• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Clutter Suppression Algorithm for Low-Slow-Small Targets Detecting Based on Sparse Adaptive Filtering

    2024-03-18 09:00:06ZeqiYangShuaiMaNingLiuKaiChangXiaodeLyu

    Zeqi Yang, Shuai Ma, Ning Liu, Kai Chang, Xiaode Lyu

    Abstract: Passive detection of low-slow-small (LSS) targets is easily interfered by direct signal and multipath clutter, and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper, a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint, and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time, the step size and penalty factor are brought into the adaptive iteration process, and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation, which improves the robustness to parameters such as step size, reduces the weight error of the filter and has a good clutter suppression performance.

    Keywords: passive radar; interference suppression; sparse representation; adaptive filtering

    1 Introduction

    In recent years, the rapid development of small aircraft, such as unmanned aerial vehicles, has brought potential threats to the surveillance of low-altitude areas and air traffic safety, and the research on the detecting, tracking and positioning system of low-slow-small (LSS) targets has gradually become a hot topic [1].The echoes of LSS targets are vulnerable to ground clutter and multipath interference due to their low flying altitude, slow flying speed and small radar cross section (RCS), and the Doppler frequency is small, and the target echo is weak, so it is necessary to detect weak targets in strong clutter environment.It is of great significance to develop the passive detection technology for the efficient detection of LSS targets [2].Passive radar usually uses the third-party non-cooperative radiation sources such as digital television (TV) signals and communication base station signals to detect targets.Illuminators of opportunity are various and widely distributed, which has the advantages of anti-interference, low cost and no occupation of spectrum resources.It is an effective method to detect low-altitude targets by using illuminators of opportunity [3,4].

    In the passive radar detection of LSS targets, due to the complex low-altitude environment and the small RCS of targets, the echo of LSS targets is weak, and it is more vulnerable to interference from ground buildings.The echo of coherent targets is covered by direct signal and multipath clutter, which makes it difficult to detect targets.Therefore, clutter suppression before target detection is an important means to improve the detection performance of the system[5].The commonly used clutter suppression algorithm is mainly adaptive filtering algorithm, and the adaptive filter achieves the best filtering performance by iteratively adjusting the coefficients of the filter.Widrow et al.[6] proposed an adaptive filter represented by least mean square(LMS), which suppresses the clutter signal in the received signal through multiple iterations, with slow convergence rate and poor clutter suppression performance; The extensive cancellation algorithm (ECA) and its improved algorithm proposed in [7,8] complete the interference suppression of direct signal by taking the interference signal as an orthogonal projection matrix,which has high computational complexity and is not conducive to practical application.Reference[9] adopts recursive least square (RLS) algorithm, and its convergence rate is restricted by forgetting factor.The frequency-domain block least mean square filter (FBLMS) [10,11] has the characteristics of fast convergence and real-time processing, and has been widely used in clutter suppression of passive radar.However, the traditional LMS algorithm has the contradiction between step size and convergence rate.To solve this problem, many improved adaptive filtering algorithms have been proposed.For example,variable step size LMS algorithm (VSS-LMS).Previous scholars focused on using the error signal in the adaptive process, trying to adjust the step size by using the relationship between the error signal and the step size [12].In recent years, Baydin et al.[13,14] introduced the idea of super-optimization to adjust the step size parameters, optimized the step size while optimizing the model parameters, and incorporated the optimization of the step size parameters into the filtering operation.This method improved the convergence rate and increased the robustness of the algorithm to the selection of initial super-parameters.At the same time, compared with the traditional adaptive filtering algorithm, it does not need additional gradient calculation, and the calculation and storage efficiency are higher.Rubio et al.[15] analyzes the convergence of the supergradient descent algorithm, and the simulation proves its advantages in practice.

    In many application scenarios, the radar echo signal is sparse in a certain transform domain.In recent years, inspired by the sparse signal processing theory of compressive sensing, a series of penalty LMS algorithms have appeared,which use norm to add sparsity constraints to the criterion function of updating filter weight coefficients, so that the filter coefficients approach zero and improve the convergence rate of the algorithms, such as ZA-LMS [16], RZA-LMS [17],l0-LMS [18] and so on.This kind of algorithm is affected by random gradient noise in the process of convergence, so fast convergence and small steady-state error cannot be achieved at the same time.When the adaptive process convergences,the algorithm exerts too much attraction on the small coefficient near the zero point, which leads to the increase of the misalignment error.

