• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth

    2024-02-29 09:18:50QianYang楊茜YangLi李陽HuiZou鄒輝JieMei梅杰EnMingXu徐恩明andZuXingZhang張祖興
    Chinese Physics B 2024年2期
    關(guān)鍵詞:李陽

    Qian Yang(楊茜), Yang Li(李陽), Hui Zou(鄒輝),Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(張祖興)

    Advanced Photonic Technology Laboratory,College of Electronic and Optical Engineering&College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: random laser,fiber laser,stimulated Brillouin scattering(SBS),stimulated Raman scattering(SRS)

    1.Introduction

    Multi-wavelength Brillouin random fiber laser with simple structure,narrow linewidth,independence of the resonant cavity and fixed reflector of conventional fiber lasers, holds great promise for applications in fiber optical communication,optical sensing, spectral measurement, and so on.[1,2]Due to the relatively small Brillouin gain and large random cavity loss, multi-wavelength Brillouin random fiber lasers relying on backward Rayleigh scattering (RS) in the fibers to form a randomly distributed feedback,usually need to combine stimulated Brillouin scattering (SBS) with rare-earth-doped fiber gain or stimulated Raman scattering (SRS) gain together to generate multi-wavelength outputs.[3,4]Unfortunately, Brillouin Er-doped or Yb-doped fiber multi-wavelength lasers are difficult to thoroughly inhibit the homogeneous broadening phenomenon and the Er-doped or Yb-doped fiber has restricted gain bandwidth.The output wavelength number and bandwidth from Brillouin Er-doped or Yb-doped fiber multiwavelength lasers are rather limited.[5–7]Recently,Brillouin–Raman fiber lasers with narrow bandwidth of Brillouin gain and wide bandwidth of Raman amplification have been extensively investigated to address this problem.[8–12]

    Since the random fiber laser based on RS-induced random distribution feedback, was proposed first by Turitsynet al.in 2010,[13]SBS and SRS have been widely used to realize multi-wavelength fiber lasers with a large number of Brillouin Stokes lines (BSLs).In 2013, Wuet al.proposed a semi-open-cavity multi-wavelength Brillouin–Raman random fiber laser with a resonant cavity composed of a fiber ring mirror and randomly distributed Rayleigh backscattering in a 10-km-long dispersion-compensated fiber (DCF), generating 210 uniform BSLs within 16.8-nm bandwidth with a spacing of 0.08 nm.[14]At the same year, Wanget al.added a 50-km-long single-mode fiber (SMF) into Brillouin–Raman fiber laser to enhance RS effect, which reshapes the output spectrum.[15]A multi-wavelength output with a frequency interval of about 10 GHz and a bandwidth of 40 nm is achieved,when the power level and linewidth between Brillouin component of Stokes lines and Rayleigh component of Stokes lines gradually reach balance due to the narrowing effect of RS on the BSLs.In 2019,a multi-wavelength Brillouin–Raman fiber laser with a 51-nm-wide bandwidth was proposed and demonstrated,which is configured in a half-open cavity design with a variable optical attenuator to control and optimize the mirror reflectivity in the cavity.[16]In the following year, the same group replaced the variable optical attenuator with an arcshaped optical fiber attenuator to control the mirror reflectivity,thereby suppressing gain competition among longitudinal cavity modes and obtaining almost the same bandwidth.[17]All above mentioned are half-open cavity structures with unidirectional output,which features a Brillouin comb with interval of a single Brillouin frequency shift.

    A fully open cavity that brings in more complicated nonlinear effects, like bidirectional RS based random distributed feedback, SBS, and SRS, turns the generation of BSL comb into double Brillouin-frequency-shift output in bidirection.In 2013, Mamdoohiet al.used DCF and bismuth-oxide erbium doped fiber as a hybrid gain medium to extend Raman gain,and obtained a multi-wavelength output with a frequency interval of about 20 GHz and a bandwidth of 28 nm based on RS feedback effect.[18]In 2018,Al-Alimiet al.adopted a microair cavity in the Brillouin–Raman fiber laser to control optical feedback and nonlinear competition in the fibers.[19]At high Raman power, the stronger RS enhanced the feedback mechanism of the Stokes lines, allowing a part of energy to transfer between the self-excited mode and the BSLs.As a result,a multi-wavelength output with a frequency interval of about 20 GHz and a bandwidth of 46.6 nm was obtained.[19]Recently, our group proposed the regeneration enhancement effect through incorporating a combination of erbium-doped fiber amplifier and SMF into one side of the Brillouin–Raman random fiber laser (BRRFL) in order to further enhance the performance of the BRRFL.[20]The side-mode suppression ratio(SSR)and the order number of generated Brillouin Stokes lines (BSLs) both show some improvements.But the performance is still limited,and the linewidth of single BSL has not been characterized.

