| 亚洲第一欧美日韩一区二区三区 | 少妇猛男粗大的猛烈进出视频| 亚洲精品一区蜜桃| 麻豆国产av国片精品| 欧美激情久久久久久爽电影 | 99久久国产精品久久久| 亚洲三区欧美一区| 交换朋友夫妻互换小说| 精品久久久精品久久久| 男女床上黄色一级片免费看| 亚洲欧洲日产国产| 人人妻,人人澡人人爽秒播| 又大又爽又粗| av不卡在线播放| 久久久久精品人妻al黑| 久久久精品94久久精品| 搡老岳熟女国产| 麻豆国产av国片精品| 亚洲一区中文字幕在线| 久久女婷五月综合色啪小说| 人人妻人人添人人爽欧美一区卜| 美女午夜性视频免费| 亚洲一区二区三区欧美精品| 在线 av 中文字幕| 亚洲精品美女久久久久99蜜臀| 日韩大片免费观看网站| 妹子高潮喷水视频| 国产成人精品在线电影| 黄色毛片三级朝国网站| 一本一本久久a久久精品综合妖精| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区 | 久久久久久久大尺度免费视频| 亚洲黑人精品在线| 夜夜骑夜夜射夜夜干| www.999成人在线观看| 中文字幕色久视频| 精品亚洲成国产av| bbb黄色大片| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 国产免费av片在线观看野外av| 啦啦啦免费观看视频1| 国产91精品成人一区二区三区 | cao死你这个sao货| 别揉我奶头~嗯~啊~动态视频 | 女性生殖器流出的白浆| 国产一区二区在线观看av| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 亚洲色图 男人天堂 中文字幕| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 高清黄色对白视频在线免费看| 免费av中文字幕在线| 另类精品久久| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 国产精品免费视频内射| 十八禁网站网址无遮挡| 男人操女人黄网站| 法律面前人人平等表现在哪些方面 | 成年人免费黄色播放视频| 亚洲色图 男人天堂 中文字幕| 欧美国产精品va在线观看不卡| 一区二区三区四区激情视频| 乱人伦中国视频| 亚洲精品久久久久久婷婷小说| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 亚洲 欧美一区二区三区| 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 国产精品一区二区精品视频观看| 亚洲精品一二三| 色婷婷av一区二区三区视频| 性色av一级| 亚洲人成77777在线视频| 日本猛色少妇xxxxx猛交久久| 12—13女人毛片做爰片一| 欧美午夜高清在线| 视频在线观看一区二区三区| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 国产亚洲精品久久久久5区| 中国国产av一级| 成人国产一区最新在线观看| 国产在线免费精品| 欧美少妇被猛烈插入视频| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 欧美黄色淫秽网站| 黄色视频在线播放观看不卡| 黄色视频不卡| 日韩大片免费观看网站| 麻豆乱淫一区二区| 国产精品自产拍在线观看55亚洲 | 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 老司机深夜福利视频在线观看 | 成人影院久久| 好男人电影高清在线观看| 久久精品国产亚洲av高清一级| 欧美大码av| 男女午夜视频在线观看| 日韩大码丰满熟妇| 高清av免费在线| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| 视频区欧美日本亚洲| 18禁黄网站禁片午夜丰满| 中文字幕人妻丝袜一区二区| 国产成人精品久久二区二区91| 亚洲国产av影院在线观看| 一级毛片精品| 一区二区三区激情视频| 中文字幕人妻丝袜一区二区| 久久久久久久久久久久大奶| 亚洲欧洲日产国产| 不卡一级毛片| 日本黄色日本黄色录像| 日韩有码中文字幕| 久久99热这里只频精品6学生| 国产亚洲av片在线观看秒播厂| 久久天躁狠狠躁夜夜2o2o| 色视频在线一区二区三区| 欧美+亚洲+日韩+国产| 天天操日日干夜夜撸| 久久综合国产亚洲精品| 精品亚洲乱码少妇综合久久| 亚洲激情五月婷婷啪啪| 啦啦啦在线免费观看视频4| av在线老鸭窝| 69av精品久久久久久 | 日韩中文字幕视频在线看片| 黑人巨大精品欧美一区二区mp4| 欧美日本中文国产一区发布| 中文字幕色久视频| 午夜精品国产一区二区电影| 国产一区二区在线观看av| 人人妻,人人澡人人爽秒播| 波多野结衣一区麻豆| 97人妻天天添夜夜摸| 国产精品.久久久| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 少妇精品久久久久久久| 十八禁人妻一区二区| 在线 av 中文字幕| 俄罗斯特黄特色一大片| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 日日夜夜操网爽| 宅男免费午夜| 亚洲精品国产一区二区精华液| 一二三四在线观看免费中文在| 黄片小视频在线播放| 中文字幕色久视频| 亚洲全国av大片| 男女之事视频高清在线观看| 丁香六月欧美| 热99久久久久精品小说推荐| 狂野欧美激情性xxxx| 一区二区三区激情视频| 肉色欧美久久久久久久蜜桃| 一级毛片女人18水好多| avwww免费| 成人国产av品久久久| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 最近最新免费中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 不卡av一区二区三区| 一二三四社区在线视频社区8| 国产极品粉嫩免费观看在线| 欧美国产精品va在线观看不卡| 捣出白浆h1v1| 人妻久久中文字幕网| 999精品在线视频| 国产精品一区二区在线观看99| 久久久久久亚洲精品国产蜜桃av| 国产视频一区二区在线看| 国内毛片毛片毛片毛片毛片| 国产免费视频播放在线视频| 久久亚洲精品不卡| 午夜老司机福利片| 婷婷成人精品国产| 久久天躁狠狠躁夜夜2o2o| 在线十欧美十亚洲十日本专区| 美女高潮到喷水免费观看| 十分钟在线观看高清视频www| 