    In this paper, an LSS passive detection system based on sparse adaptive filtering is proposed.Firstly, a hypergradient descentl0-LMS adaptive filtering model with sparse representation is established.Based on the sparsity of the distance dimension of the target after matched filtering, the results of pulse compression operation between reference signal and error signal in iterative process is constrained by sparsity to construct a new cost function.In the iteration, it improves the filter’s weight updating criterion by restricting the sparsity of the target distance dimension, and obtains a purer echo signal.At the same time, the step parameters and balance factors are brought into the adaptive loop process, and the input data is used to drive the adaptive changes of parameters such as step size.Its convergence and steady-state error are analyzed theoretically.Compared with the traditional clutter suppression algorithm, the improved algorithm with sparse super-optimization idea has better clutter suppression performance and stronger robustness to step parameters and input data.Then the range and velocity information of the target is estimated by piecewise range Doppler processing [19,20].

    2 Algorithm

    2.1 Adaptive Filtering Algorithm for Sparse Representation

    The echo signal model received by the surveillance channel of passive radar is defined as

    wheres(t) is a direct signal;Ad,Ai,Birepresent signal amplitude;τiandτdirepresent multipath delay and target delay respectively;M1andM2represent multipath number and target number respectively;fdirepresents Doppler frequency of target;ns(t) represents zero mean noise, and is independent of the signal.

    The signal received by the reference channel is defined as

    whereArrepresents signal amplitude;nr(t) represents zero mean noise of the reference channel.

    Direct signal and multipath clutter in echo signals are clutter signals to be cancelled.Passive detection systems based on illuminators of opportunity usually use pulse compression operation to coherently accumulate the echo signals received by the main channel and the direct signal received by the auxiliary channel.The target echo signals obtained after correlation processing are only distributed in a few distance points under ideal conditions, which is sparse.However,the signal intensity of interference such as direct signal and multipath clutter in the echo signal received by the main channel is much greater than the echo signal of the target, so it is necessary to suppress clutter first and establish an adaptive filtering algorithm model with sparse representation.Adaptive filter is shown in Fig.1.

    Fig.1 Schematic diagram of adaptive filter

    Let the input vector of the filter beS(t)=[Sref(t),Sref(t-1),···,Sref(t-M+1)]Tand the tap weight vector beW? (t)=[w?0(t),w?1(t),···,w?M-1(t)]T.Mis the filter order andtis the response time.The output of the adaptive filter is

    In the echo signal, the interference of direct signal and multipath clutter with strong amplitude will affect the detection of LSS targets.Ideally, the pulse compression result |R(τ)| of signale(t) and reference signalSref(t) after the direct signal and multipath clutter are filtered by adaptive filtering in the echo signal has a nonzero value only where the target exists, which is sparse.

    whereTis the length of the integration time, *indicates the complex conjugate form of the signal, andτis the time-delay variable in the function.The time-domain data after coherent accumulation of the two signals are constrained by sparsity, and the cost function of the filter is constructed.The cost function of the adaptive clutter suppression algorithm defined in this paper is

    whereris the penalty factor,‖*‖0is thel0norm, andnis the discrete time.

    l0norm is the number of non-zero elements in the vector.l0norm makes the values of most mutual ambiguity functions converge to zero in the iterative process, thus ensuring the sparsity of the solution.Its numerical solution is NP-hard problem, andl0norm is not derivable.Reference[16] gives the approximate value ofl0norm of a typical sparse system, namely,

    whereRi(n) is thei-th pulse compression result attdiscrete time,βis the expansion coefficient.

    The approximate value ofl0norm is brought into the cost function of this paper, and it is concluded that

    Derivation ofwis

    where

    Letfβ(Ri(n))be

    Update criteria for obtaining weights is

    whereμis the step size parameter,κ=μ×ris the balance factor between the constraint term and the estimation error.