    In this paper, a multi-wavelength BRRFL with linear full-open cavity for bidirectional narrow-linewidth Brillouin frequency comb (BFC) generation is proposed and demonstrated.The effects of the pump power (erbium-doped fiber and Raman) and Brillouin pump wavelength on the broadband BFC generation are investigated in detail, respectively.A flat-amplitude Brillouin Stokes frequency comb with 40.7-nm bandwidth from 1531 nm to 1571.7 nm and built-in 242 orders BSLs with double Brillouin-frequency-shift spacing is obtained,benefited from the regeneration enhancement effect.The linewidth of single BSL is experimentally measured to be about 2.5 kHz by using delayed self-heterodyne technique.

    2.Experimental setup and principle

    Figure 1 shows the experimental setup of the BRRFL with a regeneration portion that we proposed,which has a full-open linear cavity configuration.A semiconductor tunable laser source (TLS) with an output power range from 7.6 dBm to 12.6 dBm acts as a Brillouin pump(BP)laser source to provide BP light,coupled into the cavity from port 1 of a 3-port circulator designated as Cir.Meanwhile, 1455-nm Raman pump(RP) laser light with maximum output power of 831.8 mW is mixed with the BP light and enters an 8.8-km-long DCF through a 1455-nm/1550-nm wavelength-division multiplexer(WDM).It is explained that this is a reflective WDM, which means that the RP light will be reflected backward after having entered WDM and will transmit to the right together with BP.In order to realize the regeneration enhancement effect of random lasing,a 1.3-m-long erbium-doped fiber(EDF)which is pumped by a 980-nm laser diode (LD) through a 1550-nm/980-nm WDM, and a coil of 10-km SMF are added and located at the right of the DCF.The linear cavity configuration takes an isolator (ISO) as the end to avoid the influence of Fresnel reflection, so as to ensure the generation of stable random lasing.At the both terminals (output 1 and output 2) of the linear cavity configuration, the optical spectra from both directions can be detected by optical spectrum analyzers(OSA,AQ-6370D)with a resolution of 0.02 nm.

    Fig.1.Experimental setup of Brillouin–Raman random fiber laser with regeneration portion.

    The mechanism of generating the BFC is to combine the enhanced synergistic nonlinearity with the regeneration portion,which can be described as follows:the 1550-nm BP light,which is injected into port 1 of Cir and output from port 2,integrates with the 1455-nm RP light.Both BP light and RP light transmit into DCF through a 1455-nm/1550-nm WDM.The BP light is amplified through distributed Raman amplification based on the SRS effect in DCF.Once the SBS threshold is reached,the generated first-order BSL will propagation backwards,opposite to the BP light.Similarly the first-order BSL is also amplified through distributed Raman amplification,and serves as a new pump to generate the second-order BSL which is propagated in the backward direction with respect to the first-order BSL.Simultaneously, the residual BP light and even order BSLs enter into 1550-nm/980-nm WDM through the right end of DCF.As they continue to be amplified in the EDF, the forward-propagated even-order BSLs will serve as new BP to stimulate higher order backward-propagated oddorder BSLs in the SMF as long as the next order SBS threshold is satisfied.Thus,all the processes that occur in the DCF with Raman amplification will recur in the SMF with EDF gain,which can be regarded as regeneration and enhancement of the former.Generally speaking, the lower-order BSLs act as the pump of the higher-order BSLs to produce more BSLs with higher order, and such a cascaded process will continue until the amplified BSLs of a certain order is limited by the amplification efficiency and cannot reach the SBS threshold of the next order.That is,when the overall gain is not enough to offset its loss, the cascade stops.As a result, the residual BP light and all the even order BSLs output directly from output 2,while the backward-propagated odd order BSLs output from port 3 of the Cir together with the BP backward scattered through RS,realizing two BFCs output with double Brillouinfrequency-shift spacing from separated ends of the random cavity.

    3.Results and discussion

    During the experiment without the regeneration enhancement effect of random lasing,i.e.,with the portion of EDF and SMF removed, it is observed that there always remains RP light in the output spectrum measured at output 2 after the cascaded BSLs have been magnified.In order to use the remained RP and provide more BSLs with double Brillouin-frequencyshift spacing, the combination of a 1.3-m-long EDF pumped by a 980-nm laser diode (LD) through a 1550-nm/980-nm WDM and a coil of 10-km SMF,is incorporated between the DCF and the isolator as a regeneration portion.Firstly,the effect of the regeneration portion is investigated, as the BP and RP power are set to 7.6 dBm and 831.8 mW respectively with a BP wavelength of 1563.2 nm.Figure 2(a) depicts the output BFCs of the BRRFL measured at output 2 under different 980-nm LD pump power.The leftmost wavelength line whose intensity is higher than other lines’is from the residual pump.It clearly shows that the BSL number of the output even-order BFC has an evident increase from no 980-nm LD pump power to 100-mW 980-nm LD pump power.But with the increase of 980-nm LD pump power from 100 mW to 350 mW,the number of attainable BSLdoes not increase significantly.It contributes to the gain bandwidth limitation and saturation effect,which makes the available number of output BSLs basically remain unchanged with higher 980-nm LD pump power.For clearer observation,an enlarged view of the marked section in Fig.2(a) with all curves superimposed is shown in Fig.2(b).Apparently,the output power of the even-order BFCs at output 2 shows a synchronous upward trend with the increase of 980-nm LD pump power from 0 mW to 350 mW,while the power of odd-order BFCs at output1 almost remains constant.At the same time, the amplitude flatness and the optical signalto-noise ratio (OSNR) deteriorate to a certain degree.Thus,during the following experiment, the pump power of 980-nm LD is fixed at 100 mW.

