• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Efficient Radar Detection Method of Maneuvering Small Targets

    2024-03-18 09:00:16HongchiZhangYuanFengShenghengLiu

    Hongchi Zhang, Yuan Feng, Shengheng Liu

    Abstract: Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins, which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first, and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform (FrFT) is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with -16dB input signal-to-noise ratio (SNR), while requires no exact a priori knowledge on the motion parameters.

    Keywords: small target; chirp; sparse fractional Fourier transform (FrFT)

    1 Introduction

    Radar detection of maneuvering small targets inevitably faces a technical dilemma.On the one hand, in order to improve the signal-to-noise ratio (SNR) and facilitate reliable detection and parameter estimation of weak components, observation time should be prolonged.On the other hand, the effect of range and Doppler walks induced by the maneuvering motion is exacerbated with an extended observation interval [1].Nevertheless, the vital importance of this problem still encourages many radar researchers to seek the solutions.Some relevant works are reviewed as follows.Substantial consecutive radar echoes can be integrated incoherently or coherently to improve the SNR.Typical methods in the former category include Radon transform [2], Hough transform [3], track-before-detection algorithm [4], etc.Because only echo amplitude is utilized while the phase information is totally ignored, these methods generally suffer from integration gain loss.Alternatively, long time coherent integration has been shown to be more effective.Various algorithms as for coherent detection are proposed.Some important advances in the past three years include timereversing transform [5], location rotation transform [6], discrete polynomial-phase transform(DPT) [7], and Radon Fourier transform [8, 9]based schemes.A coarse-to-fine strategy is proposed based on segmented DPT and extends the maximum unambiguous range for chirp rate estimation using coprime slow-time sampling beforehand [1].

    Fractional Fourier transform (FrFT) represents an intuitive and natural domain for the time-frequency analysis of chirp signals, since chirp basis functions are employed to project the original time sequence onto a rotated time axis.We also know that, the scattered electromagnetic energy by multiple maneuvering targets usually manifests itself as chirps in the radar return signal.Thus, by carefully choosing appropriate FrFT rotation angle, each of these target chirps can be transformed to impulses and exhibits sparsity in the matched fractional Fourier domain (FrFD).In the light of this observation, sparse FrFT (SFrFT) is proposed based on the sampling-type numerical algorithm and efficient detection of uniformly accelerating targets is realized [10].On this basis, maneuvering target detection in the presence of strong clutters is considered in and a robust SFrFT is proposed [11].Highly maneuvering targets are further considered and the high-order phase modulation is handled by sparse fractional ambiguity function [12].However, to implement the above algorithms, the prior knowledge on the exact sparsity of targets is essential and brute force searching, which is computationally expensive, is required to obtain the optimal rotation angle.Chirp-rate estimation of multi-component linear frequency modulated (LFM) signal is realised by FrFT and the estimated interval of chirp-rate deducing [13].A short-time FrFT method with adaptive window function is proposed to overcome the shortcomings of single and fixed window function in traditional short-time FrFT, and a time-frequency distribution that better matches the desired signal is achieved [14].An efficient segmented DPT is designed in [15] to yield a coarse parameter estimation of weak chirp signals.But the unambiguous range of difference frequency via segmented DPT, which is associated with the chirp rate estimation, is very limited.This in turn impedes its application to the detection of highly maneuvering targets.In [1],the difference frequency scope is extended and the segmented DPT is modified using coprime sampling, and then the parameter estimation is further refined using an optimized SFrFT, where the requirement of false-alarm rate in practical radar detection of weak target is considered.Because the inter-segment integration with slowtime sampling rate is calculated in vertical direction, energy diffusion of Doppler walks induced by the maneuvering motion is not eliminated.The detection performance will be limited when the input SNR is very low.

    In this work, the inter-segment integration is calculated in the optimal direction to obtain the coarse estimation of the chirp rate to enhance the SNR.The parameter estimation is further refined using an optimized SFrFT, where the requirement of false-alarm rate in practical radar detection of small target is considered.The two above stages collectively constitute an improved coarseto-fine strategy for efficient radar detection of maneuvering small targets.The rest of this paper is organized as follow.Section 2 presents the signal model and the proposed coarse estimation algorithm flow.Section 3 descripts the further refined parameter estimation by using an optimized SFrFT.Simulation results and analyses are given in Section 4.Conclusions are drawn in Section 5.

