• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biodegradable and flexible ι-carrageenan based RRAM with ultralow power consumption

    2024-02-29 09:19:24JingYaoBian卞景垚YeTao陶冶ZhongQiangWang王中強(qiáng)XiaoNingZhao趙曉寧YaLin林亞HaiYangXu徐海陽(yáng)andYiChunLiu劉益春
    Chinese Physics B 2024年2期
    關(guān)鍵詞:徐海陶冶

    Jing-Yao Bian(卞景垚), Ye Tao(陶冶),?, Zhong-Qiang Wang(王中強(qiáng)),2, Xiao-Ning Zhao(趙曉寧),Ya Lin(林亞),2, Hai-Yang Xu(徐海陽(yáng)),2,?, and Yi-Chun Liu(劉益春),2

    1Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education,Northeast Normal University,Changchun 130024,China

    2National Demonstration Center for Experimental Physics Education,Northeast Normal University,Changchun 130024,China

    Keywords: RRAM,transient electronics,ι-carrageenan,ultralow power consumption

    1.Introduction

    Various emerging electronic technologies that can provide great convenience for daily life have even thoroughly discredited our life-style in society today.[1,2]To prevent the rapid growth of global electronic waste causing severe environmental pollution,addressing electronic waste is a critical issue.[3–5]Transient electronics have the characteristics of disappearing,dissolving or degrading in a controlled way,providing new opportunities for developing the waste-free technology.[6]Transient memory is one of the most important components in transient electronics, which attracts great attention because it can offer data security by self-destruction on demand,thus avoiding sensitive information exposure.[7–9]Resistive random access memory(RRAM)is one of the most promising candidates for next-generation nonvolatile memory for simple structure,fast speed and ultra-high density storage capacity.[10,11]

    Previously,various types of biodegradable materials have been employed to fabricate transient RRAM devices.[11–14]For example, Leeet al.reported a flexible transient RRAM device with a Mg/Ag-doped chitosan/Mg structure, which could be dissolved in deionized (DI) water.[15]Tanget al.demonstrated a flexible resistive switching (RS) memory of CsPbBr3thin films, which could be rapidly dissolved in DI water.[16]These works have provided effective approaches for realizing the transient characteristics of RRAM devices,promoting the development of transient memories.From these reported works we can find that most of the transient RRAM devices are electrochemical metallization(ECM)based memories.[11,12,17,18]Generally,the formation/dissolution of metallic conductive filaments (CFs) under an electric field is regarded as the physical mechanism of RS,which includes the oxidation process of Ag atoms,and the migration and reduction processes of Ag ions.However, different from traditional ECM devices, theι-carrageenan (ι-car)molecular contains abundant functional groups, such as C–O–C and C–O–H, which can interact with metal ions.Especially, used as the insulating material of the building blocks for RRAM devices, oxygen-containing functional groups can act as the “active center” for ion conduction.The continuous interaction between these functional groups and metal ions can promote the migration of metal ions, which is one of the most desired material characteristics for developing high performance RRAM devices.[19]In addition,ι-car contains abundant hydrophilic functional groups, and water molecules can readily infiltrate into theι-car molecular structure,facilitating the degradable process.[20]

    In this work,we introduced biocompatibleι-car extracted from natural seaweed as the active layer.The tiny operating current of 1μA suggests that the fabricated Ag/ι-car/Pt RRAM devices consume low power.Moreover,by leveraging a highspeed pulse measurement system, we achieved an ultralow energy consumption of 56 fJ.Additionally, theseι-car-based RRAM devices also demonstrate excellent resistance switching performance, flexibility, and multilevel storage characteristics.The related mechanism was investigated via conducting atomic force microscopy (C-AFM) and temperaturedependent resistance measurements.In addition,the preparedι-car based RRAM devices were stable in DI water at room temperature.However,it can be rapidly dissolved in water after heating,which suggests that the naturalι-car materials can be used as attractive building blocks for highly reliable transient RRAM devices.

    2.Experiment

    First, a SiO2/Si substrate was ultrasonically cleaned in trichloro ethylene, acetone, ethanol, and distilled water for 12 min each to remove impurities at room temperature, then dried using N2gas.Secondly, 200 nm thick Pt film with 10 nm thick Ti adhesion layer was deposited by magnetron sputtering.Then,ι-car powder (commercial grade, Sigma-Aldrich, CAS number: 9062-07-1) was dissolved (1 wt/v%)in 1% acetic acid solution in distilled water with continuous stirring at 400 rpm for 24 h and then filtered through a PVDF syringe filter(0.2μm).The Pt substrate was exposed to oxygen plasma for 5 min, then theι-car solution (80 μL) in two drops was spin-coated on the Pt substrate at 500 rpm for 10 s and 3000 rpm for 20 s.Finally,an Ag top electrode with a diameter of 300μm was deposited by thermal evaporation using a shadow mask.