    Next, the effect of RP power on the output BFC is investigated.The BP wavelength is set to 1553 nm, and the 980-nm LD power and the BP power are set to 100 mW and 7.6 dBm respectively.The first-order BSL at output 1 is easily observed with the RP power increased to 446.7 mW.When the RP power is further increased to 501.2 mW, the secondorder BSL emerges at output 1 as shown in Fig.3(a).But there is a 19.46-dB power difference between the first order BSL and the second order BSL.Note that the observed second order BSL at output 1 is its RS component, since the propagation direction of the second order BSL is opposite to that of the first-order component(leftward).It also means that the rightward second order BSL is generated at output 2.The output spectra at output 2 under different RP power are measured as shown in Fig.3(b).When the RP power is 602.6 mW in Fig.3(b), the amplified Stokes lines are not enough to overcome the self-oscillation.Thus, the mixing of BSLs and the self-oscillation modes makes the output spectrum disordered slightly.When the RP power is further increased to 660.7 mW,the stable BFC with a bandwidth of 14.5 nm and an OSNR of 26.6 dB begins to appear.The bandwidth and the OSNR are both enhanced with the RP power increasing from 660.7 mW to 831.8 mW.This can be explained by the fact that the optical gain of BP and BSLs increase with the RP power rising.Consequently,BP and BSLs will get more energy from RP pump light, so that BP and BSLs will be amplified, increasing the output BSL orders and flattening the BFC as well.However,the power difference between adjacent BSLs decreases with the RP power continuously going up.This is because the RS component is also amplified.Meanwhile, the fourwave mixing(FWM)effect between BP and BSLs that propagate in the same direction is raised a little, resulting in the generation of some anti-Stokes light.

    Fig.2.(a) Output spectra from output 2 under different 980-nm LD pump powers,(b)enlargement of the parts marked in Fig.2(a).

    Fig.3.(a)Output spectrum at output 1 under RP power of 501.2 mW,(b)output spectra at output 2 under different RP powers.

    Fig.4.Output spectra from output 1 at BP wavelength of(a)1531 nm,(b)1545 nm,(c)1553 nm,and(d)1560 nm,with BP,RP,and 980-nm LD power set to 7.6 dBm,831.8 mW,and 100 mW,respectively.

    In the following, the influence of the BP wavelength on the performance of BFC is investigated.Figure 4 shows the output BFC from output 2 in some selected BP wavelengths under 980-nm LD pump power 100 mW,RP power 831.8 mW,and BP power 7.6 dBm.Initially,the BP wavelength is fixed at the left of the Raman gain peak of 1531 nm(about 1553.3 nm),the output spectrum covers a wavelength range from 1531 nm to 1571.7 nm (40.7 nm), and obtains a maximum of 242 order Stokes lines output with a wavelength spacing of double Brillouin frequency shifts(~0.165 nm)as shown in Fig.4(a).The OSNR is about 25.48 dB.When the BP wavelength is set be slightly close to the Raman gain peak at 1545 nm, a flatter BFC is obtained in a range of 1545 nm–1571.8 nm, and the OSNR rises to 28.13 dB as shown in Fig.4(b).When the BP wavelength is 1553 nm near the Raman gain peak,an output spectrum with 1553 nm–1571.1 nm(18.1 nm)wavelength range and 104 Stokes lines is obtained as shown in Fig.4(c).The OSNR turns to 30.06 dB.Figure 4(d) reveals the output spectrum at output 2 when BP wavelength is 1560 nm near the end of Raman gain.Only 65 order Stokes lines ranging from 1560 nm to 1570.9 nm(10.9 nm)can be observed,while the OSNR rises from 30.06 dB to 32.89 dB.Evidently, with the tuning of BP wavelength, the change of the output BFC is embodied in the bandwidth of cascaded BSLs and the fluctuation of output BSL number and OSNR.And with the increase of BP wavelength, the bandwidth of the output BFC obtained at output 2 is gradually shortened, but the OSNR of the output BFC is improved.When the BP wavelength exceeds the Raman gain range,the BP and BSLs cannot be amplified enough to meet the SBS threshold, so that the output spectrum is mainly self-oscillation mode.Figure 4 reveals the trend of tunable range of BFC and its OSNR changing with BP wavelength.Within the Raman gain range,the shorter the BP wavelength,the wider the bandwidth of the BFC is,but the OSNR becomes poorer as well.On the contrary, increasing the BP wavelength will get less BSLs,but the OSNR of BFC will experience a gradual promotion obviously.

