• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth

    2024-02-29 09:18:50QianYang楊茜YangLi李陽HuiZou鄒輝JieMei梅杰EnMingXu徐恩明andZuXingZhang張祖興
    Chinese Physics B 2024年2期
    關(guān)鍵詞:李陽

    Qian Yang(楊茜), Yang Li(李陽), Hui Zou(鄒輝),Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(張祖興)

    Advanced Photonic Technology Laboratory,College of Electronic and Optical Engineering&College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: random laser,fiber laser,stimulated Brillouin scattering(SBS),stimulated Raman scattering(SRS)

    1.Introduction

    Multi-wavelength Brillouin random fiber laser with simple structure,narrow linewidth,independence of the resonant cavity and fixed reflector of conventional fiber lasers, holds great promise for applications in fiber optical communication,optical sensing, spectral measurement, and so on.[1,2]Due to the relatively small Brillouin gain and large random cavity loss, multi-wavelength Brillouin random fiber lasers relying on backward Rayleigh scattering (RS) in the fibers to form a randomly distributed feedback,usually need to combine stimulated Brillouin scattering (SBS) with rare-earth-doped fiber gain or stimulated Raman scattering (SRS) gain together to generate multi-wavelength outputs.[3,4]Unfortunately, Brillouin Er-doped or Yb-doped fiber multi-wavelength lasers are difficult to thoroughly inhibit the homogeneous broadening phenomenon and the Er-doped or Yb-doped fiber has restricted gain bandwidth.The output wavelength number and bandwidth from Brillouin Er-doped or Yb-doped fiber multiwavelength lasers are rather limited.[5–7]Recently,Brillouin–Raman fiber lasers with narrow bandwidth of Brillouin gain and wide bandwidth of Raman amplification have been extensively investigated to address this problem.[8–12]

    Since the random fiber laser based on RS-induced random distribution feedback, was proposed first by Turitsynet al.in 2010,[13]SBS and SRS have been widely used to realize multi-wavelength fiber lasers with a large number of Brillouin Stokes lines (BSLs).In 2013, Wuet al.proposed a semi-open-cavity multi-wavelength Brillouin–Raman random fiber laser with a resonant cavity composed of a fiber ring mirror and randomly distributed Rayleigh backscattering in a 10-km-long dispersion-compensated fiber (DCF), generating 210 uniform BSLs within 16.8-nm bandwidth with a spacing of 0.08 nm.[14]At the same year, Wanget al.added a 50-km-long single-mode fiber (SMF) into Brillouin–Raman fiber laser to enhance RS effect, which reshapes the output spectrum.[15]A multi-wavelength output with a frequency interval of about 10 GHz and a bandwidth of 40 nm is achieved,when the power level and linewidth between Brillouin component of Stokes lines and Rayleigh component of Stokes lines gradually reach balance due to the narrowing effect of RS on the BSLs.In 2019,a multi-wavelength Brillouin–Raman fiber laser with a 51-nm-wide bandwidth was proposed and demonstrated,which is configured in a half-open cavity design with a variable optical attenuator to control and optimize the mirror reflectivity in the cavity.[16]In the following year, the same group replaced the variable optical attenuator with an arcshaped optical fiber attenuator to control the mirror reflectivity,thereby suppressing gain competition among longitudinal cavity modes and obtaining almost the same bandwidth.[17]All above mentioned are half-open cavity structures with unidirectional output,which features a Brillouin comb with interval of a single Brillouin frequency shift.

    A fully open cavity that brings in more complicated nonlinear effects, like bidirectional RS based random distributed feedback, SBS, and SRS, turns the generation of BSL comb into double Brillouin-frequency-shift output in bidirection.In 2013, Mamdoohiet al.used DCF and bismuth-oxide erbium doped fiber as a hybrid gain medium to extend Raman gain,and obtained a multi-wavelength output with a frequency interval of about 20 GHz and a bandwidth of 28 nm based on RS feedback effect.[18]In 2018,Al-Alimiet al.adopted a microair cavity in the Brillouin–Raman fiber laser to control optical feedback and nonlinear competition in the fibers.[19]At high Raman power, the stronger RS enhanced the feedback mechanism of the Stokes lines, allowing a part of energy to transfer between the self-excited mode and the BSLs.As a result,a multi-wavelength output with a frequency interval of about 20 GHz and a bandwidth of 46.6 nm was obtained.[19]Recently, our group proposed the regeneration enhancement effect through incorporating a combination of erbium-doped fiber amplifier and SMF into one side of the Brillouin–Raman random fiber laser (BRRFL) in order to further enhance the performance of the BRRFL.[20]The side-mode suppression ratio(SSR)and the order number of generated Brillouin Stokes lines (BSLs) both show some improvements.But the performance is still limited,and the linewidth of single BSL has not been characterized.