    3.Results and discussion

    Theι-car was prepared through solution extraction from natural seaweed,as presented in Fig.1(a).Theι-car extracted from seaweed was used as the RS layer.The fabricated RRAM device in this work is based on a metal–insulator–metal configuration, as shown in Fig.1(b).To intuitively reveal the three-layer structure,the cross-sectional scanning electron microscope (SEM) image of the fabricated Ag/ι-car/Pt RRAM device is shown in Fig.1(c).Theι-car layer with a thickness of~100 nm was clearly observed between the Pt bottom electrode and the Ag top electrode.The Ag-electrodesize-dependent RS measurements were also carried out (see Figs.S1 and S2, supporting information).The electrode size had no obvious influence on the RS performance, confirming the filamentary-type RS of the Ag/ι-car/Pt memory.Moreover, the fabricatedι-car film had a smooth surface of rootmean-square roughness(Rq)equal to 2.4 nm,which is demonstrated by the two-dimensional AFM image(Fig.1(d)).These characteristics not only guarantee the material reliability of large-areaι-car thin films,but also demonstrate its application potential in flexible electronics.

    Fig.1.(a)Seaweed image and the typical molecular structure of ι-car.(b)Structural diagram of the Ag/ι-car/Pt RRAM devices.(c)The crosssectional SEM image of the fabricated device.(d)The AFM shows the surface morphology of the ι-car film.

    First, the RS behaviors of the fabricated RRAM devices were thoroughly investigated.Figure 2(a) shows the typical current–voltage (I–V) curves of the Ag/ι-car/Pt RRAM devices.We can see that the fabricated memory cells could be written (2 V) and erased (-3 V) under the direct current(DC)voltage sweeping operation.Importantly,our Ag/ιcar/Pt RRAM devices exhibited tunable RS properties with respect to different compliance currents (CCs), i.e., 1 μA,50μA,500μA and 1 mA.The retention ability of multilevel resistance states was also demonstrated(Fig.2(b)),and a stable retention exceeding 104s under a constant read voltage of 0.1 V was observed.These five resistance states offer a unique opportunity for achieving multilevel storage.The reproducible RS measurements in Fig.2(c) show that four distinguishable low resistance states(LRS)were obtained by varying the CCs;while the high resistance state (HRS) was basically independent of the CCs.According to some reported works,[21]the physical mechanism of the CCs-modulated multilevel storage could be associated with the size variation of CFs.From these reliable RS properties,we can deduce that the CFs of the Ag/ιcar/Pt RRAM devices can be controlled precisely, which can be related to the material characteristics of theι-car layer,and it will be emphatically studied in the mechanism part.

    In addition to excellent RS characteristics for nonvolatile storage, the device power consumption was also evaluated through the voltage sweep and pulse operation modes, as shown in Fig.3.It is known that the power consumption of RRAM is mainly determined by the RESET current,[22,23]as shown in Fig.3(a).Figure 3(b) shows the device power of multilevel memory states obtained at different CCs.The minimum power and RESET current of the Ag/ι-car/Pt RRAM devices were~0.3μW and 1μA,respectively,which are relatively low compared with those of other biodegradable memory devices.[12–14]Generally, the power consumption of RESET process is directly influenced by the last SET process.The energy consumption was precisely measured through the high-speed pulse mode.The RS time was monitored using a pulse generator(TTiTGA12104),an oscilloscope(Keysight DSOS404A), and a load resistor (1 M?).The pulse test electrical diagram and the results are shown in Figs.3(c)and 3(d), respectively.The imperfect pulse waveforms and current responses could be attributed to parasitic effects in the testing circuitry.[24]The “input signal” from a waveform generator was designed as a voltage-pulse sequence, as follows: READ1st→SET→READ1nd→RESET→READ2ndpulse.Two READ pulses were input before and after the SET(RESET) pulse to determine whether a SET (RESET) transition occurred.The pulse amplitude/width was 2 V/50 ns for the SET pulse and 1 V/50 ns for both READ pulses.The voltage drop on the load resistor was defined as the “output signal”.The switching time in the SET operation can be determined from the time delay between the “input signal”and “output signal”, while the reset time can be determined from the width of the output pulse,as shown in Figs.3(e)and 3(f).The set and reset times were approximately 22.2 ns and 26 ns, respectively.More importantly, the energy consumption of the reset process was as low as~56 fJ, which was even lower than those of the traditional oxide-based ECM devices(see Table 1).[25–29]From Table 1 we can also find that proteins-based devices have relatively high reset currents and polysaccharides-based ones demonstrate relatively low reset voltages,[13–15,17,18,30]while the RRAM devices based onι-car material have the lowest reset current and energy consumption.All above results demonstrate that the Ag/ι-car/Pt RRAM devices exhibit the capacities of reliable high-speed switching and ultralow energy consumption.