    2 Coarse Estimation

    The signature of the maneuvering targets is captured by the chirp components in the echo signal.Hence, the problem under investigation, namely,radar detection of maneuvering small targets, can be mathematically modelled as parameter estimation of low-SNR chirp components in the FrFD.We consider a generic noise-corrupted input signal ofN-point, which includesK-chirp components [1], as

    wheren=0,1,···,(N-1) is the time-domain index, andtsrepresents the sampling interval.The termw[n] denotes the additive complex white noise, which is assumed to be Gaussian,i.e.,w~CN(0,σ2).The variablesAk,fk, andμkrespectively denote the amplitude, the initial frequency, and the chirp rate of thek-th chirp component, which are the primary parameters of interest in radar measurement.Similar to coprime segmentation in [1], segmentation is performed before coherent integration to allow parameter estimation of high chirp rate.Concretely, a positive integerLis selected as the segment length.As such, the total number of nonoverlapping segment length isP=round(N/L).Thereby givenn=l+pL, for anyp=0,1,···,(P-1) andl=0,1,···,(L-1) , the [p,l]-th entry in the reshaped discrete signal matrix can be derived from (1) as

    where an arbitrary entry in the original input sequence (1) is mapped to a definite entry in the reshaped matrixs?[p,l] by following the index relationship [p=n/L] andl=n-(p-1)L, andw?(p,l) is the noise matrix.The neighboring entrys within the same column of the reshaped matrix are spacedLsamples apart.The first row in the reshaped matrixs?[p,l] is

    Thep-th row in the reshaped matrixs?[p,l]can be rewritten as follows

    The third exponential function term in (4)is consistent.Comparing (3) and (4), we can find that the initial frequency shifts fromfkto(fk+μkpLts).Suppose that we perform fast Fourier transform (FFT) with respect tolin each row.Letm=0,1,···,(L-1) denote the frequency-domain index.The [p,l]-th entry is converted to

    The initial frequency shift is showed as Fig.1.We readily infer from Fig.1 that, the energy of inter-segment coherent integration in every column is diffusion by Doppler migration.So it is valid only for zero or very small chirp rate.A natural thought is that the inter-segment coherent integration is performed in the bright line direction on Fig.1.In order to reduce the amount of calculation, the inter-segment coherent integration is performed by summing the modulus of every entry in column forS?[p,m]

    Inter-segment integration ofS?[p,m] in bright line direction is

    wheredis the shift factor in every row, which is determined by chirp rateμk, andm=0,1,···,L-1.The results of inter-segment integration in column and bright line direction on Fig.1 are shown as Fig.2.From Fig.2, it can be found that curve of inter-segment integration in column has a small platform, which will be submerged by noise when the input SNR is small.For comparison, a high sharp peak appears in the curve of inter-segment integration in the bright line direction.It is very conducive to detection of maneuvering small targets.However, the prior knowledge on the exact chirp rate is essential or the chirp rate is estimated by brute force searching, which is computationally expensive [1].In this work, an optimization method for chirp rate estimation is proposed to substitute brute force searching.

    Fig.1 Diagram of Doppler migration, S NR =-2dB, L =105

    Fig.2 Inter-segment integration

    In order to better illustrate the principle of the proposed algorithm, only mono-chirp case is taken into account below.As such, we omit the subscriptkin the parameters.Note that, the conclusions and methodology can be easily generalized to more complicated multiple chirp component cases.From (7), we obtain the coarse estimation of chirp rate as

    whereS[·] represents the result of inter-segment integration.The optimization problem (8) is solved by using one-dimensional searching technology, which is implemented by quadratic interpolation technology.The chirp rate coarse estimation is summarized in Algorithm 1.

