• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons

    2024-02-29 09:16:54XingYuZhu朱行宇LeTianZhu朱樂(lè)天TaoTu涂濤andChuanFengLi李傳鋒
    Chinese Physics B 2024年2期
    關(guān)鍵詞:樂(lè)天

    Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱樂(lè)天), Tao Tu(涂濤),3,?, and Chuan-Feng Li(李傳鋒),3,?

    1Key Laboratory of Quantum Information,Chinese Academy of Sciences,University of Science and Technology of China,Hefei 230026,China

    2School of Mechanical and Electronic Engineering,Suzhou University,Suzhou 234000,China

    3Hefei National Laboratory,University of Science and Technology of China,Chinese Academy of Sciences,Hefei 230088,China

    Keywords: hybrid quantum architectures,circuit quantum electrodynamics,entangling gate

    1.Introduction

    Hybrid architectures are a promising route to scalable quantum processors, as they would benefit from the advantages of different qubits.Semiconductor spin qubits and superconducting qubits are the two main candidates for solid-state qubits because of their compatibility with modern microelectronics and thus the advantages of large-scale integration.[1,2]Spin qubits have the advantage of small footprint and long coherence time,[3–6]while superconducting qubits have the advantage of fast, high-fidelity gate operations.[7–9]It is desirable to use hybrid architectures to combine the advantages of the different systems.However, scalable hybrid quantum architectures require a coherent link that entangles any two different solid-state qubit systems.

    Circuit quantum electrodynamics(circuit-QED)provides an attractive way to implement such link by utilizing microwave photons in a superconducting resonator as a quantum bus coupled to different qubits.[10]Circuit-QED has achieved many important advances in superconducting systems, such as strong coupling to superconducting qubits and serving as a sensitive detector to measure the states of superconducting qubits.[11–14]Recently,spin qubits in semiconductor quantum dots have also realized coherent coupling to microwave photons in circuit-QED.[15–19]However, entanglement of a spin qubit with another distant superconducting qubit has not been demonstrated.High-fidelity remote entanglement is a key element of hybrid architectures and is therefore highly desired,but also challenging.The challenges are that,on the one hand,spin qubits typically require large magnetic fields, to which superconducting qubits are not resistant.On the other hand,solid-state qubits are usually affected by charge noise in circuits, thus requiring the design of suitable working regimes for high-fidelity entangled state preparation.

    In this article, we present a complete scheme to overcome these challenges.First, we use a resonant exchange(RX)qubit consisting of three electronic states in a semiconductor triple quantum dot.[20,21]It is capable of all-electrical control in zero magnetic fields and thus can work with superconducting qubits on the same chip.Second, we employ a high-impedance superconducting quantum interference device(SQUID) array resonator as a quantum bus, which is able to couple efficiently with the RX and superconducting transmon qubits.[22–24]In addition, since the operation frequency and coupling strength of the whole hybrid system are tunable,we design a virtual photon exchange scheme,thus demonstrating fast, high-fidelity swap gate operations and remote entangled state preparation between two different qubits under experimental parameters.The fidelity of the entangling gate operations can be as high as 96.5%,which has reached the threshold of various distributed quantum error-correction codes.These results can be applied to various quantum information processes in hybrid architectures.

    2.Setup and models

    As shown in Fig.1(a), we consider a hybrid architecture consisting of a semiconductor RX spin qubit, a superconducting transmon qubit and a SQUID array resonator.We implement the semiconductor qubit by controlling three electrons in a triple quantum dot(TQD)hosted in silicon material.There are two charge configurations: the symmetric (1,1,1)and the asymmetric(2,0,1)and(1,0,2)configurations.Here(nl,nm,nr) denotes the number of electrons in the left, middle,and right dots,respectively.Typically,three electron spins have eight different spin states (see Appendix A).When we consider the subspace with total spinS=1/2 and total spinzcomponentSz=1/2,there are four relevant spin states

    Heretl(tr) is the tunnel coupling between the left (right) dot and the middle dot,ε= [ε(2,0,1)-ε(1,0,2)]/2 and?=ε(1,1,1)-[ε(2,0,1)+ε(1,0,2)]/2 are the asymmetry parameter and the detuning of the TQD, andε(l,m,r) denotes the energy of different charge configurations.

    Moreover,we diagonalize the Hamiltonian(2)and focus on the two lowest states|0RX〉and|1RX〉.Now we obtain the RX qubit Hamiltonian

    whereωRXis the transition frequency of the qubit andσzis the Pauli operator.Figure 1(b) shows the eigenenergies of the TQD system as a function of parameterε.The nature of the RX spin qubits is fully controlled by the electrical parameterεwithout the need for an applied magnetic field.At the same time, in the regime aroundε=0, the RX qubit becomes first-order insensitive to charge noise(see Appendix B).Note that RX spin qubits have a number of unique advantages.On the one hand, unlike one- and two-electron spin qubits,[1,25–28]which require an external magnetic field, RX spin qubits can operate under zero magnetic fields, which is important for compatibility with superconducting qubits.On the other hand,RX qubits are encoded in a hybridized state of electron charge and spin.Adjusting the TQD electrode voltages, when?> 0, the RX qubits mainly have asymmetric charge configurations and thus large electric dipole moments,which can couple strongly to the resonator.And when?<0,the spin character of the RX qubit increases,which leads to a longer coherence time because it is insensitive to charge noise.