    In this paper, a multi-wavelength BRRFL with linear full-open cavity for bidirectional narrow-linewidth Brillouin frequency comb (BFC) generation is proposed and demonstrated.The effects of the pump power (erbium-doped fiber and Raman) and Brillouin pump wavelength on the broadband BFC generation are investigated in detail, respectively.A flat-amplitude Brillouin Stokes frequency comb with 40.7-nm bandwidth from 1531 nm to 1571.7 nm and built-in 242 orders BSLs with double Brillouin-frequency-shift spacing is obtained,benefited from the regeneration enhancement effect.The linewidth of single BSL is experimentally measured to be about 2.5 kHz by using delayed self-heterodyne technique.

    2.Experimental setup and principle

    Figure 1 shows the experimental setup of the BRRFL with a regeneration portion that we proposed,which has a full-open linear cavity configuration.A semiconductor tunable laser source (TLS) with an output power range from 7.6 dBm to 12.6 dBm acts as a Brillouin pump(BP)laser source to provide BP light,coupled into the cavity from port 1 of a 3-port circulator designated as Cir.Meanwhile, 1455-nm Raman pump(RP) laser light with maximum output power of 831.8 mW is mixed with the BP light and enters an 8.8-km-long DCF through a 1455-nm/1550-nm wavelength-division multiplexer(WDM).It is explained that this is a reflective WDM, which means that the RP light will be reflected backward after having entered WDM and will transmit to the right together with BP.In order to realize the regeneration enhancement effect of random lasing,a 1.3-m-long erbium-doped fiber(EDF)which is pumped by a 980-nm laser diode (LD) through a 1550-nm/980-nm WDM, and a coil of 10-km SMF are added and located at the right of the DCF.The linear cavity configuration takes an isolator (ISO) as the end to avoid the influence of Fresnel reflection, so as to ensure the generation of stable random lasing.At the both terminals (output 1 and output 2) of the linear cavity configuration, the optical spectra from both directions can be detected by optical spectrum analyzers(OSA,AQ-6370D)with a resolution of 0.02 nm.

    Fig.1.Experimental setup of Brillouin–Raman random fiber laser with regeneration portion.

    The mechanism of generating the BFC is to combine the enhanced synergistic nonlinearity with the regeneration portion,which can be described as follows:the 1550-nm BP light,which is injected into port 1 of Cir and output from port 2,integrates with the 1455-nm RP light.Both BP light and RP light transmit into DCF through a 1455-nm/1550-nm WDM.The BP light is amplified through distributed Raman amplification based on the SRS effect in DCF.Once the SBS threshold is reached,the generated first-order BSL will propagation backwards,opposite to the BP light.Similarly the first-order BSL is also amplified through distributed Raman amplification,and serves as a new pump to generate the second-order BSL which is propagated in the backward direction with respect to the first-order BSL.Simultaneously, the residual BP light and even order BSLs enter into 1550-nm/980-nm WDM through the right end of DCF.As they continue to be amplified in the EDF, the forward-propagated even-order BSLs will serve as new BP to stimulate higher order backward-propagated oddorder BSLs in the SMF as long as the next order SBS threshold is satisfied.Thus,all the processes that occur in the DCF with Raman amplification will recur in the SMF with EDF gain,which can be regarded as regeneration and enhancement of the former.Generally speaking, the lower-order BSLs act as the pump of the higher-order BSLs to produce more BSLs with higher order, and such a cascaded process will continue until the amplified BSLs of a certain order is limited by the amplification efficiency and cannot reach the SBS threshold of the next order.That is,when the overall gain is not enough to offset its loss, the cascade stops.As a result, the residual BP light and all the even order BSLs output directly from output 2,while the backward-propagated odd order BSLs output from port 3 of the Cir together with the BP backward scattered through RS,realizing two BFCs output with double Brillouinfrequency-shift spacing from separated ends of the random cavity.