    Algorithm 1 Chirp rate coarse estimation 1: Inputs:?S[p,m],{a,b},ε L, P, ;?μ a,b,L,P,ε, ?S[p,m]=Opt-S( );

    a,b,L,P,ε, ?S[p,m]2: procedure Opt-S ( )3: Notice! The Cost_F must be a low single peak in[a, b]c=(a+b)/2 4: ;fa =Cost_F(a,L,P,ε, ?S[p,m])5: ;fb =Cost_F(b,L,P,ε, ?S[p,m])6: ;fc =Cost_F(c,L,P,ε, ?S[p,m])7: ;b-a ≥ε 8: while do x a,c,b 9: calculate , by minimizing the quadratic interpolation function( );fx =Cost_F(x,L,P,ε, ?S[p,m])10: ;a,b,c a,b,c,x 11: optain new from according to the relationship of the function values;12: end while ?μ= c 13: return ;14: end procedure CostF x,L,P, ?S[p,m]15: procedure ( )?Sip[m,x]=∑P L2t2 s‖‖‖?S[p,m?]‖‖‖2 16: ;m? =m-round(xp)17: ;?Smaxip[x]=arg max p=1 Svp[m,x]18: ;m fvalue =-Smaxip[x]19: ;fvalue 20: return ;21: end procedure

    3 Refining the Coarse Estimation by Sparse FrFT

    Eq.(5) performs FFT for every row, and segmented signal lengthLis generally small.The estimated chirp rate can be considerably inaccurate due to the high noise level and the coarse resolution grid.In the light of these limitations,we further refine the parameter estimation in a significantly narrowed range in the fractional Fourier domain.Since the coarse estimated chirp rate has been obtained, the parameter estimation refining can perform by brute force searching in a small range.The phase correction SFrFT[16] is utilized to reduce the amount of FrFT computation.The specific algorithm can refer the Algorithm 2 in [1], and also, the optimization method similar to the Algorithm 1 in this paper can be used to further reduce the amount of operation.

    4 Numerical Simulations

    In this section, numerical simulations are provided to showcase the advanced performance of the proposed detection scheme for maneuvering small targets.In both simulations, we assume that the radar operates at a center frequency offc=3 GHz, and the pulse repetition interval is 0.125 mswhich corresponds to a sampling rate offs=8 000 Hz.The input SNR is -16 dB.We consider a single target with an initial velocity ofv=50 m/s and an acceleration rate ofa=10 m/s2.The corresponding initial frequency and chirp rate arefini=1 000 Hz andμ=200 Hz/s, respectively.In the coarse estimation of the chirp rate procession, the segment length isL=105, and the signal length isN=20 160.The total number of non-overlapping segment length isP=N/L=192.The initial estimation of chirp rate range is 100 Hz/s ≤μ≤300 Hz/s, which corresponds to the acceleration rate of the target in the range of 5 m/s2≤a≤15 m/s2.The results of the segmented FFT with segment lengthsL=105 are given in Fig.3.It can be found that the bright line caused by Doppler migration is Blur caused by noise.The coarse estimation of the chirp rate is obtained by Algorithm 1,μ?=199.741 7 Hz/s.The inter-segment integrations along an oblique line direction are calculated 7 times.The oblique line search direction is determined by tentative chirp rate.The results of inter-segment integration in column and the estimated bright line direction in Fig.3 are shown as Fig.4.From Fig.4,we can readily see, a noticeable spike appears on the curve of optimal inter-segment integration direction, and multiple small amplitude peaks appear on the curve of inter-segment integration in column.The results corroborate that the proposed optimal coarse estimation of the chirp rate is very effective.To examine the effect of signal length on coarse estimation, simulations are performed on distinct signal lengths.The results of coarse estimation with 2 times and 8 times original signal length are given in Fig.5 and Fig.6.Comparing Fig.4, Fig.5 and Fig.6, it can be found that the SNR of optimal coarse estimation results is promoted with the increase of signal length, but no peaks can be observed on the curve with 8 times original signal length integrated in column.