    Fig.1.(a) Schematic of the spin–superconducting hybrid architecture.The hybrid system integrates three different quantum systems:a spin qubit in a triple quantum dot and a superconducting transmon qubit, which are coupled to a SQUID array resonator.(b) Eigenenergies of the TQD system as a function of the asymmetry parameter ε for?/2π =-3.3 GHz,and tl/2π =tr/π =8.3 GHz.

    The superconducting transmon qubit is formed by a single island capacitor and two parallel Josephson junctions, as shown in Fig.1(a).The superconducting system Hamiltonian can be written as

    whereEcandEJare the charging and Josephson energies of the device,ngis the effective offset charge,nand?denote the charge number and phase difference across the junction, respectively.We also diagonalize the Hamiltonian(3)and consider only the two lowest states|0tr〉and|1tr〉,with higher levels omitted due to sufficient anharmonicity.[22]Now we obtain the transmon qubit Hamiltonian

    whereωtris the transition frequency of the transmon qubit andσzis the Pauli operator.Note that the transition frequencyωtrcan be adjusted by controlling the flux in the device loop.

    The resonator is composed of an array of SQUID loops and the resonator Hamiltonian is given by

    wherea?andaare the creation and annilation operators of the resonator.We note that the frequency of the resonatorωSqcan be tuned by the flux in the SQUID loop.In addition, the SQUID array resonator has a high impedance,which can significantly enhance the coupling strength between the resonator and the qubits.

    When the resonator is capacitively coupled to the left dot of the TQD, the charge–resonator coupling strength isgch.Since the asymmetric charge configuration|2〉 of the TQD has a larger electric dipole moment, the spin–resonator coupling strength isgRX= 2gchc02c12, where the coefficientsc02=〈2|0RX〉andc12=〈2|1RX〉are a mixture between the RX qubit state and charge configuration|2〉 (see Appendix C).Therefore,in the rotating wave approximation,the interaction between the RX qubits and the resonator is described by the following form:

    3.Dispersive regime and entangling gates

    the perturbed Hamiltonian is

    As shown in Fig.2(a), varying the asymmetry parameterεof the TQD from the larger to the smaller asymmetric configuration, the coupling strengthJbetween the qubits can be significantly increased.This is due to the fact that near the smaller asymmetric configuration (ε= 0), the electrons are delocalized between the quantum dots, which enhances the electric dipole moment and the coupling strength between the RX qubit and the resonator.This further increases the effective coupling strength between the RX qubit and the transmon qubit.

    Fig.2.(a)Effective coupling strength between RX and transmon qubits as a function of the asymmetry parameter ε.Here we use the parameters ?/2π=-3.3 GHz,tl/2π=tr/2π=8.3 GHz,ωSq/2π=5.2 GHz,ωtr/2π =4.2 GHz,gch/2π =115 MHz,gtr/2π =200 MHz.(b)Time evolution of the state population of RX and transmon qubits during an iSWP gate.

    4.Fidelities of entangling gates

    We now evaluate the performance of a remote entangling gate between RX and transmon qubits.The dynamics of the hybrid system can be determined by the master equation

    whereρis the density matrix of the hybrid system, and the Lindblad operatorD[O]ρ=OρO?-(O?Oρ+ρO?O)/2 describes various decoherence processes.We include the following decoherence parameters: the relaxation and dephasing ratesγl,RX=1/Tl,RXandγφ,RX=1/Tφ,RXfor the RX qubit,the relaxation and dephasing ratesγl,tr=1/Tl,trandγφ,tr=1/Tφ,trfor the transmon qubit, and the photon decay rateκof the resonator.In this study, we use experimental values of these parameters:Tl,RX= 20 ms andTφ,RX= 2.3 μs for the RX qubit,[30,31]Tl,tr=Tφ,tr=60μs for the transmon qubit,[32]andκ=4.6 MHz for the resonator.[24]Note that we consider RX qubits hosted in silicon quantum dots, so that the spin noise due to nuclear spins can be neglected and the charge noise becomes the main source of decoherence of the RX qubits.

    As shown in Fig.3(a), we demonstrate a scheme to perform entangling gates between RX and transmon qubits.First,we control the frequencies of RX and transmon qubits in a large detuning regime, in which the interaction between RX and transmon qubits is very weak.Second, we tune the frequencyωRXof the RX qubit and make it resonance with the transmon qubit for a period of timetg.At this stage, there is an effective interactionJ/2π=9 MHz between the RX and the transmon qubits, and the quantum state transfers between the two qubits.Finally,the frequency of the RX qubit is tuned back to the large detuning regime.We calculate the dynamics of an entangling gate under the influence of realistic decoherence in Fig.3(b).We also extract the gate timetg=28 ns from Fig.3(b),which is much shorter than the decoherence time of the RX and transmon qubits.