亚洲人成电影观看| 中国美女看黄片| 色播在线永久视频| 精品一品国产午夜福利视频| 最黄视频免费看| 岛国在线观看网站| 欧美日本中文国产一区发布| 性少妇av在线| av免费在线观看网站| 美女脱内裤让男人舔精品视频| 欧美久久黑人一区二区| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到| 成年人午夜在线观看视频| 国内毛片毛片毛片毛片毛片| 久久 成人 亚洲| 国产一卡二卡三卡精品| 中文字幕色久视频| videos熟女内射| 国产一区二区在线观看av| 婷婷成人精品国产| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 在线永久观看黄色视频| 欧美另类一区| 男女午夜视频在线观看| 1024视频免费在线观看| 中文字幕精品免费在线观看视频| 午夜免费观看性视频| 99精品久久久久人妻精品| 久热爱精品视频在线9| 19禁男女啪啪无遮挡网站| 精品一区在线观看国产| 美女视频免费永久观看网站| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 久久 成人 亚洲| 欧美激情 高清一区二区三区| av片东京热男人的天堂| 亚洲精品国产av蜜桃| 久久香蕉激情| 欧美成人午夜精品| 男女下面插进去视频免费观看| 亚洲欧美一区二区三区久久| 国产一区二区三区在线臀色熟女 | 亚洲精品av麻豆狂野| 国产野战对白在线观看| 久久久国产成人免费| 国产免费一区二区三区四区乱码| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 18禁观看日本| 国产av又大| 久久久久国产精品人妻一区二区| 亚洲久久久国产精品| 精品久久久久久电影网| 国产亚洲一区二区精品| 欧美亚洲 丝袜 人妻 在线| 每晚都被弄得嗷嗷叫到高潮| 少妇的丰满在线观看| 欧美变态另类bdsm刘玥| 窝窝影院91人妻| 国内毛片毛片毛片毛片毛片| 一级a爱视频在线免费观看| 在线观看免费日韩欧美大片| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 国产av一区二区精品久久| 精品少妇久久久久久888优播| 一个人免费在线观看的高清视频 | 欧美黑人欧美精品刺激| av电影中文网址| 色精品久久人妻99蜜桃| 欧美成人午夜精品| 日韩一卡2卡3卡4卡2021年| 国产精品香港三级国产av潘金莲| 亚洲 欧美一区二区三区| 天堂中文最新版在线下载| 黑人巨大精品欧美一区二区mp4| 69精品国产乱码久久久| 亚洲国产毛片av蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 丝袜美腿诱惑在线| 亚洲中文字幕日韩| 菩萨蛮人人尽说江南好唐韦庄| 久久狼人影院| 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 欧美国产精品va在线观看不卡| 国产伦人伦偷精品视频| 美国免费a级毛片| 日韩,欧美,国产一区二区三区| 国产成人免费无遮挡视频| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频| 亚洲九九香蕉| 欧美精品啪啪一区二区三区 | √禁漫天堂资源中文www| 国产深夜福利视频在线观看| 女警被强在线播放| 超碰97精品在线观看| 视频在线观看一区二区三区| 欧美日韩精品网址| a级毛片在线看网站| 欧美成人午夜精品| 久久精品亚洲av国产电影网| 欧美亚洲日本最大视频资源| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网 | 伊人久久大香线蕉亚洲五| 精品国产乱码久久久久久小说| 国产高清视频在线播放一区 | 亚洲三区欧美一区| 久久香蕉激情| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 欧美97在线视频| 国产精品一区二区在线不卡| 久久久久精品人妻al黑| 亚洲av片天天在线观看| 国产成人精品在线电影| 美国免费a级毛片| 纵有疾风起免费观看全集完整版| 国产亚洲av高清不卡| 国产精品.久久久| 国产成人av激情在线播放| 国产免费现黄频在线看| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 麻豆国产av国片精品| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 老司机午夜十八禁免费视频| 涩涩av久久男人的天堂| 汤姆久久久久久久影院中文字幕| 热re99久久精品国产66热6| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区mp4| 69精品国产乱码久久久| 97在线人人人人妻| 欧美国产精品一级二级三级| 亚洲第一av免费看| 国产日韩一区二区三区精品不卡| 亚洲av成人不卡在线观看播放网 | 黑人巨大精品欧美一区二区蜜桃| 久久久久视频综合| h视频一区二区三区| 欧美另类一区| 高清视频免费观看一区二区| 亚洲成人手机| 亚洲七黄色美女视频| 一二三四在线观看免费中文在| a在线观看视频网站| 国产精品久久久久久精品古装| bbb黄色大片| 丁香六月天网| 正在播放国产对白刺激| 国产欧美日韩精品亚洲av| 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 午夜福利影视在线免费观看| 男女下面插进去视频免费观看| 一级a爱视频在线免费观看| 国产黄频视频在线观看| 欧美日韩黄片免| 最黄视频免费看| 免费在线观看影片大全网站| 久久精品久久久久久噜噜老黄| 91精品三级在线观看| 人人妻人人添人人爽欧美一区卜| 成年人免费黄色播放视频| 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 国产免费一区二区三区四区乱码| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 久久天躁狠狠躁夜夜2o2o| 另类精品久久| 亚洲免费av在线视频| 少妇被粗大的猛进出69影院| 中文字幕av电影在线播放| 亚洲av日韩精品久久久久久密| 97人妻天天添夜夜摸| 亚洲国产欧美一区二区综合| 999久久久精品免费观看国产| bbb黄色大片| 亚洲精品一区蜜桃| 可以免费在线观看a视频的电影网站|