    3.Results and discussion

    During the experiment without the regeneration enhancement effect of random lasing,i.e.,with the portion of EDF and SMF removed, it is observed that there always remains RP light in the output spectrum measured at output 2 after the cascaded BSLs have been magnified.In order to use the remained RP and provide more BSLs with double Brillouin-frequencyshift spacing, the combination of a 1.3-m-long EDF pumped by a 980-nm laser diode (LD) through a 1550-nm/980-nm WDM and a coil of 10-km SMF,is incorporated between the DCF and the isolator as a regeneration portion.Firstly,the effect of the regeneration portion is investigated, as the BP and RP power are set to 7.6 dBm and 831.8 mW respectively with a BP wavelength of 1563.2 nm.Figure 2(a) depicts the output BFCs of the BRRFL measured at output 2 under different 980-nm LD pump power.The leftmost wavelength line whose intensity is higher than other lines’is from the residual pump.It clearly shows that the BSL number of the output even-order BFC has an evident increase from no 980-nm LD pump power to 100-mW 980-nm LD pump power.But with the increase of 980-nm LD pump power from 100 mW to 350 mW,the number of attainable BSLdoes not increase significantly.It contributes to the gain bandwidth limitation and saturation effect,which makes the available number of output BSLs basically remain unchanged with higher 980-nm LD pump power.For clearer observation,an enlarged view of the marked section in Fig.2(a) with all curves superimposed is shown in Fig.2(b).Apparently,the output power of the even-order BFCs at output 2 shows a synchronous upward trend with the increase of 980-nm LD pump power from 0 mW to 350 mW,while the power of odd-order BFCs at output1 almost remains constant.At the same time, the amplitude flatness and the optical signalto-noise ratio (OSNR) deteriorate to a certain degree.Thus,during the following experiment, the pump power of 980-nm LD is fixed at 100 mW.

    Next, the effect of RP power on the output BFC is investigated.The BP wavelength is set to 1553 nm, and the 980-nm LD power and the BP power are set to 100 mW and 7.6 dBm respectively.The first-order BSL at output 1 is easily observed with the RP power increased to 446.7 mW.When the RP power is further increased to 501.2 mW, the secondorder BSL emerges at output 1 as shown in Fig.3(a).But there is a 19.46-dB power difference between the first order BSL and the second order BSL.Note that the observed second order BSL at output 1 is its RS component, since the propagation direction of the second order BSL is opposite to that of the first-order component(leftward).It also means that the rightward second order BSL is generated at output 2.The output spectra at output 2 under different RP power are measured as shown in Fig.3(b).When the RP power is 602.6 mW in Fig.3(b), the amplified Stokes lines are not enough to overcome the self-oscillation.Thus, the mixing of BSLs and the self-oscillation modes makes the output spectrum disordered slightly.When the RP power is further increased to 660.7 mW,the stable BFC with a bandwidth of 14.5 nm and an OSNR of 26.6 dB begins to appear.The bandwidth and the OSNR are both enhanced with the RP power increasing from 660.7 mW to 831.8 mW.This can be explained by the fact that the optical gain of BP and BSLs increase with the RP power rising.Consequently,BP and BSLs will get more energy from RP pump light, so that BP and BSLs will be amplified, increasing the output BSL orders and flattening the BFC as well.However,the power difference between adjacent BSLs decreases with the RP power continuously going up.This is because the RS component is also amplified.Meanwhile, the fourwave mixing(FWM)effect between BP and BSLs that propagate in the same direction is raised a little, resulting in the generation of some anti-Stokes light.

    Fig.2.(a) Output spectra from output 2 under different 980-nm LD pump powers,(b)enlargement of the parts marked in Fig.2(a).

    Fig.3.(a)Output spectrum at output 1 under RP power of 501.2 mW,(b)output spectra at output 2 under different RP powers.

    Fig.4.Output spectra from output 1 at BP wavelength of(a)1531 nm,(b)1545 nm,(c)1553 nm,and(d)1560 nm,with BP,RP,and 980-nm LD power set to 7.6 dBm,831.8 mW,and 100 mW,respectively.

    In the following, the influence of the BP wavelength on the performance of BFC is investigated.Figure 4 shows the output BFC from output 2 in some selected BP wavelengths under 980-nm LD pump power 100 mW,RP power 831.8 mW,and BP power 7.6 dBm.Initially,the BP wavelength is fixed at the left of the Raman gain peak of 1531 nm(about 1553.3 nm),the output spectrum covers a wavelength range from 1531 nm to 1571.7 nm (40.7 nm), and obtains a maximum of 242 order Stokes lines output with a wavelength spacing of double Brillouin frequency shifts(~0.165 nm)as shown in Fig.4(a).The OSNR is about 25.48 dB.When the BP wavelength is set be slightly close to the Raman gain peak at 1545 nm, a flatter BFC is obtained in a range of 1545 nm–1571.8 nm, and the OSNR rises to 28.13 dB as shown in Fig.4(b).When the BP wavelength is 1553 nm near the Raman gain peak,an output spectrum with 1553 nm–1571.1 nm(18.1 nm)wavelength range and 104 Stokes lines is obtained as shown in Fig.4(c).The OSNR turns to 30.06 dB.Figure 4(d) reveals the output spectrum at output 2 when BP wavelength is 1560 nm near the end of Raman gain.Only 65 order Stokes lines ranging from 1560 nm to 1570.9 nm(10.9 nm)can be observed,while the OSNR rises from 30.06 dB to 32.89 dB.Evidently, with the tuning of BP wavelength, the change of the output BFC is embodied in the bandwidth of cascaded BSLs and the fluctuation of output BSL number and OSNR.And with the increase of BP wavelength, the bandwidth of the output BFC obtained at output 2 is gradually shortened, but the OSNR of the output BFC is improved.When the BP wavelength exceeds the Raman gain range,the BP and BSLs cannot be amplified enough to meet the SBS threshold, so that the output spectrum is mainly self-oscillation mode.Figure 4 reveals the trend of tunable range of BFC and its OSNR changing with BP wavelength.Within the Raman gain range,the shorter the BP wavelength,the wider the bandwidth of the BFC is,but the OSNR becomes poorer as well.On the contrary, increasing the BP wavelength will get less BSLs,but the OSNR of BFC will experience a gradual promotion obviously.