    Fig.2.(a) Typical I–V characteristics of the Ag/ι-car/Pt RRAM device under different CCs of 1 μA, 50 μA, 500 μA and 1 mA.(b) The retention characteristics of the five resistance states.(c)Statistical values of HRS and LRS under reproductive RS measurement with different CCs values.

    Fig.3.(a)The I–V curves of the Ag/ι-car/Pt RRAM devices at CCs of 1μA.(b)The variations of RESET power with different CCs for the same device.(c) Pulse test electrical schematic diagram.(d) RS-speed test of the Ag/ι-car/Pt memory devices triggered under pulse mode.Panels(e)and(f)show the set and reset time of memory cells,respectively.

    Table 1.Power consumption comparisons of the present Ag/ι-car/Pt devices with those of previously reported RRAM.

    Fig.4.(a)FTIR spectrum of the ι-car thin film.(b)Schematic diagram of Ag migration mechanism.

    The functional groups of theι-car were identified using Fourier-transform infrared spectrum (FTIR), as shown in Fig.4(a),which was obtained using transmittance mode in the range 650–4000 cm-1.The spectrum revealed the presence of multifarious functional groups, such as C–O, C–O–C, C–H,and O=S=O.[34]These oxygen-containing functional groups play an important role in the process of RS.As shown in Fig.4(b), when a positive voltage is applied to the Ag electrode,oxidized Ag metal ions can migrate by interacting with these functional groups(C–O–C,C–O–H,et al.),[20]thus the CFs will preferentially grow along the locations rich in functional groups.[35]And when a negative voltage is applied to the Ag electrode, Joule-heating-assisted electrochemical dissolution process occurs,thus CFs break in the weakest region.The formation and rupture of CFs contribute to the repeatable RS.

    The activation energy could be roughly equal to the sum of the migration barriers,[36,37]which would change due to mechanical stresses caused by thermal expansion.To evaluate the activation energy coefficient and the effect of temperature on switching time, we performed a temperature change test.As shown in Fig.5(a), theVSETwas primarily determined by the barrier energy for Ag-migration, which could be estimated by measuring the SET switching time as a function of temperature.[38,39]As shown in Fig.5(b),the switching time was sensitive to temperature, which decreased exponentially and can be expressed based on the Arrhenius relation as follows:[40,41]

    whereEa,kBandTare the barrier energy, Boltzmann constant, and temperature, respectively.As shown in Fig.5(c),the barrier energy was calculated from the slope of the Arrhenius plots,which yielded 0.2 eV for the devices with abundant hydroxyl functional groups.The lower migration barrier of Ag ions in RS insulating layer could have contributed to theVSETreduction and low power consumption.

    On the basis of the calculated results of activation energy,we will discuss the possible physical mechanism for low power operation of Ag/ι-car/Pt memory cells as follows.Leeet al.demonstrated the ultralow power consumption biomemristors of Ag/Ag-doped CM:κ-car/Pt RRAM devices by introducing carboxymethyl (CM) groups.[42]Oxygen atoms containing lone pair electrons can serve as “active centers” for ions conduction,and water molecules coordinate with the lone pair electrons to the vacant orbital(primarily hybrid orbital)of the Ag ions,which form electrovalence or covalent coordination bonds with Ag ions,[19]moreover, the functional groups(C–O–C and C–O–H) can form cross-linking networks with other components in the polymer electrolyte and enable complexation with metal ions.[20,42,43]Therefore,it is more easier for Ag metal ions to migrate in the polymers containing functional groups, which is the root reason of lower power consumption for our Ag/ι-car/Pt memory cells.

    Fig.5.(a)SET switching response of Ag/ι-car/Pt memory cells under different temperatures.(b)Temperature dependence of SET switching time for the memory cells,as well as(c)Arrhenius plots for determining migration barrier energy(Ea).

    To further investigate the conductive path during the RS process,C-AFM was also performed to analyze both the HRS and LRS.The conductive cantilever was scanned over an area of 1 μm×1 μm and the read voltage was set to 100 mV.As shown in Fig.6(a), the current value at HRS was very low and no remarkable localized current paths were observed.In contrast, when the RRAM device was switched to the LRS(CC~1 μA), two tiny localized current paths emerged, as shown in Fig.6(b), indicating the formation of nanometerscale conducting channels.To demonstrate the RS mechanism of the Ag/ι-car/Pt RRAM devices,the temperature-dependent resistance measurement of LRS is shown in Fig.6(c), the resistance decreased linearly with the temperature, confirming the formation of CFs after the set switching process.After linearly fitting the data, it is found that the temperature coefficient(α)is approximately equal to 4.7×10-3K-1, close to that of pure silver(3.8×10-3K-1).[11,44]

    Fig.6.The local conductivity distribution of the Ag/ι-car/Pt memory in(a)HRS,(b)LRS at CCs of 1μA.(c)Temperature-dependent resistance measurement of LRS.