    To highlight bidirectional operation of the random fiber laser,the obtained BFCs from output 1 and output 2 are shown in Fig.5, when the RP power is 831.8 mW and 980-nm LD power is 100 mW with BP wavelength of 1535 nm.It is seen that the output BFCs exhibit 2.8-dB flat amplitude, comparable to the result reported previously.It is also indicated that under the same pumping condition,odd order BSLs from output 1 in Fig.5(a)have a greater OSNR than even order BSLs output 2 in Fig.5(b).This is because all even order BSLs have to pass through the EDF and SMF,which will introduce amplified spontaneous emission (ASE) noise and worsen the OSNR,while only part of odd order BSLs need to go through this process.Besides, the peak power difference between adjacent BSLs of odd order BFC is also superior to the even one,i.e., the peak power difference between odd orders of BSLs and Rayleigh components of even orders of BSLs for odd order BFC is larger than that for even order BFC.It is also due to the amplification role of the regeneration portion in the right.But it is worth noting that both two combs can realize the output of 225 cascade BSLs in a wide bandwidth, and have a clean-cut feature at the ends of the comb.

    Fig.5.BFC output from(a)output 1,(b)output 2,(c)detailed spectrum of(c)odd BSLs and(d)even BSLs.

    The obtained BFC with a bandwidth of 40.7 nm is subject to the pumping condition of single-wavelength RP of 831.8 mW and 980-nm LD pump of 100 mW.On the contrast,the recorded Brillouin comb bandwidth is 57.2 nm, which is implemented through Raman gain engineering based on multi-wavelength RP scheme.[1]This scheme is cumbersome and costly with just passable results.For the case of single wavelength RP, a 46.6-nm BFC with 20-dB OSNR is produced at Raman power of 950 mW, through controlling the flatness in amplitude of BSLs by employing an air-gap outside of the cavity.[19]Although this is the widest bandwidth attained in multi-wavelength BRRFL incorporated a singlewavelength RP, the introduction of air-gap inevitably brings extra losses.By using a 50/50 coupler to divide 1000-mW RP power into two fiber-entry points,212 flat amplitude channels with an average 27.5-dB OSNR were achieved,[9]which is less than our obtained 225 BSLs with 27.9-dB OSNR under single-wavelength RP of 831.8-mW and 980-nm LD pump of 100 mW.It is indicated the proposed regeneration portion scheme performs well in terms of pump efficiency.

    The narrow linewidth is one of the advantages of Brillouin random fiber laser.[21–23]We use the non-zero delay selfheterodyne method based on acoustooptic modulator (AOM)to measure the linewidth of single BSL.The experimental setup for linewidth measurement is shown in Fig.6(a).Since there is no narrow-band filter to filter out single BSL,an alternative method is adopted, that is, only the first-order BSL is excited.We set the BP power to 12.6 dBm and the RP power to 446.7 mW to just excite the first-order BSL.The first-order BSL to be measured is then divided into upper and lower channels through a 3-dB coupler.The upper branch passes through the 30-km SMF used as an optical fiber delay line.The lower branch passes through the AOM and the frequency is shifted by 80 MHz to avoid the influence of noise near the zero frequency.The upper and lower branches recombine at another 3-dB coupler and the beat radio frequency (RF) signal with a central frequency of 80 MHz is detected and measured by using a 15-GHz photo detector (PD) and an electrical spectrum analyzer (ESA).The obtained beat RF signal is shown in Fig.6(b),with a video bandwidth of 1 Hz,resolution bandwidth of 500 Hz,and the scanning bandwidth from 79.6 MHz to 80.4 MHz.It features a 3-dB linewidth of about 2.507 kHz,which is deduced from 20-dB bandwidth in order to reduce the noise influence.Based on this test system,we believe the linewidth of any order of BSL can be measured so long as a sufficiently narrow filter is added.And the magnitude order of the linewidth should be the same as that of the first order measured.

    Fig.6.(a)Experimental setup for linewidth measurement,(b)measured beat RF spectrum.

    4.Conclusions

    In summary,we obtained a broadband bidirectional Brillouin frequency comb from a multi-wavelength BRRFL in which the regeneration enhancing effect in a full-open linear cavity configuration is used.With the assistance of regeneration portion, the BRRFL we proposed shows advancement in not only the number of output BSLs,but also the excellent flatness of BFC with better OSNR, than those generated by conventional RFLs under the same pumping conditions.In the experiments, by adjusting the BP power to 7.6 dBm at 1531 nm, a wideband BFC of up to 242-order BSL with a wavelength spacing of double Brillouin frequency shift can be obtained.Moreover, the linewidth of single BSL is experimentally measured to be about 2.5 kHz.With the improved wideband BFC with better OSNR and its narrow linewidth,it has broad opportunities for promoting the applications in optical communication,microwave photonics,and optical sensing systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.62175116 and 91950105), the 1311 Talent Plan of Nanjing University of Posts and Telecommunications, China, and the Postgraduate Research & Practice Innovation Program, Jiangsu Province, China (Grant No.SJCX210276).