    To highlight bidirectional operation of the random fiber laser,the obtained BFCs from output 1 and output 2 are shown in Fig.5, when the RP power is 831.8 mW and 980-nm LD power is 100 mW with BP wavelength of 1535 nm.It is seen that the output BFCs exhibit 2.8-dB flat amplitude, comparable to the result reported previously.It is also indicated that under the same pumping condition,odd order BSLs from output 1 in Fig.5(a)have a greater OSNR than even order BSLs output 2 in Fig.5(b).This is because all even order BSLs have to pass through the EDF and SMF,which will introduce amplified spontaneous emission (ASE) noise and worsen the OSNR,while only part of odd order BSLs need to go through this process.Besides, the peak power difference between adjacent BSLs of odd order BFC is also superior to the even one,i.e., the peak power difference between odd orders of BSLs and Rayleigh components of even orders of BSLs for odd order BFC is larger than that for even order BFC.It is also due to the amplification role of the regeneration portion in the right.But it is worth noting that both two combs can realize the output of 225 cascade BSLs in a wide bandwidth, and have a clean-cut feature at the ends of the comb.

    Fig.5.BFC output from(a)output 1,(b)output 2,(c)detailed spectrum of(c)odd BSLs and(d)even BSLs.

    The obtained BFC with a bandwidth of 40.7 nm is subject to the pumping condition of single-wavelength RP of 831.8 mW and 980-nm LD pump of 100 mW.On the contrast,the recorded Brillouin comb bandwidth is 57.2 nm, which is implemented through Raman gain engineering based on multi-wavelength RP scheme.[1]This scheme is cumbersome and costly with just passable results.For the case of single wavelength RP, a 46.6-nm BFC with 20-dB OSNR is produced at Raman power of 950 mW, through controlling the flatness in amplitude of BSLs by employing an air-gap outside of the cavity.[19]Although this is the widest bandwidth attained in multi-wavelength BRRFL incorporated a singlewavelength RP, the introduction of air-gap inevitably brings extra losses.By using a 50/50 coupler to divide 1000-mW RP power into two fiber-entry points,212 flat amplitude channels with an average 27.5-dB OSNR were achieved,[9]which is less than our obtained 225 BSLs with 27.9-dB OSNR under single-wavelength RP of 831.8-mW and 980-nm LD pump of 100 mW.It is indicated the proposed regeneration portion scheme performs well in terms of pump efficiency.

    The narrow linewidth is one of the advantages of Brillouin random fiber laser.[21–23]We use the non-zero delay selfheterodyne method based on acoustooptic modulator (AOM)to measure the linewidth of single BSL.The experimental setup for linewidth measurement is shown in Fig.6(a).Since there is no narrow-band filter to filter out single BSL,an alternative method is adopted, that is, only the first-order BSL is excited.We set the BP power to 12.6 dBm and the RP power to 446.7 mW to just excite the first-order BSL.The first-order BSL to be measured is then divided into upper and lower channels through a 3-dB coupler.The upper branch passes through the 30-km SMF used as an optical fiber delay line.The lower branch passes through the AOM and the frequency is shifted by 80 MHz to avoid the influence of noise near the zero frequency.The upper and lower branches recombine at another 3-dB coupler and the beat radio frequency (RF) signal with a central frequency of 80 MHz is detected and measured by using a 15-GHz photo detector (PD) and an electrical spectrum analyzer (ESA).The obtained beat RF signal is shown in Fig.6(b),with a video bandwidth of 1 Hz,resolution bandwidth of 500 Hz,and the scanning bandwidth from 79.6 MHz to 80.4 MHz.It features a 3-dB linewidth of about 2.507 kHz,which is deduced from 20-dB bandwidth in order to reduce the noise influence.Based on this test system,we believe the linewidth of any order of BSL can be measured so long as a sufficiently narrow filter is added.And the magnitude order of the linewidth should be the same as that of the first order measured.

    Fig.6.(a)Experimental setup for linewidth measurement,(b)measured beat RF spectrum.