    To evaluate the entangling gates between the RX and transmon qubits, we calculate the average fidelityFof the gate.For all possible initial pure states, we obtain the corresponding final states using the master equation.The average fidelity is determined by the average value of the overlap between the target pure states and the final mixed states[33,34]

    Fig.3.(a)Scheme for realizing an entangling gate by time-dependent control of the RX qubit frequency.(b) Gate fidelity as a function of the gate time t.Here we use the parameters ωSq/2π =5.2 GHz,ωtr/2π = 4.2 GHz, ωRX/2π = 4.0-4.2 GHz, gRX/2π = 45 MHz,gtr/2π =200 MHz.

    5.Effects of various control parameters

    The fidelity of the entangling gate in the hybrid system is limited by the decoherence processes of the RX qubits,the transmon qubits and the resonator.In Fig.4(a),we find that the entangling gate fidelityFincreases with the relaxation timeTl,RXand dephasing timeTφ,RXof the RX qubits.Compared with the relaxation time, the entangling gate fidelity is more sensitive to the dephasing time.For example, for a fixed relaxation time ofTl,RX=20 ms,the entangling gate fidelity increases rapidly from 87.4%to 96.8%when the dephasing timeTφ,RXchanges from 100 ns to 5μs.This result indicates that the dephasing process of RX qubits is the main limiting factor of this scheme.For the transmon qubits, varying the relaxation timeTl,trand dephasing timeTφ,trfrom 1 μs to 100 μs,the entangling gate fidelity slightly increases from 94.5% to 96.5%,as shown in Fig.4(b).This result is expected because transmon qubits are insensitive to charge noise and have long relaxation and dephasing times.Figure 4(c)shows that the entangling gate fidelity gradually increases as the photon decay rateκdecreases.Due to the Purcell effect in the hybrid system, the photon decay of the resonator will lead to the decoherence of the two qubits coupled to it and the corresponding decrease in the entangling gate fidelity.

    We also investigate the entangling gate fidelity as a function of the RX–resonator coupling strengthgRXand the transmon–resonator coupling strengthgtr.In Figs.4(d) and 4(e),the entangling gate fidelity increases rapidly with the increase of the coupling strengthgRXorgtruntil saturation and then decreases.This result can be explained by the fact that,on the one hand, an increase in the coupling strengthgRXorgtrleads to an increase in the effective coupling strengthJbetween the RX and transmon qubits,which shortens the entangling gate operation time and leads to a decrease in the error accumulation and an increase in the fidelity.On the other hand,when the coupling strength is further increased,the Purcell effect(κg2/?2)starts to play a role,and this decoherence effect will lead to a corresponding error as well as a reduction in fidelity.

    Fig.4.(a)Gate fidelity as a function of relaxation time Tl,RX and dephasing time Tφ,RX of RX qubit.(b)Gate fidelity as a function of relaxation time Tl,tr and dephasing time Tφ,tr of transmon qubit.(c)Gate fidelity as a function of photons decay rate κ.(d)Gate fidelity and gate time as a function of RX–resonator coupling strength gRX.(e)Gate fidelity and gate time as a function of transmon–resonator coupling strength gtr.(f)Gate fidelity as a function of asymmetry parameter ε of RX qubit.

    Figure 4(f)shows that the entangling gate fidelity changes with the asymmetry parameterεof the RX qubits.The entangling gate fidelity increases from 94.8% to 96.5% whenεchanges from asymmetric to symmetric configuration.This result is consistent with that of the effective coupling strengthJbetween RX and transmon qubits in Fig.2(a).When the parameterεis changed to the symmetric configuration,the interaction strength between RX and transmon qubits becomes larger,resulting in a shorter entangling gate.Therefore,ε=0 can be considered as the sweet spot of the hybrid system where the entangling gate fidelity reaches its maximum.

    6.Remote entanglement between two different qubits

    We further demonstrate the generation of remote entanglement between RX and transmon qubits.Using two iSWAP gates and a single-qubit rotation gate, a controlled-NOT (CNOT) gate can be constructed, see Fig.5(a).The CNOT gate time can be estimated as 2tg~56 ns due to the short single-qubit gate time of the RX and transmon qubits compared to the iSWAP gate time.This fast two-qubit gate operation is the key to realizing the high-fidelity remote entanglement between the RX and transmon qubits.As shown in Fig.5(a),the scheme for generating distant entangled states consists of three steps: first, we prepare the initial states of the RX and transmon qubits with four different states,|0RX0tr〉,|1RX0tr〉,|0RX1tr〉, and|1RX1tr〉.Second, we apply a Hadamard gate on the RX qubit while keeping the transmon qubit unchanged.Finally, a CNOT gate is applied on the RX and transmon qubits.In this way, we generate the following remote entangled state:

    In order to assess the quality of the remote entanglement between the RX and transmon qubits, we model the dynamics of the hybrid system using the master equation.Further,we reconstruct the density matrixρeof the RX and transmon qubits using quantum state tomography.Figures 5(b)–5(e)show the real part of the density matrixρefor the four initial states.We calculate the entanglement fidelityFe(ρ,ψ)=〈ψ|ρ|ψ〉 compared to the target Bell entangled state.The entanglement fidelity for the four cases ranges from 94.7%to 95.4%, which reaches the threshold for many network architecture-based quantum error correction protocols.[35,36]Compared to two-qubit entangling gates, both RX and transmon qubits have achieved high-fidelity single-qubit operations above 99.5%.[7,37]This implies that the single-qubit operations have a negligible effect on the generation of entangled states,while the two-qubit entangling gates are the main limiting factor for the fidelity of the entangled states.Thus, this scheme can generate high-fidelity entangled states between distant qubits and can be used for various quantum information processing in semiconductor–superconductor hybrid architectures.

    Fig.5.(a)Gate sequences for generating remote entanglement between RX and transmon qubits.(b)–(e)Quantum state tomography of the final density matrix ρe of the hybrid system for four initial cases.

    7.Conclusions

    In summary, we propose a scheme to generate highfidelity remote entanglement between RX and transmon qubits.Since the frequencies of the RX and transmon qubits can be adjusted, this hybrid system can operate in the dispersive regime,utilizing virtual microwave photons to realize interactions between different types of qubits.We find that the fidelity of entangling gates can reach a high value of 96.5%for a short time of 28 ns under the present experimental parameters.Furthermore, in combination with single-qubit gates,the scheme can be used to generate arbitrary remote entangled states.Such remote entanglement is an important quantum resource that can improve the connectivity and flexibility of hybrid architectures, making them more suitable for implementing quantum error-correction codes and fault-tolerant quantum computation.We also report that the decoherence process of the hybrid system limits the performance of the entanglement gates.The fidelity of entanglement gates can be further improved by increasing the qubit–resonator coupling strength and operating at the optimal points.This scheme provides a powerful solution for remote quantum information processing in hybrid architectures and can be extended to various solid-state quantum systems[38–40]in the future.

    Appendix A:Spin structure of RX qubits

    We consider three electrons located in a triple-quantum dot, with the RX qubit mainly operating in the symmetric charge configuration(1,1,1).There are eight spin states when considering the electrons with spin up or down.The logical states of the RX qubit are

    By controlling the voltages on the TQD gate electrodes,we can control the parameter?and thus adjust the energy of the symmetric configuration with respect to the asymmetric ones.In this way, there are a total of four relevant states for the RX qubit:|0〉,|1〉,|2〉,|3〉.The tunnel couplingtl(tr)between the left(right)quantum dot and the middle quantum dot hybridizes these states,which leads to the formation of the two RX qubit states|0RX〉and|1RX〉.

    Appendix B:Effect of exchange interactions

    For a triple-quantum dot, the tunneling effects between adjacent quantum dots give rise to two exchange interactions,Jlbetween the pair of electrons in the left and middle dots,andJrbetween the pair of electrons in the middle and right dots.In the basis of{|0〉,|1〉,|2〉,|3〉},the Hamiltonian of TQD can be described as

    First we study the effect of exchange interactions by analytic methods.In the limit of|?±ε|?tl(tr),the RX qubit is defined in the symmetric charge configuration(1,1,1),which is spanned by the states|0RX〉?|0〉and|1RX〉?|1〉.These two states are obtained by elimination of the higher-energy threeelectron states in the asymmetric charge configurations(2,0,1)and (1,0,2) using a Schrieffer–Wolff transformation.The resulting effective Hamiltonian in this subspace is given by

    We then use numerical methods to study the effect of exchange interactions.For this purpose, we directly calculate the energy level structure of the TQD HamiltonianHTQD.As shown in Fig.1(b), the RX qubit state is defined as the two lowest energy levels|0RX〉 and|1RX〉.We note that in the regime nearε=0,the energy levels change little with the control parameterε,Thus,as a sweet spot,qubits at this working pointε=0 are weakly coupled to charge noise.

    Appendix C: Coupling between spin qubits and resonators

    In the basis of{|0〉,|1〉,|2〉,|3〉},a triple-quantum dot system can be described by a four-level HamiltonianHTQD.Then,we diagonalize the above Hamiltonian to encode the RX spin qubits with the two lowest states|0RX〉 and|1RX〉.The RX qubit states can be expressed as a linear combination of the states|0〉,|1〉,|2〉,|3〉,denoted as

    wheregchis the charge–resonator coupling strength, (a+a?)is the electric field of the resonator, and|2〉 is the polarized charge state of the quantum dot system to which it is coupled.Then we convert the above TQD–resonator interaction HamiltonianHTQD,Sqto the RX qubit state space.In the basis of{|0RX〉,|1RX〉},the corresponding Hamiltonian is given by

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11974336 and 12304401), the National Key R&D Program of China (Grant No.2017YFA0304100), the Key Project of Natural Science Research in Universities of Anhui Province (Grant No.KJ2021A1107), and the Scientific Research Foundation of Suzhou University (Grant Nos.2020BS006 and 2021XJPT18).