    By adding sparsity constraint, the adaptive filter can suppress clutter components better.The algorithm is affected by random gradient noise in the convergence process, which makes it impossible to possess both fast convergence and small steady-state error.The convergence rate is related to the step size and the eigenvalue of the input data correlation matrix.When the adaptive process convergences, the algorithm exerts too much attraction on the small coefficient near the zero point, which leads to the increase of the misalignment error.Therefore, based on the idea of super-optimization, this paper iteratively updates the step size parameterμand the penalty factorrin the adaptive loop, and brings the step size and the penalty factor into the filtering operation to obtain information from the data, thus adjusting the super-parameters.Namely,

    By adjusting the step size and penalty factor, the convergence rate is not affected by the initial value of step size.And this process can exploit the results of the last iteration without increasing the amount of calculation.If the initial value of the step size is large, the algorithm is iteratively updated with a larger step size to improve the convergence rate of the algorithm.When the step size is close to the steady state,the step size update criterion keeps the step size smaller, and the penalty factor update criterion reduces the constraint on the weight vector near the steady state, thus maintaining a smaller steady-state error.If the initial step size is small,the algorithm will adaptively adjust to the appropriate step size for iteration.

    The updated formula of step size parameter and penalty factor is as follows

    And weight vector updating formula

    In order to reduce the calculation amount of the proposed algorithm, this paper adopts the method of fast calculation in frequency domain,blocks the data and calculates it by fast Fourier transform (FFT).The specific calculation flow is shown as follows.

    Algorithm 1 Optimal power allocation algorithm based on Lagrangian dual method ?w0, μ0,r0, α,γ,Initialization: weight vector step size penalty factor hyperparametric learning rate filter order M, k is the k-th block of data Input:diag{FFT[s(kM -M),···s(kM +M -1)]}S(k)=d(k)=[d(kM),···d(kM +M -1)]T ?w0=zeros (2M,1)Adaptive filtering:y(k) [y(kM),···y(kM +M -1)]T =IFFT[S(k) ?W(k)]T=e(k) [e(kM),···e(kM +M -1)]T =d(k)-y(k)=]FFT[0 e(k)E(k)=Step 1:Φ(k) first M elements of IFFT[S*(k)E(k)]=?wξ(k) -2Φ(k)-rfβ(Ri(k))Rss(i),i=0,1,···,M -1=?μξ(k) -?wξ(k)·?wξ(k-1)=?rξ(k) ?wξ(k)μ(k)·fβ(Ri(k-1))Rss(i)=Step 2:μ(k+1) μ(k)+α?ξ(k)·?ξ(k-1)=r(k+1) r(k)-γμ(k)?ξ(k)·fβ(Ri(k-1))Rss(i)=Step 3:?W (k+1) ?W (k)+μ(k+1)FFT]=[Φ(k)0+μ(k+1)r(k+1) FFT[fβ(Ri(k))Rss(i)]·?w(n+1) IFFT[?W (k)]=

    2.2 Convergence Analysis

    Letε(n)=wopt-w?(n),woptis the optimal weight vector of adaptive filtering, then

    When the step size is small, the solution ofε(n+1)can be replaced by the solution after the expectation of the above formula.

    Sincefβ(Ri(n))Rss(i) is bounded, the unitary similarity transformation is applied to the correlation matrixR:QHRQ=Λ.WhereQis a unitary matrix, its columns are eigenvectors related to the eigenvalues ofR, and Λ is a diagonal matrix composed of eigenvalues.

    Assuming that the step size is very small,the instantaneous value can be used instead of the set average value.

    Thus, the convergence condition can be obtained

    2.3 Steady State Error Analysis

    Su et al.[21] put forward two indexes to evaluate the steady-state performance.

    1) Instantaneous mean square deviation(MSD): defined as the square of 2 norm based on the weight error vector, i.e.

    2) Excess mean square error (EMSE):

    When the step size is small, the cost function of the algorithm will approach a minimum value with the increase ofn.Because the value ofμ(n+1)r(n+1)is small, it is assumed to be close to 0.

    Therefore, the steady-state error is related to the upper limit of step size and the eigenvalue of input matrix.Because at this time

    Whenn →∞, the steady-state error of the learning curve is

    Then

    The steady-state MSD is

    whereLis the filter length andNis the number of rows of the correlation matrix.

    3 Simulation Results

    The following simulation analysis is carried out.It is assumed that the echo channel contains the target signal, multipath clutter and direct signal,and the reference channel contains the purified direct signal.The system parameters used in the simulation are shown in Tab.1.The simulation parameters of the echo channel are shown in Tab.2.