    猜你喜歡
    李陽
    Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    繽紛手繪鞋,陪讀媽媽“繪”出致富路
    家庭百事通(2017年4期)2017-04-12 23:13:19
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    非典型婚外情結(jié)局
    中外文摘(2016年8期)2016-12-22 16:25:13
    開在心頭的花
    上海故事(2016年8期)2016-08-10 16:42:43
    非典型婚外情結(jié)局,車禍中一只帶傷的手在謀殺
    感謝你曾經(jīng)的欺負
    久久婷婷人人爽人人干人人爱| 久久久久久免费高清国产稀缺| 成人特级黄色片久久久久久久| 国产区一区二久久| aaaaa片日本免费| 亚洲激情在线av| videosex国产| 性色av乱码一区二区三区2| 欧美成人一区二区免费高清观看 | 变态另类丝袜制服| 国产亚洲欧美在线一区二区| 免费电影在线观看免费观看| 国产av不卡久久| 18禁国产床啪视频网站| 国产精品久久久人人做人人爽| 99re在线观看精品视频| 2021天堂中文幕一二区在线观| 不卡一级毛片| www.自偷自拍.com| 日韩欧美国产一区二区入口| 欧美一区二区精品小视频在线| 一区二区三区高清视频在线| 熟女电影av网| 在线观看免费视频日本深夜| 成人国产综合亚洲| 国内久久婷婷六月综合欲色啪| 国产精品美女特级片免费视频播放器 | 成人精品一区二区免费| 一级毛片高清免费大全| 天堂av国产一区二区熟女人妻 | 999久久久精品免费观看国产| 夜夜看夜夜爽夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| 9191精品国产免费久久| 激情在线观看视频在线高清| 麻豆成人av在线观看| 国产视频一区二区在线看| 女同久久另类99精品国产91| 99久久久亚洲精品蜜臀av| 又粗又爽又猛毛片免费看| 亚洲自拍偷在线| 五月伊人婷婷丁香| 欧美在线黄色| 亚洲片人在线观看| 国产欧美日韩一区二区三| 99精品欧美一区二区三区四区| 亚洲无线在线观看| 日本a在线网址| 久久久久国内视频| 久久性视频一级片| 国产麻豆成人av免费视频| 女人被狂操c到高潮| 亚洲国产中文字幕在线视频| 日本在线视频免费播放| 九色国产91popny在线| 人人妻人人看人人澡| 久久久久国产精品人妻aⅴ院| 我的老师免费观看完整版| 男人舔奶头视频| 午夜a级毛片| 黄色女人牲交| 极品教师在线免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 又爽又黄无遮挡网站| 99精品在免费线老司机午夜| 岛国在线观看网站| av天堂在线播放| 久久久久久久久久黄片| 两个人视频免费观看高清| 国产亚洲欧美98| 人人妻人人看人人澡| 国内少妇人妻偷人精品xxx网站 | 一夜夜www| 99在线视频只有这里精品首页| 精品久久久久久久毛片微露脸| 18禁裸乳无遮挡免费网站照片| 黄片小视频在线播放| 欧美av亚洲av综合av国产av| 可以在线观看的亚洲视频| 精品国产亚洲在线| 最近最新免费中文字幕在线| 给我免费播放毛片高清在线观看| 在线看三级毛片| 精品一区二区三区av网在线观看| 亚洲一区二区三区不卡视频| 欧美三级亚洲精品| 久久国产乱子伦精品免费另类| 国产精品一区二区三区四区久久| 亚洲精品美女久久久久99蜜臀| 丰满人妻一区二区三区视频av | 99热只有精品国产| 日韩 欧美 亚洲 中文字幕| 亚洲成人中文字幕在线播放| 999久久久国产精品视频| 黑人欧美特级aaaaaa片| 女生性感内裤真人,穿戴方法视频| av视频在线观看入口| 日韩大码丰满熟妇| 亚洲精华国产精华精| 久久久久久久午夜电影| 两个人视频免费观看高清| 好男人电影高清在线观看| 国产免费av片在线观看野外av| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人成人乱码亚洲影| 麻豆国产97在线/欧美 | 真人一进一出gif抽搐免费| 日本撒尿小便嘘嘘汇集6| 亚洲欧美激情综合另类| 亚洲av成人精品一区久久| 久久久国产成人精品二区| 亚洲av成人av| 999精品在线视频| 日本 av在线| 久久久久久大精品| 午夜福利视频1000在线观看| 成熟少妇高潮喷水视频| 啦啦啦韩国在线观看视频| 国产亚洲精品久久久久久毛片| 妹子高潮喷水视频| av国产免费在线观看| or卡值多少钱| 宅男免费午夜| 狠狠狠狠99中文字幕| 一夜夜www| 可以在线观看的亚洲视频| 国产麻豆成人av免费视频| 最近最新免费中文字幕在线| 后天国语完整版免费观看| 曰老女人黄片| 国产野战对白在线观看| 国产精品国产高清国产av| 国产三级中文精品| 精品少妇一区二区三区视频日本电影| 搡老熟女国产l中国老女人| 少妇熟女aⅴ在线视频| 