    Additionally,to evaluate the mechanical flexibility of the device, we performed bending tests.As shown in Fig.7(a),we fabricated RRAM devices on a polyethylene terephthalate(PET) substrate coated with ITO film (Ag/ι-car/ITO/PET).Theι-car memristor cells with the ITO electrode showed similar RS characteristics (Fig.S3).As shown in Fig.7(b), the HRS/LRS andVset/Vresetparameters were minimally affected after bending with different radii,i.e.,10 mm,15 mm,20 mm and 25 mm.In addition, the flexible RRAM devices also exhibited good mechanical stability without significant degradation during repeated bending over 103cycles at a bending radius of 20 mm (one bending cycle means that the device is returned to the flat state after bending with a fixed curvature).The maintenance of the performance is probably due to the short vertical channel of nanometer scale and the ductility of the materials,which suggests their reliable RRAM characteristics and excellent mechanical properties.

    The introduction ofι-car containing abundant hydrophilic functional groups into RRAM devices enables the transient behavior achievement.The fabricated Ag/ιcar/ITO/PET memory devices were straightway immersed into DI water with a temperature of approximately 26?C.Whereafter, the devices were transferred into another culture dish full of DI water with temperature of 80?C.For comparison,we chose to heat the device uniformly with microwaves to 80?C, observed for 10 min, and found that the thin film of the device still existed (Fig.S4).Figures 8(a) and 8(b) show the sequential images of the dissolution process of the Ag/ιcar/ITO/PET RRAM devices.We can find that the electrode destroyed gradually and theι-car film disappeared completely.The clean ITO/PET substrate was only left in the culture dish after 13 min.This indicates that theι-car based RRAM devices can effectively avoid the recycling costs of discarded electronic waste, thereby facilitating the development of environmentally friendly electronics and data protection.

    Fig.7.(a)The I–V curves of memory devices at flat and high bending deformation states.Inset: The photograph of the device under bending state.(b) Flexibility test results of Ag/ι-car/ITO/PET RRAM devices for various bending radii under tensile strain.(c) Mechanical bending endurance of Ag/ι-car/ITO/PET memory devices at bending radius of 20 mm.

    Fig.8.(a)Schematic illustrations(a)and the photographs(b)demonstrating disappearing process of the Ag/ι-car/ITO/PET RRAM devices in DI water.

    4.Conclusion and perspectives

    In summary, biodegradableι-car based RRAM devices with a cell structure of Ag/ι-car/Pt were fabricated.Remarkable RS characteristics,such as fast switching speed(~26 ns),multilevel storage behaviors, and excellent bending performance(~103cycles)have been achieved for nonvolatile flexible memory applications.Due to the complexation between Ag metal ions and the oxygen-containing functional groups,an ultralow power consumption of~56 fJ was achieved,which is much lower than that of most reported transient RRAM devices.In addition, the devices can completely disappear while immersed in DI water after 13 min,demonstrating the excellent transient characteristics.The demonstrated Ag/ι-car/Pt transient RRAM devices offer great potential for flexible electronics and green electronics.

    The transient electronic devices can be used to manufacture transient environmental monitoring devices, which can self-destroy after a certain period of time, reducing their impact on the environment.This is very useful for long-term monitoring and data collection in the environment.In future,transient electronic devices can also be used for security and privacy protection.

    Acknowledgements

    This work is supported financially by the National Key Research and Development Program of China (Grant No.2023YFB4402301),the National Science Fund for Distinguished Young Scholars (Grant No.52025022), the National Natural Science Foundation of China(Grant Nos.U19A2091,62004016, 51732003, 52072065, 11974072, 52372137, and 52272140), the “111” Project (Grant No.B13013), the Fundamental Research Funds for the Central Universities(Grant Nos.2412022QD036 and 2412023YQ004) and the funding from Jilin Province (Grant Nos.20210201062GX,20220502002GH, 20230402072GH, 20230101017JC, and 20210509045RQ).