    Fig.2 shows the time delay-Doppler diagram before clutter suppression, and compares the clutter suppression performance of the proposed algorithm, FBLMS algorithm,l0-LMS algo-rithm, NLMS algorithm, ECA-B algorithm and VSS-LMS algorithm [22].For adaptive filtering algorithms, when the initial step size is large, the step size is set to 5.5×10-3, and the time delaydoppler diagram filtered by several algorithms is shown in Fig.3.

    Tab.1 The system parameters used in the simulation

    Tab.2 The simulation parameters of the echo channel

    Fig.2 Time delay-Doppler diagram without clutter suppression

    Fig.3 Time delay-Doppler diagram after clutter suppression: (a) before processing; (b) the proposed algorithm; (c) FBLMS algorithm; (d) l0-LMS algorithm; (e) NLMS algorithm; (f) ECA-B algorithm; (g) VSS-LMS algorithm

    As can be seen from Fig.3, when the step size is large, several algorithms can detect strong target.At the same time, the proposed algorithm can also detect weak target, and ECA-B algorithm produced false peaks.The step size of VSS-LMS algorithm changes with the iterative process.In the initial stage, a larger step size is adopted to speed up the convergence, and in the later stage, a smaller step size is adopted to reduce the steady-state error.However, the stability of the algorithm is easily affected by input noise, and the step size range needs to be limited,so there is still a small amount of clutter energy residual after clutter suppression.The SNR of the proposed algorithm, FBLMS,l0-LMS, NLMS,ECA-B and VSS-LMS after clutter suppression are 9.07 dB, 5.32 dB, 7.76 dB, 7.74 dB, 9.02 dB,8.93 dB, respectively.The proposed algorithm has a good clutter suppression effect, and the step change curve at this time is shown in Fig.4.

    Fig.4 Step size change curve

    When the step size is small, the step size is set to 1×10-6, the clutter suppression performance of several algorithms is shown in Fig.5.FBLMS algorithm,l0-LMS algorithm and NLMS algorithm fail to detect the target, and the noise floor is only reduced by 3 dB compared with the time delay-doppler diagram without clutter suppression.However, the proposed algorithm has sparsity constraints, and the step size is adjusted adaptively in the filtering process, so the clutter suppression effect is better.The noise floor is reduced by 24 dB.The SNR is 10.37 dB after clutter suppression.

    At this point, the adaptive change curve of step size as Fig.6.

    Fig.6 Step size change curve

    By comparing the weights obtained by iteration of the algorithms with the optimal weights,it can be seen from Fig.7 that the proposed algorithm is close to the true values of the weights,and the clutter suppression effect is better.

    Fig.7 Comparison between the weights obtained by six algorithms and the optimal weights

    Fig.8 is the SNR comparison diagram of the several algorithms before and after clutter suppression.It can be seen that the algorithm in this paper has certain advantages, no matter whether it is a big step or a small step, and the SNR after clutter suppression is the highest.Especially under the condition of small step size, the proposed algorithm can still show good clutter suppression result when other algorithms fail.

    Fig.8 Comparison of clutter suppression effects of algorithms with different step sizes

    Comparing the computational complexity of the proposed algorithm with other classical algorithms, the proposed algorithm is implemented in frequency domain.It is the same as the highest power of the multiplication times required by FBLMS, and the computational complexity is low.When the filter order isMand the data length isN(M <N), the computational complexity of several algorithms is shown in Tab.3.

    Tab.3 Comparison of computational complexity of algorithms

    4 Conclusion

    The sparse adaptive filtering algorithm proposed in this paper adds sparsity constraint to the cost function and incorporates the step size into the adaptive filtering process, improving the robustness of the traditional clutter suppression algorithm.

    Through simulation analysis, compared with the traditional clutter suppression algorithm, the proposed algorithm can use the sparsity of the target in the distance dimension to obtain a purer echo signal, thus achieving better clutter suppression performance.At the same time,through adaptive iteration of the step size and other parameters, the algorithm can enhance the robustness of the input data without increasing the computational complexity.The ability of passive radar to detect LSS targets in strong clutter scenario is improved.