    4.Conclusions

    In summary,we obtained a broadband bidirectional Brillouin frequency comb from a multi-wavelength BRRFL in which the regeneration enhancing effect in a full-open linear cavity configuration is used.With the assistance of regeneration portion, the BRRFL we proposed shows advancement in not only the number of output BSLs,but also the excellent flatness of BFC with better OSNR, than those generated by conventional RFLs under the same pumping conditions.In the experiments, by adjusting the BP power to 7.6 dBm at 1531 nm, a wideband BFC of up to 242-order BSL with a wavelength spacing of double Brillouin frequency shift can be obtained.Moreover, the linewidth of single BSL is experimentally measured to be about 2.5 kHz.With the improved wideband BFC with better OSNR and its narrow linewidth,it has broad opportunities for promoting the applications in optical communication,microwave photonics,and optical sensing systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.62175116 and 91950105), the 1311 Talent Plan of Nanjing University of Posts and Telecommunications, China, and the Postgraduate Research & Practice Innovation Program, Jiangsu Province, China (Grant No.SJCX210276).

    猜你喜歡
    李陽
    Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    繽紛手繪鞋,陪讀媽媽“繪”出致富路
    家庭百事通(2017年4期)2017-04-12 23:13:19
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    非典型婚外情結(jié)局
    中外文摘(2016年8期)2016-12-22 16:25:13
    開在心頭的花
    上海故事(2016年8期)2016-08-10 16:42:43
    非典型婚外情結(jié)局,車禍中一只帶傷的手在謀殺
    感謝你曾經(jīng)的欺負
    亚洲欧美日韩卡通动漫| 亚洲电影在线观看av| 亚洲欧美清纯卡通| 久久久久久国产a免费观看| 国产探花极品一区二区| 熟女人妻精品中文字幕| 精品久久国产蜜桃| 国产精品一区二区在线观看99| 成人亚洲精品av一区二区| 超碰av人人做人人爽久久| 亚洲av二区三区四区| 成人亚洲精品av一区二区| 深爱激情五月婷婷| 91久久精品电影网| 国产伦理片在线播放av一区| 亚洲成人久久爱视频| 国产精品国产三级国产av玫瑰| 一级毛片黄色毛片免费观看视频| 亚洲av不卡在线观看| 一本久久精品| 国产一区亚洲一区在线观看| 九草在线视频观看| 国产乱来视频区| 中国国产av一级| 97人妻精品一区二区三区麻豆| 国产综合懂色| 免费看av在线观看网站| 国产黄片视频在线免费观看| 最近中文字幕2019免费版| 国产高清三级在线| 一本一本综合久久| 久久久成人免费电影| 1000部很黄的大片| 欧美97在线视频| 国产亚洲一区二区精品| 一级毛片电影观看| 亚洲自拍偷在线| 五月开心婷婷网| 国产精品久久久久久精品古装| 亚洲精品久久午夜乱码| 一区二区三区精品91| 亚洲av中文字字幕乱码综合| 国产69精品久久久久777片| 天美传媒精品一区二区| 精华霜和精华液先用哪个| 精品少妇黑人巨大在线播放| 久久久a久久爽久久v久久| 狂野欧美激情性bbbbbb| 亚洲av一区综合| 五月伊人婷婷丁香| 