    猜你喜歡
    徐海陶冶
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    補(bǔ)陽(yáng)還五湯通過(guò)NLRP3/caspase–1調(diào)控大鼠髓核細(xì)胞退變的機(jī)制
    Possibility to break through limitation of measurement range in dual-wavelength digital holography?
    徐海根(徐海)藝術(shù)作品欣賞
    Asymmetric Features for Two Types of ENSO
    在現(xiàn)實(shí)之中尋找理想,小學(xué)語(yǔ)文陶冶性教學(xué)探索
    A Brief Study Of The Interactive-oriented Language Teaching
    從“涵養(yǎng)美感,陶冶德行”到“立德樹(shù)人”——聽(tīng)王安國(guó)教授談“音樂(lè)教育的‘原點(diǎn)’問(wèn)題”有感
    高中語(yǔ)文教學(xué)中的陶冶教育初探
    徐海:課堂內(nèi)外“柯南迷”
    精品国产一区二区久久| 99精品在免费线老司机午夜| 久久久精品欧美日韩精品| 天天影视国产精品| 色老头精品视频在线观看| 丰满迷人的少妇在线观看| 国产熟女午夜一区二区三区| 80岁老熟妇乱子伦牲交| 午夜福利,免费看| 午夜福利,免费看| 国产三级黄色录像| 亚洲久久久国产精品| 90打野战视频偷拍视频| 国产午夜精品久久久久久| 成人三级做爰电影| 国产蜜桃级精品一区二区三区| 中文字幕人妻丝袜制服| 99riav亚洲国产免费| 日韩大码丰满熟妇| 成人手机av| 两性夫妻黄色片| 18禁黄网站禁片午夜丰满| 1024视频免费在线观看| 精品免费久久久久久久清纯| 国内毛片毛片毛片毛片毛片| 国产亚洲精品久久久久5区| 国产精品久久视频播放| 香蕉丝袜av| 国产精品一区二区三区四区久久 | 日本一区二区免费在线视频| 国产精华一区二区三区| 男女之事视频高清在线观看| 香蕉丝袜av| 久久精品影院6| 国产蜜桃级精品一区二区三区| 欧美不卡视频在线免费观看 | 精品久久久精品久久久| 亚洲一区中文字幕在线| 成人特级黄色片久久久久久久| 午夜免费成人在线视频| 亚洲自拍偷在线| 十八禁网站免费在线| 国产亚洲欧美在线一区二区| 亚洲五月天丁香| 十分钟在线观看高清视频www| 91老司机精品| 亚洲午夜精品一区,二区,三区| ponron亚洲| 在线永久观看黄色视频| 久久久久久大精品| 久久久久九九精品影院| 国产亚洲欧美精品永久| 看黄色毛片网站| 亚洲精品国产区一区二| av欧美777| 一个人免费在线观看的高清视频| 国产精华一区二区三区| 法律面前人人平等表现在哪些方面| 免费一级毛片在线播放高清视频 | 可以在线观看毛片的网站| 真人做人爱边吃奶动态| 国产亚洲精品综合一区在线观看 | 97碰自拍视频| 亚洲片人在线观看| 中文字幕另类日韩欧美亚洲嫩草| 高清毛片免费观看视频网站 | 久久精品亚洲熟妇少妇任你| www.自偷自拍.com| 99精品欧美一区二区三区四区| 淫秽高清视频在线观看| 久久精品91无色码中文字幕| 免费在线观看亚洲国产| 免费av中文字幕在线| 久久精品亚洲精品国产色婷小说| 国产无遮挡羞羞视频在线观看| 久久国产精品男人的天堂亚洲| 免费高清视频大片| 青草久久国产| 亚洲欧美精品综合久久99| 久久国产亚洲av麻豆专区| 又紧又爽又黄一区二区| 乱人伦中国视频| 另类亚洲欧美激情| 亚洲七黄色美女视频| 99在线视频只有这里精品首页| 国产97色在线日韩免费| xxxhd国产人妻xxx| 国产伦一二天堂av在线观看| 女性被躁到高潮视频| 精品国产亚洲在线| 大型黄色视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 1024香蕉在线观看| 91精品三级在线观看| 日本a在线网址| 超色免费av| 黑人猛操日本美女一级片| 啦啦啦在线免费观看视频4| 欧美日韩av久久| 老汉色∧v一级毛片| 99久久久亚洲精品蜜臀av| 女人高潮潮喷娇喘18禁视频| 99精品欧美一区二区三区四区| 香蕉丝袜av| 桃红色精品国产亚洲av| 国产亚洲欧美98| 一级毛片精品| 在线观看66精品国产| 12—13女人毛片做爰片一| 国产主播在线观看一区二区| 久久久久久大精品| 超色免费av| 无人区码免费观看不卡| 久久精品国产99精品国产亚洲性色 | 免费看a级黄色片| 亚洲精品在线观看二区| 午夜a级毛片| 日韩 欧美 亚洲 中文字幕| 一区福利在线观看| 黄色女人牲交| 一a级毛片在线观看| 欧美午夜高清在线| 国产免费av片在线观看野外av| 丰满的人妻完整版| 久久精品国产亚洲av香蕉五月| 女性生殖器流出的白浆| 大型av网站在线播放| 麻豆av在线久日| 