老熟妇乱子伦视频在线观看| 一本大道久久a久久精品| av免费在线观看网站| 日韩精品中文字幕看吧| 午夜激情av网站| 在线十欧美十亚洲十日本专区| 亚洲中文字幕一区二区三区有码在线看 | 成人手机av| 精品午夜福利视频在线观看一区| 97超级碰碰碰精品色视频在线观看| 一本精品99久久精品77| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久免费视频| 精品国产乱子伦一区二区三区| 亚洲自偷自拍图片 自拍| 成人国产一区最新在线观看| 美女高潮喷水抽搐中文字幕| 夜夜爽天天搞| 久久精品国产亚洲av高清一级| 久久九九热精品免费| 日韩欧美在线二视频| 老司机午夜十八禁免费视频| 国产精品 欧美亚洲| 99热这里只有是精品50| 免费在线观看日本一区| 亚洲自偷自拍图片 自拍| 亚洲一区中文字幕在线| 窝窝影院91人妻| 成人特级黄色片久久久久久久| 午夜a级毛片| 嫩草影院精品99| 亚洲免费av在线视频| 午夜精品在线福利| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 欧美人与性动交α欧美精品济南到| 国产高清videossex| 国产区一区二久久| 精品国产乱子伦一区二区三区| 久久香蕉精品热| avwww免费| 一进一出好大好爽视频| 欧美zozozo另类| 国产成人精品久久二区二区91| 久久午夜亚洲精品久久| 欧美色视频一区免费| 久久人妻av系列| 免费无遮挡裸体视频| 日本五十路高清| 岛国视频午夜一区免费看| av免费在线观看网站| 他把我摸到了高潮在线观看| 精品免费久久久久久久清纯| 免费看美女性在线毛片视频| 欧美色欧美亚洲另类二区| 九色国产91popny在线| 全区人妻精品视频| 久久人人精品亚洲av| 日韩欧美一区二区三区在线观看| 九九热线精品视视频播放| 日韩高清综合在线| 好男人在线观看高清免费视频| 久久国产精品人妻蜜桃| 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 中文字幕人成人乱码亚洲影| 国产精品国产高清国产av| 亚洲专区国产一区二区| 欧美日韩国产亚洲二区| 村上凉子中文字幕在线| 亚洲熟妇熟女久久| 国产高清有码在线观看视频 | 亚洲18禁久久av| 真人一进一出gif抽搐免费| 欧美黄色淫秽网站| 午夜免费激情av| 制服人妻中文乱码| 国内久久婷婷六月综合欲色啪| 日韩精品中文字幕看吧| 国产免费av片在线观看野外av| 亚洲精品粉嫩美女一区| 黄色片一级片一级黄色片| 看片在线看免费视频| 久久亚洲真实| 91大片在线观看| 亚洲欧美日韩高清在线视频| 不卡一级毛片| 亚洲,欧美精品.| 国产高清激情床上av| a级毛片在线看网站| 蜜桃久久精品国产亚洲av| 中文字幕av在线有码专区| 亚洲 国产 在线| 欧美性猛交黑人性爽| 亚洲国产欧美一区二区综合| 久久久久久亚洲精品国产蜜桃av| 正在播放国产对白刺激| 久久国产精品影院| 亚洲国产精品sss在线观看| 国产精品影院久久| av在线天堂中文字幕| 亚洲成人久久爱视频| 中文字幕精品亚洲无线码一区| 中文字幕av在线有码专区| 91在线观看av| 丁香欧美五月| 欧美在线一区亚洲| 在线观看午夜福利视频| 制服人妻中文乱码| 两个人看的免费小视频| 亚洲午夜精品一区,二区,三区| 亚洲国产高清在线一区二区三| 在线观看66精品国产| 巨乳人妻的诱惑在线观看| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看 | 黄片大片在线免费观看| 亚洲欧洲精品一区二区精品久久久| 午夜福利成人在线免费观看| 精品福利观看| 美女大奶头视频| 黄色女人牲交| 一本久久中文字幕| 最新美女视频免费是黄的| 久久久久久久久中文| 亚洲精品中文字幕在线视频| 亚洲成人久久性| 男女床上黄色一级片免费看| 欧美色视频一区免费| 91大片在线观看| 麻豆久久精品国产亚洲av| 亚洲精品国产精品久久久不卡| 俄罗斯特黄特色一大片| 亚洲国产精品sss在线观看| 老汉色av国产亚洲站长工具| 99在线视频只有这里精品首页| 国产高清videossex| 日韩精品中文字幕看吧| 日韩欧美在线乱码| 亚洲天堂国产精品一区在线| 国产成人一区二区三区免费视频网站| 一级毛片女人18水好多| 欧美激情久久久久久爽电影| 少妇被粗大的猛进出69影院| 一级片免费观看大全| 一级毛片精品| 亚洲 欧美 日韩 在线 免费| 身体一侧抽搐| 91成年电影在线观看| 欧美极品一区二区三区四区| 欧美绝顶高潮抽搐喷水| 国产蜜桃级精品一区二区三区| 高清毛片免费观看视频网站| aaaaa片日本免费| 色老头精品视频在线观看| 欧美午夜高清在线| 中文字幕熟女人妻在线| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av| 亚洲国产高清在线一区二区三| 亚洲18禁久久av| 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 