    99国产精品一区二区蜜桃av| 亚洲国产看品久久| 久久久久久大精品| 操出白浆在线播放| 免费一级毛片在线播放高清视频 | 午夜福利免费观看在线| 国产成人一区二区三区免费视频网站| 日韩大尺度精品在线看网址 | 精品欧美国产一区二区三| www国产在线视频色| 亚洲av片天天在线观看| 亚洲 国产 在线| 99在线人妻在线中文字幕| 久久久久九九精品影院| 我的亚洲天堂| 亚洲熟女毛片儿| 精品人妻在线不人妻| 国产一区二区三区在线臀色熟女| 精品国产一区二区久久| 国产亚洲精品av在线| 不卡一级毛片| www.999成人在线观看| 久久久久国内视频| 高潮久久久久久久久久久不卡| 精品不卡国产一区二区三区| av视频免费观看在线观看| а√天堂www在线а√下载| e午夜精品久久久久久久| 热re99久久国产66热| 老熟妇仑乱视频hdxx| 日本精品一区二区三区蜜桃| 成人手机av| 国产片内射在线| 老熟妇乱子伦视频在线观看| 亚洲激情在线av| 亚洲五月天丁香| 国产精品久久电影中文字幕| 九色亚洲精品在线播放| 免费在线观看完整版高清| 亚洲人成电影观看| 脱女人内裤的视频| 国产av在哪里看| 露出奶头的视频| 热99re8久久精品国产| 国产精品野战在线观看| 人人妻人人澡欧美一区二区 | 曰老女人黄片| 久久天堂一区二区三区四区| 麻豆国产av国片精品| 黄色a级毛片大全视频| 久久精品91蜜桃| 国产私拍福利视频在线观看| 欧美日韩一级在线毛片| 精品久久久久久久人妻蜜臀av | 视频在线观看一区二区三区| 级片在线观看| 亚洲五月色婷婷综合| 婷婷六月久久综合丁香| 麻豆av在线久日| 高清在线国产一区| 国产一区二区三区视频了| 88av欧美| 无人区码免费观看不卡| 欧美 亚洲 国产 日韩一| 村上凉子中文字幕在线| 夜夜爽天天搞| √禁漫天堂资源中文www| 国产精品99久久99久久久不卡| 精品人妻在线不人妻| 午夜福利在线观看吧| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 久久婷婷人人爽人人干人人爱 | 午夜福利高清视频| 亚洲九九香蕉| 法律面前人人平等表现在哪些方面| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片午夜丰满| 男男h啪啪无遮挡| 悠悠久久av| 色综合站精品国产| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 国产一卡二卡三卡精品| 国产精品美女特级片免费视频播放器 | 国产视频一区二区在线看| 丰满的人妻完整版| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩高清在线视频| av天堂在线播放| 日韩欧美免费精品| 午夜福利成人在线免费观看| 久久香蕉精品热| 欧美黄色片欧美黄色片| 日韩有码中文字幕| 成人国语在线视频| 欧美大码av| 不卡av一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲精品久久成人aⅴ小说| 中亚洲国语对白在线视频| 最近最新中文字幕大全电影3 | 老汉色∧v一级毛片| 亚洲熟妇中文字幕五十中出| 两人在一起打扑克的视频| 久久久久久久久中文| 黄色成人免费大全| 人人妻人人澡欧美一区二区 | 日韩国内少妇激情av| 久久国产精品男人的天堂亚洲| 色播亚洲综合网| 成人18禁在线播放| 久久婷婷成人综合色麻豆| 国产三级黄色录像| 色综合欧美亚洲国产小说| 黄色成人免费大全| 久久久国产精品麻豆| 最新在线观看一区二区三区| 国产视频一区二区在线看| 天堂√8在线中文| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| 男女午夜视频在线观看| 丝袜人妻中文字幕| 午夜日韩欧美国产| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 在线观看一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美性长视频在线观看| 在线观看免费视频网站a站| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看 | 国产三级在线视频| 18禁裸乳无遮挡免费网站照片 | 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 男女床上黄色一级片免费看| 在线av久久热| 激情视频va一区二区三区| 国产精品日韩av在线免费观看 | 黄片小视频在线播放| 99香蕉大伊视频| 精品久久久精品久久久| 久久中文看片网| 国产极品粉嫩免费观看在线| 精品福利观看| 