成人黄色视频免费在线看| 午夜精品在线福利| 久久久国产成人精品二区 | 岛国在线观看网站| 一边摸一边抽搐一进一出视频| 欧美 亚洲 国产 日韩一| 一级毛片高清免费大全| 老司机深夜福利视频在线观看| 亚洲色图av天堂| 亚洲国产欧美日韩在线播放| 日韩免费av在线播放| 亚洲自拍偷在线| 免费高清视频大片| 女性生殖器流出的白浆| 99精品欧美一区二区三区四区| 国产av一区二区精品久久| av中文乱码字幕在线| 中文亚洲av片在线观看爽| 色婷婷久久久亚洲欧美| 91在线观看av| 国产av一区在线观看免费| 欧美成人免费av一区二区三区| 十分钟在线观看高清视频www| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品国产色婷婷电影| 桃色一区二区三区在线观看| 两性夫妻黄色片| 国产成人精品在线电影| 国产成人欧美| 亚洲 国产 在线| 国产亚洲精品第一综合不卡| 少妇被粗大的猛进出69影院| 国产精品自产拍在线观看55亚洲| 国产精华一区二区三区| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 丝袜在线中文字幕| 99精品欧美一区二区三区四区| 母亲3免费完整高清在线观看| 欧美日韩一级在线毛片| 精品一区二区三区av网在线观看| 老熟妇乱子伦视频在线观看| 精品人妻1区二区| 99在线人妻在线中文字幕| 日韩人妻精品一区2区三区| 国产区一区二久久| 免费一级毛片在线播放高清视频 | 黄色 视频免费看| 精品久久久久久久毛片微露脸| 亚洲欧美精品综合久久99| 久久香蕉精品热| 99在线人妻在线中文字幕| 女人被狂操c到高潮| 美女国产高潮福利片在线看| 露出奶头的视频| 精品久久久久久成人av| 久久久久亚洲av毛片大全| 最近最新中文字幕大全免费视频| 免费一级毛片在线播放高清视频 | 亚洲一码二码三码区别大吗| 人人妻人人添人人爽欧美一区卜| 午夜福利欧美成人| 日本一区二区免费在线视频| 国产视频一区二区在线看| 国产亚洲欧美在线一区二区| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三区在线| 亚洲五月天丁香| 日日摸夜夜添夜夜添小说| 成人三级黄色视频| 69精品国产乱码久久久| 又紧又爽又黄一区二区| 18禁美女被吸乳视频| 国产精品一区二区免费欧美| 国产一区在线观看成人免费| 久久香蕉激情| 欧美日韩av久久| 欧美日本中文国产一区发布| 日韩欧美在线二视频| 日本免费一区二区三区高清不卡 | 夜夜爽天天搞| 精品日产1卡2卡| 亚洲欧美一区二区三区久久| 色在线成人网| 一个人免费在线观看的高清视频| 欧美日韩福利视频一区二区| xxx96com| 亚洲中文字幕日韩| 老汉色av国产亚洲站长工具| 嫁个100分男人电影在线观看| 亚洲精品国产一区二区精华液| netflix在线观看网站| 亚洲精品中文字幕在线视频| 黄色视频不卡| 人人妻人人澡人人看| 精品一区二区三区av网在线观看| 身体一侧抽搐| videosex国产| 女人被狂操c到高潮| 91在线观看av| 韩国精品一区二区三区| 日本a在线网址| 极品人妻少妇av视频| 国产高清videossex| a级毛片黄视频| 在线视频色国产色| 亚洲av电影在线进入| 视频区图区小说| 99精品在免费线老司机午夜| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| 高清在线国产一区| 亚洲美女黄片视频| 人人妻人人澡人人看| 亚洲专区国产一区二区| 欧美日韩亚洲综合一区二区三区_| 制服人妻中文乱码| 无遮挡黄片免费观看| 亚洲精华国产精华精| 亚洲av成人一区二区三| 一进一出好大好爽视频| 国产麻豆69| 黑人巨大精品欧美一区二区mp4| 国产精品爽爽va在线观看网站 | 电影成人av| 在线国产一区二区在线| 欧美黄色片欧美黄色片| 亚洲男人的天堂狠狠| 欧美+亚洲+日韩+国产| 久久精品成人免费网站| 美女国产高潮福利片在线看| 免费高清在线观看日韩| 看免费av毛片| 亚洲第一青青草原| √禁漫天堂资源中文www| 亚洲精品在线观看二区| 在线观看免费午夜福利视频| 欧美成人午夜精品| 男女下面插进去视频免费观看| xxx96com| 精品国产美女av久久久久小说| 欧美黄色淫秽网站| 麻豆久久精品国产亚洲av | 热re99久久精品国产66热6| 51午夜福利影视在线观看| 亚洲精品久久午夜乱码| 亚洲第一青青草原| 国产片内射在线| 天天躁狠狠躁夜夜躁狠狠躁| 日韩一卡2卡3卡4卡2021年| 久久精品91蜜桃| 69av精品久久久久久| 亚洲av成人一区二区三| 久久久久久久午夜电影 | 久久久久久久午夜电影 | 露出奶头的视频| 两个人看的免费小视频| 亚洲第一av免费看| 国产单亲对白刺激| 国产亚洲精品第一综合不卡| x7x7x7水蜜桃| 成人国产一区最新在线观看| 久久香蕉激情| 一区二区三区激情视频| 亚洲黑人精品在线| 超碰成人久久| 99国产综合亚洲精品| 