99国产精品一区二区蜜桃av| 91大片在线观看| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 精品午夜福利视频在线观看一区| 中文亚洲av片在线观看爽| 国产av一区二区精品久久| 欧美乱妇无乱码| 亚洲人成网站高清观看| 嫩草影视91久久| 亚洲精品美女久久av网站| 香蕉国产在线看| 国产熟女xx| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀| 在线观看日韩欧美| 亚洲午夜理论影院| 老司机靠b影院| 九色成人免费人妻av| 久久中文看片网| 在线看三级毛片| √禁漫天堂资源中文www| 国产一级毛片七仙女欲春2| 99久久精品热视频| 亚洲成人久久爱视频| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 亚洲美女视频黄频| 欧美日韩福利视频一区二区| 最近最新中文字幕大全电影3| 国产精品1区2区在线观看.| 久久久水蜜桃国产精品网| 搡老妇女老女人老熟妇| 很黄的视频免费| 国产亚洲欧美98| 亚洲电影在线观看av| 亚洲真实伦在线观看| 国产成人影院久久av| 久久午夜综合久久蜜桃| 亚洲国产精品合色在线| 黄色女人牲交| 黄片大片在线免费观看| 国产激情偷乱视频一区二区| 亚洲精品中文字幕在线视频| 长腿黑丝高跟| 国产麻豆成人av免费视频| 国产精品98久久久久久宅男小说| 18禁黄网站禁片免费观看直播| 亚洲无线在线观看| 99热这里只有精品一区 | 国内毛片毛片毛片毛片毛片| av有码第一页| 久久久国产成人精品二区| 少妇熟女aⅴ在线视频| 亚洲精品av麻豆狂野| 欧美黑人精品巨大| 国产精品精品国产色婷婷| 欧美大码av| 日本黄大片高清| 精品久久久久久久毛片微露脸| 精品日产1卡2卡| 悠悠久久av| 淫秽高清视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇熟女aⅴ在线视频| av免费在线观看网站| 嫩草影院精品99| 成人三级做爰电影| 国产精品久久久久久久电影 | 国产精品亚洲一级av第二区| 美女免费视频网站| 欧美乱妇无乱码| 欧美高清成人免费视频www| 亚洲真实伦在线观看| 青草久久国产| 欧洲精品卡2卡3卡4卡5卡区| 身体一侧抽搐| 色精品久久人妻99蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠躁躁| 18禁美女被吸乳视频| 国产探花在线观看一区二区| 日韩精品免费视频一区二区三区| 国模一区二区三区四区视频 | 91在线观看av| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 99久久综合精品五月天人人| 国产99白浆流出| 亚洲黑人精品在线| 精品国内亚洲2022精品成人| 国产av在哪里看| 亚洲人成77777在线视频| 最新美女视频免费是黄的| 欧美乱色亚洲激情| 99在线人妻在线中文字幕| 三级毛片av免费| 一本综合久久免费| 男女做爰动态图高潮gif福利片| tocl精华| 国产精品 欧美亚洲| 人人妻人人澡欧美一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产一区二区精华液| 老熟妇仑乱视频hdxx| 日韩欧美免费精品| 窝窝影院91人妻| 国产精品久久久av美女十八| 精品久久久久久久末码| 亚洲国产欧美网| 美女午夜性视频免费| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 丰满人妻一区二区三区视频av | 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2| 亚洲性夜色夜夜综合| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 国产又黄又爽又无遮挡在线| 级片在线观看| 久久人人精品亚洲av| 一进一出抽搐动态| 两个人看的免费小视频| 一区福利在线观看| 精品欧美国产一区二区三| 成人永久免费在线观看视频| 欧美日本亚洲视频在线播放| 丝袜人妻中文字幕| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 在线观看免费日韩欧美大片| 婷婷精品国产亚洲av| 亚洲无线在线观看| 一级毛片女人18水好多| 亚洲国产精品999在线| 国产日本99.