    Fig.3 Diagram of Doppler migration, signal lengthN

    Fig.4 Inter-segment integration, signal lengthN

    Fig.5 Inter-segment integration, signal length2N

    Fig.6 Inter-segment integration, signal length8N

    The results of discrete FrFT (DFrFT) and SFrFT using the rotation angle matched with coarse estimated chirp rate 199.741 7 Hz/s are provided in Fig.7.Local magnified view near the peak is given in Fig.8.Fine search is conducted and we find the maximum amplitude at the chirp rate 200 Hz/s, as shown in Fig.9.Fig.10 is its local magnified view near the peak.The signal length is selectedNs=32 768, and the other parameters are the same as coarse estimation.The center frequency is(fini+μN(yùn)sts/2)=1 409.6 Hz/s.We also readily see from Fig.8 and Fig.10 that, the results of SFrFT can achieve a good approximation of DFrFT, and SFrFT refining lets the peak amplitude increase by 44.78.Meanwhile, the computational complexity is significantly reduced.

    Fig.7 FrFT spectra using conventional DFrFT and SFrFT using rotation angles corresponding to the coarse chirp rate estimations

    Fig.8 FrFT spectra and local zoomed results of Fig.7

    Fig.9 FrFT spectra using conventional DFrFT and SFrFT using rotation angles corresponding to the refined chirp rate estimations

    Fig.10 FrFT spectra and local zoomed results of Fig.9

    5 Conclusion

    A coarse-to-fine strategy is designed to help radar operators to observe highly maneuvering small targets that are otherwise difficult to detect.The target-scattered energy in the radar return is coherently integrated in the FrFD using an efficient sparsity-aware numerical algorithm termed optimized SFrFT.The optimized SFrFT allows custom configuration of false-alarm rate.But prior knowledge on exact sparsity and matched rotation angle is also required.Hence,we perform segmented coherent integration first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp parameter.The potential of the proposed two-stage scheme is showcased in the numerical simulations.Non-coherent integration is used to obtain coarse chirp-rate estimation.The coherent integration can be utilized to further increase the accuracy.However, coherent integration results in higher complexity, and the proposed non-coherent integration method can estimate the chirp rate when the SNR is -16 dB.So noncoherent integration method is selected.In the presence of multiple chirp components, the optimization process of coarse estimation will have multiple maxima at multiple angles and the optimization algorithm will be more complicated.