久久精品人人爽人人爽视色| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播| 一夜夜www| 亚洲欧洲精品一区二区精品久久久| 老汉色∧v一级毛片| 大陆偷拍与自拍| 成熟少妇高潮喷水视频| 日本免费一区二区三区高清不卡 | 欧美成人午夜精品| 久久中文字幕人妻熟女| 国产成人啪精品午夜网站| 精品国产超薄肉色丝袜足j| 淫秽高清视频在线观看| 午夜久久久久精精品| 大型黄色视频在线免费观看| 亚洲七黄色美女视频| 欧美大码av| 波多野结衣高清无吗| 两个人视频免费观看高清| av天堂久久9| 日本免费一区二区三区高清不卡 | 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 熟女少妇亚洲综合色aaa.| 日韩中文字幕欧美一区二区| 51午夜福利影视在线观看| 国产aⅴ精品一区二区三区波| www.自偷自拍.com| 桃红色精品国产亚洲av| 日韩国内少妇激情av| 岛国视频午夜一区免费看| 国内精品久久久久久久电影| 国产精品98久久久久久宅男小说| 极品教师在线免费播放| 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 啦啦啦观看免费观看视频高清 | 级片在线观看| 搡老岳熟女国产| 久久午夜亚洲精品久久| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区| 日本免费一区二区三区高清不卡 | 亚洲国产欧美日韩在线播放| a级毛片在线看网站| 国产激情欧美一区二区| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 久久精品91蜜桃| 日韩欧美免费精品| 黄色毛片三级朝国网站| 一进一出好大好爽视频| 欧美一级毛片孕妇| 亚洲av成人不卡在线观看播放网| 久久亚洲真实| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 日韩中文字幕欧美一区二区| 色播亚洲综合网| 看片在线看免费视频| 男人舔女人下体高潮全视频| 日本撒尿小便嘘嘘汇集6| 一二三四在线观看免费中文在| 久久久久久久午夜电影| 国产精品一区二区免费欧美| 日本 av在线| 日本一区二区免费在线视频| 精品一区二区三区视频在线观看免费| 久久中文字幕一级| 一级毛片高清免费大全| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 999久久久精品免费观看国产| 露出奶头的视频| 日韩欧美国产在线观看| 欧美在线黄色| 国产亚洲欧美98| 亚洲中文字幕日韩| 夜夜爽天天搞| 欧美国产精品va在线观看不卡| www.999成人在线观看| 成人三级做爰电影| 99国产极品粉嫩在线观看| 十八禁人妻一区二区| 一本综合久久免费| 亚洲av日韩精品久久久久久密| 正在播放国产对白刺激| avwww免费| 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 老鸭窝网址在线观看| 在线国产一区二区在线| 亚洲熟妇熟女久久| 亚洲天堂国产精品一区在线| 亚洲国产看品久久| 久久精品国产99精品国产亚洲性色 | 一本综合久久免费| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 夜夜看夜夜爽夜夜摸| 18禁美女被吸乳视频| 日日爽夜夜爽网站| 一二三四社区在线视频社区8| 成人三级做爰电影| 自线自在国产av| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 在线国产一区二区在线| 欧美激情极品国产一区二区三区| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看亚洲国产| 欧美+亚洲+日韩+国产| 亚洲五月婷婷丁香| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| 女性被躁到高潮视频| videosex国产| 免费一级毛片在线播放高清视频 | 成人精品一区二区免费| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 亚洲电影在线观看av| 99在线人妻在线中文字幕| 欧美另类亚洲清纯唯美| 国产亚洲精品第一综合不卡| 国产麻豆69| 妹子高潮喷水视频| 久久性视频一级片| 国产精品一区二区精品视频观看| 欧美日韩乱码在线| 美国免费a级毛片| av有码第一页| 中文字幕av电影在线播放| 黄片小视频在线播放| 国产激情久久老熟女| 午夜影院日韩av| 女警被强在线播放| 日韩免费av在线播放| 久久性视频一级片| 精品国产超薄肉色丝袜足j| 日本 欧美在线| 看黄色毛片网站| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 