免费观看| 免费无遮挡裸体视频| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 三级国产精品欧美在线观看 | 国产午夜精品久久久久久| 久久久久性生活片| 精品第一国产精品| 国产av一区二区精品久久| 老司机午夜福利在线观看视频| 香蕉久久夜色| 97超级碰碰碰精品色视频在线观看| 999精品在线视频| 久久久久久久精品吃奶| 亚洲欧洲精品一区二区精品久久久| 国产成人系列免费观看| 色播亚洲综合网| 超碰成人久久| 久久国产精品影院| 亚洲一码二码三码区别大吗| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 亚洲国产高清在线一区二区三| 亚洲av熟女| 精品一区二区三区av网在线观看| 他把我摸到了高潮在线观看| 特大巨黑吊av在线直播| 久久久久国产精品人妻aⅴ院| 麻豆国产97在线/欧美 | 欧美高清成人免费视频www| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 国产精品亚洲av一区麻豆| 麻豆久久精品国产亚洲av| 亚洲乱码一区二区免费版| 搡老岳熟女国产| 丰满人妻一区二区三区视频av | 久久久国产欧美日韩av| 在线观看日韩欧美| av免费在线观看网站| 啪啪无遮挡十八禁网站| 无限看片的www在线观看| 精品国产美女av久久久久小说| 午夜成年电影在线免费观看| 成人av一区二区三区在线看| 亚洲国产欧美一区二区综合| 怎么达到女性高潮| 一区二区三区激情视频| 久久精品国产清高在天天线| 麻豆成人午夜福利视频| 日本一本二区三区精品| 在线观看66精品国产| 精品久久久久久,| 最近在线观看免费完整版| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| 国产精品免费一区二区三区在线| 成年免费大片在线观看| 久久久精品国产亚洲av高清涩受| 日韩国内少妇激情av| 欧美又色又爽又黄视频| 一a级毛片在线观看| av福利片在线| 午夜精品一区二区三区免费看| 欧美在线黄色| 一本久久中文字幕| 久久精品亚洲精品国产色婷小说| 国产私拍福利视频在线观看| 99热6这里只有精品| 在线观看免费视频日本深夜| 国产一区二区激情短视频| 色综合欧美亚洲国产小说| 亚洲一区二区三区色噜噜| 亚洲九九香蕉| 女人被狂操c到高潮| 久久香蕉精品热| 亚洲av日韩精品久久久久久密| 亚洲国产精品久久男人天堂| 日韩精品免费视频一区二区三区| 亚洲欧美精品综合久久99| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 亚洲成人中文字幕在线播放| av片东京热男人的天堂| 亚洲精品一区av在线观看| 又爽又黄无遮挡网站| 男人舔女人下体高潮全视频| 久久亚洲真实| av福利片在线观看| 高清毛片免费观看视频网站| 香蕉久久夜色| 久久中文字幕人妻熟女| 亚洲av成人一区二区三| 国产一区二区激情短视频| 人妻久久中文字幕网| 精品电影一区二区在线| x7x7x7水蜜桃| 999久久久国产精品视频| 亚洲人成伊人成综合网2020| 亚洲国产精品sss在线观看| 两人在一起打扑克的视频| 亚洲美女黄片视频| 97超级碰碰碰精品色视频在线观看| 久久久精品大字幕| 欧美性猛交黑人性爽| 韩国av一区二区三区四区| 亚洲乱码一区二区免费版| 成人三级做爰电影| 国产高清激情床上av| 久久午夜综合久久蜜桃| 午夜激情av网站| 在线观看免费日韩欧美大片| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩福利视频一区二区| av天堂在线播放| 女警被强在线播放| av中文乱码字幕在线| 国内精品久久久久久久电影| 一级黄色大片毛片| 久久九九热精品免费| 99久久久亚洲精品蜜臀av| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 亚洲五月婷婷丁香| 男女那种视频在线观看| 免费在线观看完整版高清| 国产1区2区3区精品| 久久久久久国产a免费观看| 国内久久婷婷六月综合欲色啪| 国产精品亚洲一级av第二区| 麻豆av在线久日| 悠悠久久av| 夜夜夜夜夜久久久久| 18禁观看日本| 首页视频小说图片口味搜索| 男人舔女人下体高潮全视频| 最近最新中文字幕大全电影3| 丰满的人妻完整版| 午夜福利视频1000在线观看| 久久久久久免费高清国产稀缺| 精品久久久久久久末码| 亚洲专区国产一区二区| 毛片女人毛片| 午夜视频精品福利| 中文字幕精品亚洲无线码一区| 亚洲国产精品sss在线观看| av片东京热男人的天堂| 一a级毛片在线观看| 国产成人av激情在线播放| 90打野战视频偷拍视频| 欧美日韩瑟瑟在线播放| 草草在线视频免费看| 50天的宝宝边吃奶边哭怎么回事| 久久久精品欧美日韩精品| 曰老女人黄片| 91国产中文字幕| 国内久久婷婷六月综合欲色啪| 日韩三级视频一区二区三区| 亚洲国产日韩欧美精品在线观看 | 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 欧美成狂野欧美在线观看| 在线a可以看的网站| 日韩有码中文字幕| 啦啦啦免费观看视频1| 观看免费一级毛片| 久久久久久久午夜电影| 欧美精品啪啪一区二区三区| 久久亚洲真实| 午夜福利高清视频| 91麻豆av在线| 国产主播在线观看一区二区| 精品久久久久久久久久久久久| 麻豆久久精品国产亚洲av|