日本黄大片高清| 大陆偷拍与自拍| 联通29元200g的流量卡| 如何舔出高潮| 国产成人a∨麻豆精品| 26uuu在线亚洲综合色| 岛国毛片在线播放| 午夜视频国产福利| 亚洲不卡免费看| 久久久久九九精品影院| 久久精品综合一区二区三区| 国产精品一及| 亚洲精品日韩在线中文字幕| 亚洲欧美精品自产自拍| 不卡视频在线观看欧美| 久久久久久久亚洲中文字幕| 男人狂女人下面高潮的视频| 97精品久久久久久久久久精品| 日韩成人av中文字幕在线观看| 日日撸夜夜添| 日韩伦理黄色片| 色网站视频免费| 国产欧美日韩精品一区二区| 精品一区二区三卡| 男插女下体视频免费在线播放| 欧美亚洲 丝袜 人妻 在线| 人妻制服诱惑在线中文字幕| 乱码一卡2卡4卡精品| 成人鲁丝片一二三区免费| 一二三四中文在线观看免费高清| 欧美少妇被猛烈插入视频| 深夜a级毛片| 在线天堂最新版资源| 国产成人午夜福利电影在线观看| 成人美女网站在线观看视频| 久久久久国产精品人妻一区二区| 婷婷色综合www| 国产一区二区在线观看日韩| 国产精品偷伦视频观看了| 少妇人妻一区二区三区视频| av国产免费在线观看| 99热网站在线观看| 亚洲内射少妇av| 亚洲精品国产成人久久av| 超碰av人人做人人爽久久| 亚洲精品影视一区二区三区av| 国产精品99久久99久久久不卡 | 亚洲无线观看免费| 男女边摸边吃奶| 夫妻午夜视频| 国产69精品久久久久777片| 亚洲国产日韩一区二区| 丰满人妻一区二区三区视频av| 好男人在线观看高清免费视频| 欧美97在线视频| 亚洲精品乱码久久久久久按摩| 舔av片在线| 欧美3d第一页| 国产老妇女一区| 爱豆传媒免费全集在线观看| 日韩 亚洲 欧美在线| 人妻 亚洲 视频| 久久99精品国语久久久| 性插视频无遮挡在线免费观看| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 国产69精品久久久久777片| www.av在线官网国产| 国产伦精品一区二区三区视频9| 久久久久九九精品影院| 欧美日本视频| 日韩不卡一区二区三区视频在线| 免费观看的影片在线观看| 国产伦精品一区二区三区四那| 亚洲精品久久久久久婷婷小说| 嫩草影院新地址| 伊人久久国产一区二区| 婷婷色麻豆天堂久久| 免费观看性生交大片5| 国产久久久一区二区三区| 国产黄片美女视频| 有码 亚洲区| 韩国av在线不卡| 国产成人freesex在线| 免费播放大片免费观看视频在线观看| 毛片女人毛片| 亚洲最大成人中文| 又粗又硬又长又爽又黄的视频| 久久久久国产精品人妻一区二区| 99re6热这里在线精品视频| 免费播放大片免费观看视频在线观看| 水蜜桃什么品种好| 国产精品.久久久| 免费电影在线观看免费观看| 美女高潮的动态| h日本视频在线播放| 亚洲av福利一区| 少妇人妻精品综合一区二区| 网址你懂的国产日韩在线| 国产精品人妻久久久影院| 99热全是精品| 在线精品无人区一区二区三 | 一个人观看的视频www高清免费观看| av在线app专区| 纵有疾风起免费观看全集完整版| av在线播放精品| 又爽又黄a免费视频| 1000部很黄的大片| 久久人人爽av亚洲精品天堂 | 九草在线视频观看| 国产国拍精品亚洲av在线观看| 国产视频内射| 一级毛片黄色毛片免费观看视频| 校园人妻丝袜中文字幕| 国产淫语在线视频| 又大又黄又爽视频免费| 国产黄色视频一区二区在线观看| 黄色日韩在线| 国产视频首页在线观看| 尤物成人国产欧美一区二区三区| 亚洲欧美精品专区久久| 久久久色成人| h日本视频在线播放| 一边亲一边摸免费视频| 丝瓜视频免费看黄片| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站| av线在线观看网站| 街头女战士在线观看网站| 成人无遮挡网站| 秋霞伦理黄片| 久久久久久伊人网av| 久久久久国产精品人妻一区二区| 国产熟女欧美一区二区| 黄色怎么调成土黄色| 国产高清三级在线| 久久久久精品久久久久真实原创| 人妻系列 视频| 亚洲成色77777| 久久精品综合一区二区三区| 九九爱精品视频在线观看| 国产精品一区二区性色av| 欧美日韩视频高清一区二区三区二| 亚洲国产精品国产精品| 日韩欧美 国产精品| 最近中文字幕高清免费大全6| 观看免费一级毛片| 久久精品久久久久久噜噜老黄| 麻豆成人午夜福利视频| 国产老妇女一区| 久久影院123| 高清在线视频一区二区三区| 久久女婷五月综合色啪小说 | 免费黄频网站在线观看国产| 欧美bdsm另类| 97精品久久久久久久久久精品| 国产精品一区二区三区四区免费观看| 2018国产大陆天天弄谢| 亚洲精品456在线播放app| 日本黄大片高清| 嫩草影院新地址| 亚洲三级黄色毛片| 国产精品一及| 亚洲久久久久久中文字幕| 永久免费av网站大全| 最近中文字幕高清免费大全6| 国产精品麻豆人妻色哟哟久久| 国产精品福利在线免费观看| 亚洲成人久久爱视频| 