    亚洲情色 制服丝袜| 少妇裸体淫交视频免费看高清 | 人人妻,人人澡人人爽秒播| 亚洲情色 制服丝袜| 热99re8久久精品国产| 国产有黄有色有爽视频| 深夜精品福利| 亚洲国产日韩一区二区| 欧美精品一区二区大全| 黑丝袜美女国产一区| 国产有黄有色有爽视频| 99精国产麻豆久久婷婷| 欧美黄色片欧美黄色片| 精品少妇黑人巨大在线播放| 一级,二级,三级黄色视频| 色综合欧美亚洲国产小说| 午夜91福利影院| 亚洲精品国产区一区二| 日韩三级视频一区二区三区| 国产极品粉嫩免费观看在线| www.熟女人妻精品国产| 下体分泌物呈黄色| 日韩制服丝袜自拍偷拍| 久久女婷五月综合色啪小说| 麻豆国产av国片精品| 亚洲精品国产色婷婷电影| 久久精品亚洲熟妇少妇任你| 国产精品久久久av美女十八| 免费女性裸体啪啪无遮挡网站| 免费观看a级毛片全部| 亚洲av电影在线观看一区二区三区| 老司机在亚洲福利影院| 久久精品国产a三级三级三级| 日韩电影二区| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡动漫免费视频| 一级毛片精品| 超碰97精品在线观看| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 国产成人欧美在线观看 | 777米奇影视久久| 久久热在线av| 激情视频va一区二区三区| 考比视频在线观看| 一级片免费观看大全| 欧美日韩亚洲国产一区二区在线观看 | 午夜视频精品福利| 国产精品.久久久| 制服诱惑二区| 天堂8中文在线网| 下体分泌物呈黄色| 大型av网站在线播放| 亚洲精华国产精华精| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 丁香六月天网| 精品免费久久久久久久清纯 | 国产成人影院久久av| 一级毛片电影观看| 不卡一级毛片| 老汉色av国产亚洲站长工具| 操出白浆在线播放| 在线观看舔阴道视频| 欧美亚洲日本最大视频资源| 99re6热这里在线精品视频| 1024视频免费在线观看| 久久影院123| 国产精品1区2区在线观看. | 999精品在线视频| 午夜福利,免费看| 桃红色精品国产亚洲av| 久久 成人 亚洲| 悠悠久久av| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码| 中文字幕精品免费在线观看视频| 精品视频人人做人人爽| 俄罗斯特黄特色一大片| 性色av乱码一区二区三区2| 老司机福利观看| 99香蕉大伊视频| 国产熟女午夜一区二区三区| 国产成人一区二区三区免费视频网站| 女警被强在线播放| 日韩 欧美 亚洲 中文字幕| 日韩精品免费视频一区二区三区| 日韩精品免费视频一区二区三区| 超色免费av| 正在播放国产对白刺激| 妹子高潮喷水视频| 国产一区二区三区在线臀色熟女 | 成年人午夜在线观看视频| 中文字幕制服av| 国产成人影院久久av| 精品久久久久久久毛片微露脸 | 欧美黑人精品巨大| 日韩欧美一区视频在线观看| 两个人免费观看高清视频| 亚洲成人国产一区在线观看| 高清视频免费观看一区二区| 国产精品.久久久| 日韩三级视频一区二区三区| 日本黄色日本黄色录像| 黑丝袜美女国产一区| 日本wwww免费看| 国产1区2区3区精品| www.自偷自拍.com| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 国产精品国产三级国产专区5o| 一二三四社区在线视频社区8| 18禁黄网站禁片午夜丰满| 99久久综合免费| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 一级毛片电影观看| 丝瓜视频免费看黄片| 最近中文字幕2019免费版| 国产成人欧美在线观看 | 欧美日韩国产mv在线观看视频| 精品亚洲成a人片在线观看| 久久99一区二区三区| 午夜成年电影在线免费观看| 亚洲全国av大片| 丝袜美腿诱惑在线| 搡老乐熟女国产| 蜜桃国产av成人99| 国内毛片毛片毛片毛片毛片| 午夜久久久在线观看| 秋霞在线观看毛片| 亚洲九九香蕉| 欧美大码av| 婷婷成人精品国产| 国产伦人伦偷精品视频| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 国产精品一区二区免费欧美 | 午夜激情久久久久久久| 妹子高潮喷水视频| 欧美xxⅹ黑人| 亚洲 欧美一区二区三区| 国产深夜福利视频在线观看| 亚洲一区二区三区欧美精品| 精品高清国产在线一区| 久久精品国产亚洲av香蕉五月 | 国产精品 国内视频| 欧美久久黑人一区二区| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 丰满少妇做爰视频| av天堂在线播放| 欧美 日韩 精品 国产| 十分钟在线观看高清视频www| av片东京热男人的天堂| 十分钟在线观看高清视频www| 