1024香蕉在线观看| 国产aⅴ精品一区二区三区波| 男女下面进入的视频免费午夜 | 欧美大码av| 欧美黑人精品巨大| 法律面前人人平等表现在哪些方面| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人欧美在线观看| 精品久久久久久,| 女警被强在线播放| 久久人人97超碰香蕉20202| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 亚洲七黄色美女视频| 欧美乱码精品一区二区三区| 亚洲性夜色夜夜综合| 亚洲精品av麻豆狂野| 岛国视频午夜一区免费看| 国产高清videossex| 日韩 欧美 亚洲 中文字幕| 夜夜夜夜夜久久久久| 伊人久久大香线蕉亚洲五| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 久久人妻熟女aⅴ| 久久精品国产综合久久久| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 欧美日本视频| 亚洲九九香蕉| 99国产精品一区二区三区| 黑丝袜美女国产一区| 窝窝影院91人妻| 国产精品二区激情视频| 一级毛片女人18水好多| 国产一区二区激情短视频| 日韩大尺度精品在线看网址 | 美国免费a级毛片| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 制服丝袜大香蕉在线| 美国免费a级毛片| 天天添夜夜摸| 韩国av一区二区三区四区| 亚洲无线在线观看| 亚洲av片天天在线观看| 亚洲九九香蕉| 亚洲最大成人中文| 啪啪无遮挡十八禁网站| 国产精品国产高清国产av| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 丝袜美腿诱惑在线| 国产精品乱码一区二三区的特点 | 亚洲人成网站在线播放欧美日韩| 日韩大码丰满熟妇| 精品国产超薄肉色丝袜足j| 91国产中文字幕| 亚洲国产高清在线一区二区三 | 99久久精品国产亚洲精品| 97碰自拍视频| av片东京热男人的天堂| 国产在线观看jvid| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 色综合欧美亚洲国产小说| 国产一区在线观看成人免费| 亚洲国产中文字幕在线视频| 一区福利在线观看| 中文字幕最新亚洲高清| 99精品欧美一区二区三区四区| 日韩欧美国产在线观看| 亚洲熟妇中文字幕五十中出| 国产1区2区3区精品| 久久精品人人爽人人爽视色| 国产成+人综合+亚洲专区| 香蕉丝袜av| 欧美性长视频在线观看| 一级片免费观看大全| 色老头精品视频在线观看| 极品教师在线免费播放| 看免费av毛片| 宅男免费午夜| 十分钟在线观看高清视频www| 亚洲全国av大片| 高清毛片免费观看视频网站| 国产精品亚洲美女久久久| 久久久久久国产a免费观看| xxx96com| 国产欧美日韩一区二区三| 成熟少妇高潮喷水视频| 色在线成人网| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区mp4| 亚洲av第一区精品v没综合| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 中亚洲国语对白在线视频| 欧美日本视频| 亚洲久久久国产精品| 性欧美人与动物交配| 亚洲五月色婷婷综合| videosex国产| 成人三级做爰电影| 亚洲专区中文字幕在线| 香蕉丝袜av| 午夜久久久久精精品| 亚洲精品在线观看二区| 日韩大码丰满熟妇| 午夜福利影视在线免费观看| 亚洲精品久久成人aⅴ小说| aaaaa片日本免费| 午夜精品国产一区二区电影| 国产精品日韩av在线免费观看 | 精品一品国产午夜福利视频| 久久久国产成人精品二区| 国产亚洲精品第一综合不卡| 人人妻人人澡人人看| 黄色女人牲交| 性少妇av在线| 国产一区二区三区视频了| 丝袜人妻中文字幕| 曰老女人黄片| 久久中文字幕一级| 9191精品国产免费久久| 女生性感内裤真人,穿戴方法视频| 欧美大码av| 97人妻精品一区二区三区麻豆 | a在线观看视频网站| 国产精品99久久99久久久不卡| 51午夜福利影视在线观看| av电影中文网址| 亚洲性夜色夜夜综合| 国产成人av激情在线播放| 久久精品aⅴ一区二区三区四区| 国产区一区二久久| 久久人人97超碰香蕉20202| 国产熟女午夜一区二区三区| 女警被强在线播放| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 真人一进一出gif抽搐免费| 麻豆成人av在线观看| 搡老妇女老女人老熟妇| 中文字幕高清在线视频| 深夜精品福利| 校园春色视频在线观看| 国产野战对白在线观看| 