99久久九九国产精品国产免费| 中文精品一卡2卡3卡4更新| 久热久热在线精品观看| 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 特级一级黄色大片| 一边亲一边摸免费视频| 国产色爽女视频免费观看| av播播在线观看一区| 18禁裸乳无遮挡免费网站照片| av专区在线播放| 国产精品无大码| 亚洲va在线va天堂va国产| 久久亚洲国产成人精品v| 精品久久久久久电影网| 女的被弄到高潮叫床怎么办| 久久99蜜桃精品久久| 亚洲高清免费不卡视频| 成人高潮视频无遮挡免费网站| 国产av不卡久久| 一级av片app| 成人毛片60女人毛片免费| 国精品久久久久久国模美| 国产高清三级在线| 亚洲成人中文字幕在线播放| 在现免费观看毛片| 国产精品一区二区三区四区免费观看| 成人特级av手机在线观看| 99热这里只有精品一区| av免费观看日本| 成年人午夜在线观看视频| 久久久久国产网址| 99九九线精品视频在线观看视频| 男女无遮挡免费网站观看| 欧美bdsm另类| 久热久热在线精品观看| 国产精品福利在线免费观看| 久久精品夜色国产| av在线蜜桃| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 在线观看三级黄色| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 国产精品伦人一区二区| av播播在线观看一区| av女优亚洲男人天堂| 网址你懂的国产日韩在线| 深爱激情五月婷婷| 国产精品不卡视频一区二区| 丰满乱子伦码专区| 国产欧美日韩一区二区三区在线 | 国产91av在线免费观看| 国产真实伦视频高清在线观看| 丝袜脚勾引网站| 夫妻性生交免费视频一级片| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 国产黄a三级三级三级人| 国产日韩欧美亚洲二区| 精品国产三级普通话版| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 国产69精品久久久久777片| 欧美精品人与动牲交sv欧美| 亚洲国产色片| 午夜福利在线观看免费完整高清在| 男男h啪啪无遮挡| 国产伦在线观看视频一区| 夫妻午夜视频| 秋霞伦理黄片| 国产精品三级大全| 欧美97在线视频| 高清日韩中文字幕在线| 精品人妻一区二区三区麻豆| 亚洲av成人精品一二三区| 男人狂女人下面高潮的视频| 日韩欧美精品v在线| 熟女人妻精品中文字幕| 午夜福利网站1000一区二区三区| 97热精品久久久久久| 欧美激情久久久久久爽电影| 久久久久久久精品精品| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6| 亚洲精品一二三| 九色成人免费人妻av| 男女那种视频在线观看| 各种免费的搞黄视频| 亚洲久久久久久中文字幕| 国产真实伦视频高清在线观看| 一级黄片播放器| 男的添女的下面高潮视频| 毛片女人毛片| 大话2 男鬼变身卡| 中文乱码字字幕精品一区二区三区| 国产老妇女一区| 一个人观看的视频www高清免费观看| 搞女人的毛片| 91在线精品国自产拍蜜月| 亚洲无线观看免费| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产色婷婷电影| 成人综合一区亚洲| 国产黄a三级三级三级人| 国产成人a区在线观看| 九九久久精品国产亚洲av麻豆| 在线亚洲精品国产二区图片欧美 | 中文字幕人妻熟人妻熟丝袜美| 哪个播放器可以免费观看大片| 免费在线观看成人毛片| 日韩人妻高清精品专区| 亚洲欧美日韩另类电影网站 | 日韩伦理黄色片| 国产一级毛片在线| 哪个播放器可以免费观看大片| 色视频www国产| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 免费高清在线观看视频在线观看| 99热全是精品| 国产精品福利在线免费观看| 一级av片app| 国产午夜精品久久久久久一区二区三区| 免费黄色在线免费观看| 国产极品天堂在线| a级毛色黄片| 午夜福利在线在线| 亚洲人与动物交配视频| 国产精品国产三级专区第一集| 少妇 在线观看| 久久精品人妻少妇| 亚洲欧美日韩另类电影网站 | 男女下面进入的视频免费午夜| 天堂俺去俺来也www色官网| 亚洲精品视频女| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 亚洲欧美日韩另类电影网站 | 少妇人妻 视频| 晚上一个人看的免费电影| 欧美日韩在线观看h| a级毛色黄片| 一区二区三区精品91| 国产精品99久久99久久久不卡 | 青春草国产在线视频| 国产一区有黄有色的免费视频| 国产av码专区亚洲av| 偷拍熟女少妇极品色| 成年女人在线观看亚洲视频 | 国产亚洲av片在线观看秒播厂| 国产亚洲5aaaaa淫片| 久久久久网色| 大陆偷拍与自拍| 