亚洲第一欧美日韩一区二区三区 | 日韩中文字幕欧美一区二区| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 亚洲色图综合在线观看| 美女国产高潮福利片在线看| 三上悠亚av全集在线观看| 久久中文看片网| 精品一区二区三区四区五区乱码| 少妇 在线观看| 99国产精品免费福利视频| 亚洲熟女毛片儿| 精品人妻熟女毛片av久久网站| 精品熟女少妇八av免费久了| 精品一区二区三区av网在线观看 | 女人爽到高潮嗷嗷叫在线视频| 国产精品欧美亚洲77777| 久久精品国产综合久久久| 午夜影院在线不卡| 国产一区二区三区av在线| 亚洲av片天天在线观看| 美女高潮喷水抽搐中文字幕| 国产成人免费观看mmmm| 国产成人欧美| 人成视频在线观看免费观看| 亚洲av成人一区二区三| 欧美激情 高清一区二区三区| 老司机午夜十八禁免费视频| 国产精品国产三级国产专区5o| 一个人免费在线观看的高清视频 | 嫩草影视91久久| 亚洲国产精品一区二区三区在线| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品日韩在线中文字幕| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 国产精品亚洲av一区麻豆| 久久国产精品影院| 亚洲欧美一区二区三区黑人| 久久 成人 亚洲| 精品一品国产午夜福利视频| 麻豆国产av国片精品| 亚洲va日本ⅴa欧美va伊人久久 | 久久热在线av| 午夜福利视频在线观看免费| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 热99久久久久精品小说推荐| 日韩中文字幕视频在线看片| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久久久久婷婷小说| 黑人操中国人逼视频| 国产免费av片在线观看野外av| 国产麻豆69| 国产精品一区二区精品视频观看| 美女脱内裤让男人舔精品视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一区蜜桃| av超薄肉色丝袜交足视频| 热re99久久国产66热| 考比视频在线观看| 色综合欧美亚洲国产小说| 午夜视频精品福利| 国产精品成人在线| 老司机在亚洲福利影院| 国产男女超爽视频在线观看| 高潮久久久久久久久久久不卡| 日韩 欧美 亚洲 中文字幕| 欧美日韩一级在线毛片| 亚洲五月色婷婷综合| 91成年电影在线观看| 欧美少妇被猛烈插入视频| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 一本久久精品| 久久久久精品人妻al黑| 亚洲av电影在线观看一区二区三区| 日本91视频免费播放| 免费观看a级毛片全部| 9热在线视频观看99| 十八禁网站免费在线| 91麻豆av在线| 久久久国产欧美日韩av| 日韩制服骚丝袜av| 999久久久精品免费观看国产| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 欧美老熟妇乱子伦牲交| 免费av中文字幕在线| 人人妻,人人澡人人爽秒播| 视频在线观看一区二区三区| 手机成人av网站| 大香蕉久久网| 青青草视频在线视频观看| 国产日韩欧美在线精品| 成人国产av品久久久| 国产在线一区二区三区精| 亚洲五月婷婷丁香| 欧美 亚洲 国产 日韩一| 亚洲久久久国产精品| 欧美中文综合在线视频| 国产野战对白在线观看| bbb黄色大片| 建设人人有责人人尽责人人享有的| 香蕉丝袜av| 精品国产乱子伦一区二区三区 | 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 成人三级做爰电影| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 国产精品一区二区精品视频观看| 69av精品久久久久久 | 亚洲av成人不卡在线观看播放网 | 亚洲精品一区蜜桃| 热99re8久久精品国产| 国产精品免费视频内射| 国产精品av久久久久免费| www.熟女人妻精品国产| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 99热全是精品| 国产福利在线免费观看视频| 在线观看舔阴道视频| 亚洲,欧美精品.