黄色怎么调成土黄色| 午夜a级毛片| 午夜精品久久久久久毛片777| 精品高清国产在线一区| 亚洲自拍偷在线| 午夜福利在线观看吧| 免费av中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇中文字幕五十中出 | 欧美亚洲日本最大视频资源| 俄罗斯特黄特色一大片| 亚洲欧洲精品一区二区精品久久久| 动漫黄色视频在线观看| 99国产精品免费福利视频| x7x7x7水蜜桃| 亚洲国产精品合色在线| 美女高潮喷水抽搐中文字幕| 波多野结衣一区麻豆| 亚洲国产欧美网| 国产野战对白在线观看| 交换朋友夫妻互换小说| 9色porny在线观看| 少妇粗大呻吟视频| 90打野战视频偷拍视频| av网站在线播放免费| 在线观看免费视频日本深夜| 99国产精品免费福利视频| 极品人妻少妇av视频| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 男女床上黄色一级片免费看| 日本wwww免费看| 好看av亚洲va欧美ⅴa在| 人人妻,人人澡人人爽秒播| 高清黄色对白视频在线免费看| 丰满人妻熟妇乱又伦精品不卡| 妹子高潮喷水视频| 91成年电影在线观看| 国产单亲对白刺激| 午夜激情av网站| 久久精品影院6| 国产单亲对白刺激| 亚洲三区欧美一区| 琪琪午夜伦伦电影理论片6080| 欧美中文日本在线观看视频| a级毛片黄视频| 精品国产美女av久久久久小说| 一边摸一边抽搐一进一小说| 亚洲精品av麻豆狂野| 亚洲国产精品999在线| 在线看a的网站| 丰满人妻熟妇乱又伦精品不卡| 999久久久精品免费观看国产| 久久精品影院6| 十分钟在线观看高清视频www| 少妇 在线观看| 成年人免费黄色播放视频| 97超级碰碰碰精品色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利一区二区在线看| 免费看十八禁软件| 9色porny在线观看| 超碰97精品在线观看| 女性生殖器流出的白浆| 久久草成人影院| 久热爱精品视频在线9| 精品乱码久久久久久99久播| 极品人妻少妇av视频| 欧美精品亚洲一区二区| 国产精品一区二区三区四区久久 | 久久 成人 亚洲| 免费少妇av软件| 久久性视频一级片| 精品国产国语对白av| 久热这里只有精品99| 18禁黄网站禁片午夜丰满| 欧美日韩av久久| 欧美激情极品国产一区二区三区| 成年女人毛片免费观看观看9| 精品国产亚洲在线| 国产伦人伦偷精品视频| 两人在一起打扑克的视频| 一二三四在线观看免费中文在| 免费高清在线观看日韩| 伦理电影免费视频| 成人国产一区最新在线观看| 在线观看午夜福利视频| av电影中文网址| 19禁男女啪啪无遮挡网站| 色综合欧美亚洲国产小说| 中文亚洲av片在线观看爽| 中文字幕另类日韩欧美亚洲嫩草| 国产在线精品亚洲第一网站| 亚洲精品一区av在线观看| www.www免费av| 搡老熟女国产l中国老女人| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 国产精品98久久久久久宅男小说| 午夜福利免费观看在线| 天堂影院成人在线观看| 亚洲成人免费av在线播放| 国产色视频综合| 激情在线观看视频在线高清| 国产三级黄色录像| 久久久久精品国产欧美久久久| 国产男靠女视频免费网站| 成人手机av| 激情在线观看视频在线高清| 黑丝袜美女国产一区| 人人澡人人妻人| avwww免费| aaaaa片日本免费| 天堂俺去俺来也www色官网| 久久人妻熟女aⅴ| 丁香六月欧美| 另类亚洲欧美激情| 成人18禁在线播放| 国产精品二区激情视频| 国产精品野战在线观看 | 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 欧美性长视频在线观看| 最近最新免费中文字幕在线| 亚洲三区欧美一区| 久99久视频精品免费| 乱人伦中国视频| 女人被狂操c到高潮| 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日韩黄片免| 免费搜索国产男女视频| 99国产精品一区二区三区| 国产一卡二卡三卡精品| 亚洲欧美精品综合久久99| 久久人人97超碰香蕉20202| 久久精品91无色码中文字幕| 欧美日韩瑟瑟在线播放| 91av网站免费观看| 丁香六月欧美| 十八禁网站免费在线| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 99久久精品国产亚洲精品| 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 一二三四社区在线视频社区8| 久久久久精品国产欧美久久久| 国产又爽黄色视频| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区蜜桃| 亚洲五月天丁香| 看免费av毛片| 天天影视国产精品| 久久性视频一级片| 日日摸夜夜添夜夜添小说| 