    猜你喜歡
    樂(lè)天
    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST
    High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
    樂(lè)天將關(guān)閉中國(guó)總部
    《酬樂(lè)天揚(yáng)州初逢席上見(jiàn)贈(zèng)》:蹉跎至暮年的初見(jiàn)
    《樂(lè)天》
    韓媒:樂(lè)天集團(tuán)正撤出中國(guó)零售市場(chǎng)
    樂(lè)天出售在華超市陷困境?
    樂(lè)天酒店或創(chuàng)韓國(guó)最大IPO
    99久国产av精品| 午夜免费男女啪啪视频观看 | 我的老师免费观看完整版| 国产三级在线视频| 国产高清视频在线播放一区| 看十八女毛片水多多多| 又紧又爽又黄一区二区| 看片在线看免费视频| 亚洲不卡免费看| 老司机午夜福利在线观看视频| 日韩有码中文字幕| 成人无遮挡网站| 一级作爱视频免费观看| 非洲黑人性xxxx精品又粗又长| 别揉我奶头~嗯~啊~动态视频| 国产亚洲欧美98| 午夜老司机福利剧场| 最近中文字幕高清免费大全6 | 男女做爰动态图高潮gif福利片| 色吧在线观看| www.www免费av| 中文字幕免费在线视频6| 欧美+日韩+精品| 国产三级中文精品| 99国产综合亚洲精品| 日韩亚洲欧美综合| 久久久久久久亚洲中文字幕 | 亚洲人成电影免费在线| 亚洲成人久久性| 女同久久另类99精品国产91| 热99在线观看视频| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 99久久精品一区二区三区| 日本黄大片高清| 他把我摸到了高潮在线观看| 精品欧美国产一区二区三| 欧美中文日本在线观看视频| 级片在线观看| 亚洲人成网站在线播| 18禁裸乳无遮挡免费网站照片| 午夜免费激情av| 亚洲精品影视一区二区三区av| 亚洲精品影视一区二区三区av| 最近最新免费中文字幕在线| 亚洲成人久久爱视频| 久久99热6这里只有精品| 2021天堂中文幕一二区在线观| 18禁黄网站禁片免费观看直播| 丰满乱子伦码专区| 18美女黄网站色大片免费观看| 能在线免费观看的黄片| 免费黄网站久久成人精品 | 好男人电影高清在线观看| 久久这里只有精品中国| 精品久久久久久久久av| 国内毛片毛片毛片毛片毛片| 成年女人永久免费观看视频| 中文字幕熟女人妻在线| 免费看美女性在线毛片视频| 亚洲国产精品成人综合色| 亚洲精品色激情综合| 亚洲综合色惰| 久久99热这里只有精品18| 亚洲激情在线av| 亚州av有码| www.999成人在线观看| 变态另类丝袜制服| 嫩草影院精品99| 欧美激情在线99| 欧美成人一区二区免费高清观看| 禁无遮挡网站| 国产人妻一区二区三区在| xxxwww97欧美| 久久久久久久亚洲中文字幕 | 午夜a级毛片| 久久伊人香网站| 性欧美人与动物交配| 尤物成人国产欧美一区二区三区| 老女人水多毛片| 免费在线观看日本一区| 国产精品人妻久久久久久| 国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| 成人av一区二区三区在线看| 国产一级毛片七仙女欲春2| 国产高清视频在线播放一区| 国产野战对白在线观看| av欧美777| 俄罗斯特黄特色一大片| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 久久香蕉精品热| 男女床上黄色一级片免费看| 免费在线观看亚洲国产| 少妇高潮的动态图| 男女做爰动态图高潮gif福利片| a在线观看视频网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久99热这里只有精品18| 亚洲精品久久国产高清桃花| 国产欧美日韩精品一区二区| 每晚都被弄得嗷嗷叫到高潮| 深爱激情五月婷婷| 黄色丝袜av网址大全| 三级男女做爰猛烈吃奶摸视频| 亚洲av美国av| xxxwww97欧美| 757午夜福利合集在线观看| 中文字幕人成人乱码亚洲影| 欧美xxxx黑人xx丫x性爽| 国产大屁股一区二区在线视频| 三级国产精品欧美在线观看| 国内毛片毛片毛片毛片毛片| av在线老鸭窝| 91字幕亚洲| 免费观看人在逋| 亚洲欧美精品综合久久99| 亚洲色图av天堂| 97超视频在线观看视频| 国产日本99.