| 女人精品久久久久毛片| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 欧美中文综合在线视频| 欧美在线黄色| 黄色片一级片一级黄色片| 黑人巨大精品欧美一区二区mp4| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 亚洲精品一区蜜桃| av福利片在线| 天堂俺去俺来也www色官网| 大型av网站在线播放| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 国产成人免费观看mmmm| 好男人电影高清在线观看| 日韩大码丰满熟妇| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 高清在线国产一区| 午夜影院在线不卡| 国产成人免费观看mmmm| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看| 精品国产国语对白av| 男女床上黄色一级片免费看| 亚洲欧洲精品一区二区精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 啪啪无遮挡十八禁网站| 亚洲国产av新网站| 欧美激情 高清一区二区三区| 亚洲精品自拍成人| 大型av网站在线播放| 狂野欧美激情性xxxx| 真人做人爱边吃奶动态| 飞空精品影院首页| 午夜免费观看性视频| 男男h啪啪无遮挡| 国产精品影院久久| 国产亚洲精品久久久久5区| 操出白浆在线播放| 欧美乱码精品一区二区三区| 亚洲欧美色中文字幕在线| 高清欧美精品videossex| 亚洲欧美日韩另类电影网站| www.自偷自拍.com| 五月开心婷婷网| 一进一出抽搐动态| 午夜91福利影院| 亚洲第一av免费看| 欧美在线一区亚洲| 9色porny在线观看| 亚洲国产成人一精品久久久| 亚洲精品美女久久久久99蜜臀| 老司机午夜十八禁免费视频| 男人爽女人下面视频在线观看| avwww免费| 69精品国产乱码久久久| 亚洲av成人一区二区三| 国产又色又爽无遮挡免| 大香蕉久久成人网| xxxhd国产人妻xxx| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸 | 精品欧美一区二区三区在线| 国产精品久久久久久精品电影小说| 考比视频在线观看| 欧美日韩福利视频一区二区| 精品国产国语对白av| 亚洲成人国产一区在线观看| 国产精品 欧美亚洲| 少妇精品久久久久久久| 久久久精品国产亚洲av高清涩受| 999精品在线视频| 最新的欧美精品一区二区| 夜夜骑夜夜射夜夜干| 国产在线免费精品| 国产精品一区二区免费欧美 | 久久青草综合色| 亚洲精品美女久久久久99蜜臀| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| 久久99热这里只频精品6学生| 一本一本久久a久久精品综合妖精| 精品第一国产精品| 免费在线观看完整版高清| 成人影院久久| 一二三四社区在线视频社区8| 国产精品一区二区免费欧美 | 一本久久精品| 51午夜福利影视在线观看| 丰满少妇做爰视频| 在线看a的网站| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 亚洲欧美清纯卡通| 国产伦人伦偷精品视频| 黄色视频在线播放观看不卡| 视频在线观看一区二区三区| 欧美日韩黄片免| 欧美精品一区二区免费开放| 12—13女人毛片做爰片一| 日本av免费视频播放| 亚洲成人免费电影在线观看| 美女主播在线视频| 老熟女久久久| 国产成人免费观看mmmm| 天天影视国产精品| 法律面前人人平等表现在哪些方面 | 后天国语完整版免费观看| 一区二区三区激情视频| 欧美精品一区二区免费开放| 91字幕亚洲| 在线观看免费午夜福利视频| av线在线观看网站| 亚洲av男天堂| 国产淫语在线视频| 国产精品欧美亚洲77777| 久久久欧美国产精品| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 亚洲精品久久午夜乱码| 成人免费观看视频高清| netflix在线观看网站| 俄罗斯特黄特色一大片| 又黄又粗又硬又大视频| 天天操日日干夜夜撸| 一本—道久久a久久精品蜜桃钙片| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 国产免费av片在线观看野外av| 久久影院123| 一本一本久久a久久精品综合妖精| 一级毛片女人18水好多| 一个人免费在线观看的高清视频 | 国产精品.久久久| 精品高清国产在线一区| 少妇裸体淫交视频免费看高清 | 肉色欧美久久久久久久蜜桃| 欧美精品啪啪一区二区三区 | 欧美乱码精品一区二区三区| 亚洲国产精品一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 日韩电影二区| 人人澡人人妻人| 啦啦啦 在线观看视频| av在线播放精品| 久久久国产精品麻豆| 黑人操中国人逼视频| 国产亚洲精品久久久久5区| 成年人午夜在线观看视频| 亚洲av国产av综合av卡| 中文字幕制服av| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 亚洲性夜色夜夜综合| 亚洲欧美清纯卡通| 久久精品成人免费网站| 黄网站色视频无遮挡免费观看| 欧美精品一区二区免费开放| 丝瓜视频免费看黄片| 18禁裸乳无遮挡动漫免费视频| 午夜福利乱码中文字幕| 国产日韩一区二区三区精品不卡| 国产精品.