97碰自拍视频| 最近最新中文字幕大全免费视频| 可以在线观看毛片的网站| 亚洲精品美女久久久久99蜜臀| 欧美中文综合在线视频| 无遮挡黄片免费观看| 免费在线观看亚洲国产| 国产欧美日韩一区二区三区在线| 青草久久国产| 一区二区三区激情视频| 久久精品91无色码中文字幕| 亚洲色图av天堂| 日本a在线网址| 久久精品亚洲av国产电影网| 成人av一区二区三区在线看| 欧美黄色淫秽网站| 免费av毛片视频| 午夜免费鲁丝| 亚洲九九香蕉| 亚洲五月色婷婷综合| 久久午夜亚洲精品久久| 亚洲少妇的诱惑av| 在线播放国产精品三级| 久久久水蜜桃国产精品网| 91在线观看av| 18美女黄网站色大片免费观看| 黄色 视频免费看| 国产97色在线日韩免费| 亚洲视频免费观看视频| 99国产精品99久久久久| 交换朋友夫妻互换小说| 成人av一区二区三区在线看| 亚洲第一欧美日韩一区二区三区| 亚洲第一青青草原| 亚洲欧美一区二区三区久久| 1024视频免费在线观看| 黑人巨大精品欧美一区二区蜜桃| www.精华液| 99在线人妻在线中文字幕| 高清欧美精品videossex| 视频在线观看一区二区三区| 18禁观看日本| www.精华液| 亚洲熟妇熟女久久| 欧美 亚洲 国产 日韩一| 高清毛片免费观看视频网站 | 夜夜爽天天搞| 久久久久久人人人人人| 成人三级做爰电影| 欧美日本中文国产一区发布| 热99国产精品久久久久久7| 高清毛片免费观看视频网站 | a在线观看视频网站| 日韩精品青青久久久久久| 波多野结衣一区麻豆| 夜夜看夜夜爽夜夜摸 | 免费av中文字幕在线| 亚洲精品一区av在线观看| 久久精品成人免费网站| 精品国产国语对白av| 亚洲成人国产一区在线观看| 色婷婷av一区二区三区视频| 亚洲中文字幕日韩| 91av网站免费观看| 久久青草综合色| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 日韩免费高清中文字幕av| 国产成年人精品一区二区 | 不卡一级毛片| 在线看a的网站| 国产99久久九九免费精品| 亚洲国产精品999在线| 91国产中文字幕| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 麻豆久久精品国产亚洲av | 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 97碰自拍视频| 久久久国产成人精品二区 | 精品人妻在线不人妻| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 亚洲精品久久午夜乱码| 女性生殖器流出的白浆| 香蕉久久夜色| 国产成人精品久久二区二区91| 亚洲色图av天堂| 在线观看午夜福利视频| 国产一区二区三区视频了| 亚洲人成电影免费在线| 午夜免费成人在线视频| 精品久久蜜臀av无| 婷婷六月久久综合丁香| 亚洲情色 制服丝袜| 亚洲熟妇中文字幕五十中出 | 五月开心婷婷网| 91九色精品人成在线观看| 久久中文字幕一级| 99国产精品一区二区三区| 高清黄色对白视频在线免费看| 少妇 在线观看| 亚洲人成电影观看| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| 黄色 视频免费看| 黄色片一级片一级黄色片| 99国产极品粉嫩在线观看| 色婷婷av一区二区三区视频| 国产精品久久久av美女十八| 人妻久久中文字幕网| 国产免费av片在线观看野外av| 久久人妻av系列| 国产一区二区三区综合在线观看| 国产精品野战在线观看 | 欧美乱码精品一区二区三区| 黄频高清免费视频| 美女国产高潮福利片在线看| 久久精品成人免费网站| 不卡一级毛片| 美女 人体艺术 gogo| 久久国产乱子伦精品免费另类| 成人三级做爰电影| 免费av毛片视频| 99精品在免费线老司机午夜| 亚洲熟女毛片儿| 美女高潮到喷水免费观看| 午夜91福利影院| 国产伦人伦偷精品视频| 国产精品99久久99久久久不卡| 一区二区三区精品91| 欧美亚洲日本最大视频资源| 极品人妻少妇av视频| 男女下面进入的视频免费午夜 | 日韩免费av在线播放| 色婷婷av一区二区三区视频| 国产av一区二区精品久久| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 亚洲一区中文字幕在线| 制服诱惑二区| 午夜影院日韩av| 久久伊人香网站| 免费高清视频大片| 精品久久久精品久久久| 夜夜爽天天搞| 欧美亚洲日本最大视频资源| 亚洲人成伊人成综合网2020| 美女午夜性视频免费| 最近最新中文字幕大全电影3 | 久久国产精品人妻蜜桃| 女性生殖器流出的白浆| 老司机亚洲免费影院| 国产黄色免费在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美激情综合另类| 免费少妇av软件| 精品久久久久久久久久免费视频 | 狂野欧美激情性xxxx| 国产欧美日韩一区二区三|