免费观看| 内射极品少妇av片p| 3wmmmm亚洲av在线观看| 午夜精品在线福利| 色5月婷婷丁香| 日韩中字成人| 18美女黄网站色大片免费观看| 夜夜躁狠狠躁天天躁| 国内少妇人妻偷人精品xxx网站| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 国产精品98久久久久久宅男小说| 午夜福利高清视频| 99久久成人亚洲精品观看| 国产69精品久久久久777片| 亚洲成a人片在线一区二区| 尤物成人国产欧美一区二区三区| 国产亚洲精品av在线| 国产精品98久久久久久宅男小说| 久久久久亚洲av毛片大全| 九九久久精品国产亚洲av麻豆| 琪琪午夜伦伦电影理论片6080| 国产精品99久久久久久久久| 老熟妇乱子伦视频在线观看| 婷婷精品国产亚洲av在线| 久久精品国产自在天天线| 偷拍熟女少妇极品色| 午夜精品久久久久久毛片777| 亚洲欧美精品综合久久99| h日本视频在线播放| 美女黄网站色视频| bbb黄色大片| 精品国内亚洲2022精品成人| netflix在线观看网站| 全区人妻精品视频| 成年版毛片免费区| 国产极品精品免费视频能看的| 一区二区三区激情视频| 久久久久亚洲av毛片大全| 99久久精品热视频| 精品久久国产蜜桃| 青草久久国产| 男人狂女人下面高潮的视频| 真人做人爱边吃奶动态| 国产老妇女一区| 老熟妇乱子伦视频在线观看| 精品久久久久久,| 免费电影在线观看免费观看| 18美女黄网站色大片免费观看| 婷婷丁香在线五月| 国产激情偷乱视频一区二区| 熟女电影av网| 精品久久久久久久久亚洲 | 深夜a级毛片| 久久久久久九九精品二区国产| 午夜福利欧美成人| 少妇裸体淫交视频免费看高清| 搡老妇女老女人老熟妇| 亚洲av熟女| 九九在线视频观看精品| 麻豆久久精品国产亚洲av| 男女下面进入的视频免费午夜| 国产精品爽爽va在线观看网站| 国产成人影院久久av| 99久国产av精品| 在线播放无遮挡| 成人av一区二区三区在线看| 亚洲熟妇熟女久久| 日韩高清综合在线| 亚洲不卡免费看| 在线播放无遮挡| 中文字幕av成人在线电影| 日韩欧美一区二区三区在线观看| 日日干狠狠操夜夜爽| 麻豆av噜噜一区二区三区| 欧美激情国产日韩精品一区| 日韩欧美国产一区二区入口| 两个人视频免费观看高清| 乱码一卡2卡4卡精品| 99国产极品粉嫩在线观看| 一区二区三区免费毛片| 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 国产单亲对白刺激| 999久久久精品免费观看国产| 久久久久久久午夜电影| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 久久久久久久精品吃奶| 波多野结衣巨乳人妻| 久久精品国产亚洲av香蕉五月| 亚洲人与动物交配视频| 国产视频一区二区在线看| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片 | 精品国产三级普通话版| 成年免费大片在线观看| 三级国产精品欧美在线观看| 久久天躁狠狠躁夜夜2o2o| 赤兔流量卡办理| 国产主播在线观看一区二区| 两人在一起打扑克的视频| 精品不卡国产一区二区三区| 中文字幕熟女人妻在线| 亚洲三级黄色毛片| 欧美午夜高清在线| 特大巨黑吊av在线直播| 好男人电影高清在线观看| 国产精品久久视频播放| 亚洲无线观看免费| 久久精品综合一区二区三区| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 美女高潮的动态| 亚洲一区二区三区色噜噜| 日本免费a在线| 看免费av毛片| 宅男免费午夜| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| 日本 欧美在线| 国产在线男女| 婷婷六月久久综合丁香| 日本黄色片子视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久国内视频| 国产伦在线观看视频一区| 欧美精品国产亚洲| 别揉我奶头 嗯啊视频| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩高清专用| av福利片在线观看| 精品免费久久久久久久清纯| 脱女人内裤的视频| 九九久久精品国产亚洲av麻豆| 久久99热6这里只有精品| 国产精品一区二区性色av| 亚洲av第一区精品v没综合| 丁香六月欧美| 国产国拍精品亚洲av在线观看| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 在现免费观看毛片| 精品不卡国产一区二区三区| 天天躁日日操中文字幕| 国产探花极品一区二区| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 精品乱码久久久久久99久播| 精品人妻一区二区三区麻豆 | 特级一级黄色大片| 哪里可以看免费的av片| 久久人妻av系列| 亚洲精品日韩av片在线观看| 一级黄片播放器| 精品一区二区三区人妻视频| 最近最新免费中文字幕在线| 国产白丝娇喘喷水9色精品| 欧美性感艳星| 国产精品野战在线观看| 亚洲精品456在线播放app | 一进一出好大好爽视频| 别揉我奶头 嗯啊视频| 深夜a级毛片| 少妇人妻精品综合一区二区 | 一本久久中文字幕| 国产毛片a区久久久久| 国产一区二区亚洲精品在线观看| 久久久精品大字幕| 亚洲精品一区av在线观看| 一个人免费在线观看电影| 久久精品国产99精品国产亚洲性色| 嫩草影视91久久| 