久久久| 天天躁日日躁夜夜躁夜夜| 大型av网站在线播放| 亚洲精品第二区| 久久香蕉激情| 精品亚洲乱码少妇综合久久| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 91精品伊人久久大香线蕉| 亚洲九九香蕉| 亚洲欧美日韩另类电影网站| 久久久国产成人免费| videos熟女内射| 夫妻午夜视频| 精品少妇黑人巨大在线播放| 一区二区三区乱码不卡18| 大型av网站在线播放| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区精品| 97在线人人人人妻| 亚洲欧洲日产国产| 日韩三级视频一区二区三区| 我要看黄色一级片免费的| 免费看十八禁软件| 欧美+亚洲+日韩+国产| 日韩中文字幕视频在线看片| 久久亚洲国产成人精品v| 久久久久久久精品精品| 天天添夜夜摸| 欧美日韩av久久| 久久九九热精品免费| 伊人久久大香线蕉亚洲五| 亚洲成国产人片在线观看| 80岁老熟妇乱子伦牲交| 国产免费视频播放在线视频| cao死你这个sao货| 国产精品久久久久久精品古装| 久久这里只有精品19| 国产真人三级小视频在线观看| 精品第一国产精品| 啦啦啦 在线观看视频| 亚洲久久久国产精品| 欧美另类亚洲清纯唯美| 亚洲精品国产av蜜桃| 国产成人精品无人区| 丰满少妇做爰视频| 黄频高清免费视频| 91大片在线观看| 国产成人欧美| tocl精华| 婷婷色av中文字幕| 中文欧美无线码| 丰满饥渴人妻一区二区三| 亚洲五月婷婷丁香| 一区二区三区激情视频| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 丝袜人妻中文字幕| 韩国高清视频一区二区三区| 中文欧美无线码| 国产成人欧美| 99精品久久久久人妻精品| 在线观看www视频免费| 最新的欧美精品一区二区| 又紧又爽又黄一区二区| 国产免费福利视频在线观看| www日本在线高清视频| 51午夜福利影视在线观看| 岛国在线观看网站| 免费女性裸体啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| 亚洲精品中文字幕一二三四区 | 咕卡用的链子| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 亚洲人成电影观看| 精品亚洲乱码少妇综合久久| 搡老乐熟女国产| 99精国产麻豆久久婷婷| 亚洲中文字幕日韩| 日本wwww免费看| 他把我摸到了高潮在线观看 | 91成人精品电影| 久久ye,这里只有精品| 黑丝袜美女国产一区| 一边摸一边做爽爽视频免费| 女警被强在线播放| 欧美变态另类bdsm刘玥| 午夜91福利影院| 国产黄色免费在线视频| 91成人精品电影| 久久久久久久久免费视频了| 少妇裸体淫交视频免费看高清 | 国产黄频视频在线观看| 91成人精品电影| 人人澡人人妻人| 亚洲欧美精品自产自拍| 老汉色∧v一级毛片| 亚洲第一欧美日韩一区二区三区 | 中文字幕人妻丝袜制服| 亚洲精品在线美女| 狂野欧美激情性xxxx| 日本黄色日本黄色录像| 国产老妇伦熟女老妇高清| 国产熟女午夜一区二区三区| 青春草视频在线免费观看| 中文字幕av电影在线播放| 国产精品 国内视频| 嫩草影视91久久| 搡老乐熟女国产| 丝袜美腿诱惑在线| 婷婷成人精品国产| 美女扒开内裤让男人捅视频| 91成年电影在线观看| 久久国产精品影院| 成人国语在线视频| 精品少妇黑人巨大在线播放| 亚洲午夜精品一区,二区,三区| 美女主播在线视频| av视频免费观看在线观看| 黄色毛片三级朝国网站| 欧美精品一区二区大全| 欧美+亚洲+日韩+国产| 制服人妻中文乱码| 精品免费久久久久久久清纯 | 精品少妇一区二区三区视频日本电影| 老司机午夜十八禁免费视频| 亚洲国产精品999| 女性被躁到高潮视频| 精品熟女少妇八av免费久了| 久久久精品免费免费高清| 天天躁日日躁夜夜躁夜夜| 欧美日韩视频精品一区| 日本欧美视频一区| 一级毛片精品| 亚洲激情五月婷婷啪啪| 少妇精品久久久久久久| 国产1区2区3区精品| 最新的欧美精品一区二区| 亚洲成人免费av在线播放| 脱女人内裤的视频| 老鸭窝网址在线观看| 国产在线一区二区三区精| 人人澡人人妻人| 亚洲一码二码三码区别大吗| 天天躁夜夜躁狠狠躁躁| 国产日韩一区二区三区精品不卡| 成年美女黄网站色视频大全免费| 欧美亚洲日本最大视频资源| 国产精品欧美亚洲77777| 香蕉丝袜av| 飞空精品影院首页| 亚洲精品国产色婷婷电影| 51午夜福利影视在线观看| 在线亚洲精品国产二区图片欧美| 欧美国产精品一级二级三级| 91av网站免费观看| 亚洲国产成人一精品久久久| 中文字幕最新亚洲高清| 最近中文字幕2019免费版| 欧美 日韩 精品 国产| 国产高清国产精品国产三级| 免费观看人在逋| 国产欧美日韩一区二区三区在线|