99精品久久久久人妻精品| 午夜两性在线视频| 色播亚洲综合网| 免费在线观看视频国产中文字幕亚洲| 视频区欧美日本亚洲| 国产成人av激情在线播放| 精品国产美女av久久久久小说| 成人亚洲精品av一区二区| 涩涩av久久男人的天堂| 国产成人av教育| 久久久久久人人人人人| 午夜精品在线福利| 久久国产精品影院| 一级片免费观看大全| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 在线观看免费视频网站a站| 欧美一级毛片孕妇| 日韩成人在线观看一区二区三区| 免费不卡黄色视频| 日韩欧美国产一区二区入口| 精品无人区乱码1区二区| 欧美+亚洲+日韩+国产| 日本一区二区免费在线视频| 麻豆久久精品国产亚洲av| 国产色视频综合| 999精品在线视频| 一区在线观看完整版| 色哟哟哟哟哟哟| 成人手机av| 999久久久精品免费观看国产| 亚洲五月婷婷丁香| 亚洲三区欧美一区| 给我免费播放毛片高清在线观看| 亚洲五月色婷婷综合| 黄频高清免费视频| 亚洲va日本ⅴa欧美va伊人久久| 免费看美女性在线毛片视频| 岛国在线观看网站| 丝袜人妻中文字幕| 人人妻,人人澡人人爽秒播| 成熟少妇高潮喷水视频| 一二三四社区在线视频社区8| 国产伦一二天堂av在线观看| a在线观看视频网站| 日韩欧美国产一区二区入口| 欧美国产日韩亚洲一区| 视频区欧美日本亚洲| 9热在线视频观看99| 久9热在线精品视频| 亚洲国产精品999在线| 精品第一国产精品| 久久人妻福利社区极品人妻图片| 国产亚洲精品久久久久久毛片| 久久这里只有精品19| 精品人妻在线不人妻| 国产1区2区3区精品| cao死你这个sao货| 女人被躁到高潮嗷嗷叫费观| 成熟少妇高潮喷水视频| 亚洲熟妇熟女久久| 亚洲午夜精品一区,二区,三区| 国产欧美日韩一区二区精品| 国产成人系列免费观看| 淫妇啪啪啪对白视频| 久久人妻福利社区极品人妻图片| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲av一区麻豆| 久久久国产欧美日韩av| 色av中文字幕| 亚洲成人国产一区在线观看| 亚洲一区二区三区不卡视频| 日本 欧美在线| 午夜两性在线视频| 波多野结衣一区麻豆| 色在线成人网| 国产高清videossex| 国产精品日韩av在线免费观看 | 国产成人精品久久二区二区91| 老司机靠b影院| 亚洲av电影不卡..在线观看| 99在线人妻在线中文字幕| 女性被躁到高潮视频| 中文字幕人妻熟女乱码| 日韩 欧美 亚洲 中文字幕| 窝窝影院91人妻| 人成视频在线观看免费观看| 亚洲中文字幕一区二区三区有码在线看 | 久久青草综合色| 高清黄色对白视频在线免费看| 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 成人亚洲精品一区在线观看| 变态另类成人亚洲欧美熟女 | 黄色女人牲交| 国产亚洲精品av在线| 黄片大片在线免费观看| 精品久久久久久,| 欧美一级a爱片免费观看看 | 亚洲狠狠婷婷综合久久图片| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | 免费在线观看日本一区| 国产成人精品无人区| 男人舔女人的私密视频| 精品欧美一区二区三区在线| 国产黄a三级三级三级人| 精品福利观看| 日韩一卡2卡3卡4卡2021年| 黄片小视频在线播放| 亚洲国产欧美网| 桃红色精品国产亚洲av| 一级a爱片免费观看的视频| 一级毛片女人18水好多| 夜夜爽天天搞| av中文乱码字幕在线| 久久人妻av系列| 91av网站免费观看| 成人av一区二区三区在线看| www.精华液| 成在线人永久免费视频| 国产一级毛片七仙女欲春2 | 亚洲专区国产一区二区| 国产97色在线日韩免费| www.999成人在线观看| 一边摸一边抽搐一进一出视频| 99久久国产精品久久久| 国产精品,欧美在线| 国产成+人综合+亚洲专区| 久9热在线精品视频| av视频免费观看在线观看| 国产在线精品亚洲第一网站| 18禁美女被吸乳视频| 老熟妇仑乱视频hdxx| 亚洲欧洲精品一区二区精品久久久| 欧美日韩乱码在线| ponron亚洲| 色尼玛亚洲综合影院| 丝袜美腿诱惑在线| 99久久久亚洲精品蜜臀av| 国产精品 欧美亚洲| 精品国产乱码久久久久久男人| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻熟妇乱又伦精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 老熟妇仑乱视频hdxx| 级片在线观看| 亚洲精品中文字幕一二三四区| 自线自在国产av| 91老司机精品| 老鸭窝网址在线观看| 色在线成人网| 久久 成人 亚洲| 极品教师在线免费播放| 亚洲成人久久性|