国产主播在线观看一区二区| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 91狼人影院| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 久久草成人影院| 国产亚洲精品久久久久久毛片| 黄片小视频在线播放| 男人的好看免费观看在线视频| 免费人成在线观看视频色| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 亚洲 欧美 日韩 在线 免费| or卡值多少钱| 色综合欧美亚洲国产小说| 亚洲 欧美 日韩 在线 免费| 国产精品自产拍在线观看55亚洲| 在线播放国产精品三级| 欧美又色又爽又黄视频| 欧美xxxx黑人xx丫x性爽| 少妇的逼水好多| 此物有八面人人有两片| 最近在线观看免费完整版| 日韩中文字幕欧美一区二区| 日韩高清综合在线| 亚洲成人免费电影在线观看| 成人无遮挡网站| 国产白丝娇喘喷水9色精品| 嫩草影院新地址| 观看免费一级毛片| 中文字幕av成人在线电影| 日本五十路高清| 久久久久免费精品人妻一区二区| 91久久精品电影网| 久久久久久久午夜电影| 国产成人啪精品午夜网站| 亚洲电影在线观看av| 嫩草影院精品99| 日本在线视频免费播放| 亚洲真实伦在线观看| 欧美黑人巨大hd| 精品国内亚洲2022精品成人| 亚洲国产精品999在线| 最后的刺客免费高清国语| 国产亚洲精品综合一区在线观看| 一区福利在线观看| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 亚洲综合色惰| 99久久精品国产亚洲精品| 精品不卡国产一区二区三区| 俄罗斯特黄特色一大片| 亚洲av成人精品一区久久| 亚洲国产精品999在线| 亚洲人与动物交配视频| 国产毛片a区久久久久| 少妇的逼好多水| 国产精品一区二区免费欧美| 精品一区二区免费观看| 观看免费一级毛片| 一二三四社区在线视频社区8| 久久久久久久亚洲中文字幕 | 又爽又黄a免费视频| 精品一区二区免费观看| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 99热精品在线国产| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 亚洲在线自拍视频| 欧美另类亚洲清纯唯美| 国产极品精品免费视频能看的| 亚洲国产欧美人成| 久久国产精品人妻蜜桃| 美女免费视频网站| 可以在线观看的亚洲视频| 在线播放无遮挡| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| 国产白丝娇喘喷水9色精品| 欧美性猛交黑人性爽| 日韩欧美国产在线观看| 亚洲精品一区av在线观看| 毛片女人毛片| 黄色配什么色好看| 国产三级黄色录像| 亚洲美女搞黄在线观看 | 热99re8久久精品国产| 欧美日韩综合久久久久久 | 久久精品久久久久久噜噜老黄 | 夜夜爽天天搞| 啦啦啦韩国在线观看视频| 国产高清激情床上av| 久9热在线精品视频| 久久九九热精品免费| 色5月婷婷丁香| 有码 亚洲区| 免费观看精品视频网站| 日韩精品青青久久久久久| 午夜精品久久久久久毛片777| 国产亚洲精品久久久久久毛片| 五月玫瑰六月丁香| 国产单亲对白刺激| 国产精品久久久久久久电影| 国产精品自产拍在线观看55亚洲| 日本一本二区三区精品| 欧美在线黄色| 深夜a级毛片| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av| 一区二区三区免费毛片| 在线十欧美十亚洲十日本专区| 五月玫瑰六月丁香| 欧美国产日韩亚洲一区| 成人三级黄色视频| 国产亚洲精品久久久com| 亚洲人成网站高清观看| 国产精品国产高清国产av| 午夜福利免费观看在线| 亚洲第一电影网av| 亚洲国产精品sss在线观看| 亚洲人与动物交配视频| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 欧美日韩国产亚洲二区| 天堂动漫精品| 亚洲avbb在线观看| 午夜影院日韩av| 三级毛片av免费| bbb黄色大片| 国产精品99久久久久久久久| 久久精品综合一区二区三区| 又黄又爽又刺激的免费视频.| 久久精品夜夜夜夜夜久久蜜豆| 午夜激情欧美在线| 我的老师免费观看完整版| 国产成人影院久久av| 国产乱人伦免费视频| av视频在线观看入口| 国产欧美日韩精品一区二区| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 欧美午夜高清在线| 国产精品永久免费网站| 国产乱人视频| 高清毛片免费观看视频网站| 日本三级黄在线观看| avwww免费| 亚洲avbb在线观看| 精品午夜福利在线看| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 亚洲不卡免费看| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 欧美激情久久久久久爽电影| 亚州av有码| 丰满人妻熟妇乱又伦精品不卡| 国产免费一级a男人的天堂| 一a级毛片在线观看| 国产成人aa在线观看| 欧美日韩瑟瑟在线播放| 我要搜黄色片| 久久精品国产亚洲av天美| 99热这里只有是精品在线观看 | 久久国产乱子伦精品免费另类| 久久九九热精品免费| 一个人看的www免费观看视频| 国产伦人伦偷精品视频| 国产午夜精品论理片| 有码 亚洲区| 国内精品久久久久精免费| 国产91精品成人一区二区三区| 别揉我奶头 嗯啊视频| 久久精品国产自在天天线| 蜜桃亚洲精品一区二区三区| 午夜影院日韩av| 99热这里只有是精品在线观看 | 欧美色欧美亚洲另类二区| 亚洲精品亚洲一区二区| 能在线免费观看的黄片| 麻豆久久精品国产亚洲av| 给我免费播放毛片高清在线观看| 免费av不卡在线播放| 一夜夜www| 欧美绝顶高潮抽搐喷水| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 黄色视频,在线免费观看| 中文资源天堂在线| 久久久久久大精品| 在线播放无遮挡| 偷拍熟女少妇极品色| 搡老熟女国产l中国老女人| 欧美一区二区国产精品久久精品| 国产熟女xx| 国产精品久久视频播放| 成人国产一区最新在线观看| 欧美高清性xxxxhd video| 亚洲自偷自拍三级| 搞女人的毛片| 欧美成狂野欧美在线观看| 一区二区三区高清视频在线| 久久草成人影院| 久久久久久久久久黄片| 亚洲一区二区三区不卡视频| 桃红色精品国产亚洲av| 日韩免费av在线播放| 国产精品伦人一区二区| 高清日韩中文字幕在线| 亚洲国产日韩欧美精品在线观看| 午夜老司机福利剧场| 此物有八面人人有两片| www.熟女人妻精品国产| 亚洲av电影在线进入| 黄色日韩在线| 久久久国产成人免费| 18禁黄网站禁片免费观看直播| 亚洲人成网站高清观看| 国产黄色小视频在线观看| 一个人看的www免费观看视频| 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 免费观看精品视频网站| 狠狠狠狠99中文字幕| 身体一侧抽搐| 在线看三级毛片| 高清日韩中文字幕在线| 亚洲一区二区三区不卡视频| 久久性视频一级片| 91av网一区二区| 观看免费一级毛片| 欧美日韩乱码在线| 精品一区二区三区人妻视频| 色综合欧美亚洲国产小说| 国产国拍精品亚洲av在线观看| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区精品| 久久精品国产自在天天线| 国产精品电影一区二区三区| 免费搜索国产男女视频| 又粗又爽又猛毛片免费看| 欧美国产日韩亚洲一区| 嫩草影院精品99| 全区人妻精品视频| 欧美日韩福利视频一区二区| 婷婷精品国产亚洲av在线| 成人鲁丝片一二三区免费| 精品一区二区三区av网在线观看| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 国产91精品成人一区二区三区| 窝窝影院91人妻| 一个人免费在线观看电影| 小说图片视频综合网站| 一本一本综合久久| 1000部很黄的大片| 热99re8久久精品国产| 波多野结衣高清无吗| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久亚洲av鲁大| 色视频www国产| 午夜免费成人在线视频| 久久精品国产99精品国产亚洲性色| eeuss影院久久| 直男gayav资源| 亚洲18禁久久av| 美女被艹到高潮喷水动态| 亚洲无线在线观看| 国产免费男女视频| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 一进一出抽搐动态| 国产真实伦视频高清在线观看 | 欧美色欧美亚洲另类二区| av国产免费在线观看| 黄色丝袜av网址大全| 久久人人爽人人爽人人片va | 又粗又爽又猛毛片免费看| 欧美中文日本在线观看视频| 久久99热这里只有精品18| 亚洲国产日韩欧美精品在线观看| 久久性视频一级片| 男人舔女人下体高潮全视频| av女优亚洲男人天堂| 精品国产三级普通话版| 欧美日本视频| 国产精华一区二区三区| 99国产极品粉嫩在线观看| 精品一区二区三区av网在线观看| 日韩av在线大香蕉| av中文乱码字幕在线| 高潮久久久久久久久久久不卡| 一个人观看的视频www高清免费观看| 大型黄色视频在线免费观看| 国产又黄又爽又无遮挡在线| 一区二区三区四区激情视频 | 日本三级黄在线观看| 偷拍熟女少妇极品色| 亚洲成人久久性| 老司机午夜十八禁免费视频| 欧美bdsm另类| 又黄又爽又刺激的免费视频.| 国产一区二区三区视频了| 我要看日韩黄色一级片| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 99久久九九国产精品国产免费| 嫩草影视91久久| 可以在线观看的亚洲视频| 午夜福利18| 日韩欧美在线二视频| 欧美黄色片欧美黄色片| 真人做人爱边吃奶动态| 精品免费久久久久久久清纯| 麻豆成人av在线观看| 午夜精品久久久久久毛片777|