啦啦啦中文免费视频观看日本| 伦精品一区二区三区| 久久久精品免费免费高清| 国产欧美另类精品又又久久亚洲欧美| 国产成人a区在线观看| 亚洲欧美成人综合另类久久久| 成年免费大片在线观看| 国产亚洲5aaaaa淫片| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 色婷婷久久久亚洲欧美| 九九在线视频观看精品| 日韩精品有码人妻一区| 欧美日韩视频高清一区二区三区二| 国产亚洲午夜精品一区二区久久 | 国产高潮美女av| 中国美白少妇内射xxxbb| 色视频www国产| a级毛色黄片| 午夜老司机福利剧场| 欧美成人午夜免费资源| 欧美三级亚洲精品| 在线观看国产h片| 国产视频内射| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 国产淫片久久久久久久久| 中国美白少妇内射xxxbb| 免费av毛片视频| 亚洲欧美一区二区三区国产| 国产欧美亚洲国产| 国产亚洲91精品色在线| 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 国产精品偷伦视频观看了| 国产精品一二三区在线看| 国产黄频视频在线观看| 国产精品伦人一区二区| 交换朋友夫妻互换小说| 国产高清国产精品国产三级 | 女人被狂操c到高潮| 国产老妇伦熟女老妇高清| 亚洲欧美日韩另类电影网站 | 中文字幕亚洲精品专区| 肉色欧美久久久久久久蜜桃 | 80岁老熟妇乱子伦牲交| 日韩中字成人| 老司机影院成人| 亚洲国产日韩一区二区| 大片电影免费在线观看免费| 男人狂女人下面高潮的视频| 免费观看在线日韩| 偷拍熟女少妇极品色| 亚洲在线观看片| 欧美日韩视频精品一区| 欧美成人a在线观看| 色综合色国产| 国语对白做爰xxxⅹ性视频网站| 人人妻人人看人人澡| 国产 一区精品| 成人亚洲欧美一区二区av| 高清日韩中文字幕在线| 午夜爱爱视频在线播放| 另类亚洲欧美激情| 纵有疾风起免费观看全集完整版| 91在线精品国自产拍蜜月| 中文字幕久久专区| 国产亚洲5aaaaa淫片| 春色校园在线视频观看| 美女被艹到高潮喷水动态| freevideosex欧美| 午夜免费鲁丝| 成人鲁丝片一二三区免费| 在线看a的网站| 日本爱情动作片www.在线观看| 久久久a久久爽久久v久久| 日本与韩国留学比较| 精品久久久精品久久久| 日韩成人伦理影院| 成人综合一区亚洲| 欧美精品国产亚洲| 91精品一卡2卡3卡4卡| 色视频在线一区二区三区| 黄色配什么色好看| 午夜老司机福利剧场| 交换朋友夫妻互换小说| 免费看av在线观看网站| 一区二区av电影网| 在线观看一区二区三区激情| a级毛片免费高清观看在线播放| 日日摸夜夜添夜夜添av毛片| 日日摸夜夜添夜夜爱| 久久久久久久久久人人人人人人| 五月天丁香电影| 亚洲精品乱码久久久久久按摩| 性色av一级| 久久精品久久久久久噜噜老黄| 国产乱人偷精品视频| 国产精品人妻久久久影院| 国产精品人妻久久久久久| 日本av手机在线免费观看| 色网站视频免费| 精品人妻熟女av久视频| 日韩欧美精品v在线| 亚洲美女搞黄在线观看| 精品午夜福利在线看| 亚洲人成网站在线观看播放| 免费观看性生交大片5| av天堂中文字幕网| 精品人妻熟女av久视频| 久久精品国产自在天天线| 乱码一卡2卡4卡精品| 亚洲内射少妇av| 91狼人影院| 97热精品久久久久久| 午夜福利网站1000一区二区三区| 天堂俺去俺来也www色官网| 在线观看一区二区三区| 国产成人a区在线观看| 中国国产av一级| 久久女婷五月综合色啪小说 | 午夜视频国产福利| 麻豆精品久久久久久蜜桃| 亚洲成人中文字幕在线播放| videos熟女内射| 夫妻午夜视频| 国产毛片a区久久久久| 插阴视频在线观看视频| 婷婷色麻豆天堂久久| 熟妇人妻不卡中文字幕| 国产亚洲91精品色在线| 日本熟妇午夜| 国产亚洲av嫩草精品影院| 亚洲精品亚洲一区二区| 精品99又大又爽又粗少妇毛片| 黑人高潮一二区| 91狼人影院| 精品久久久精品久久久| 免费高清在线观看视频在线观看| 高清毛片免费看| 日本猛色少妇xxxxx猛交久久| 免费看光身美女| 最近手机中文字幕大全| 亚洲av国产av综合av卡| 成年av动漫网址| 欧美精品国产亚洲| 人妻制服诱惑在线中文字幕| 2021少妇久久久久久久久久久| 国产精品偷伦视频观看了| av在线app专区| 舔av片在线| 波野结衣二区三区在线| 国产成人aa在线观看| 日韩中字成人| 成人欧美大片| 国精品久久久久久国模美| 天堂中文最新版在线下载 | 国产乱人视频| 熟女人妻精品中文字幕| 肉色欧美久久久久久久蜜桃 | 亚洲欧美日韩东京热| 网址你懂的国产日韩在线| 搡老乐熟女国产| 国产成人a区在线观看| 最新中文字幕久久久久| 日韩 亚洲 欧美在线| h日本视频在线播放| 精品一区在线观看国产| 中文在线观看免费www的网站| 视频区图区小说| 一级av片app| 2022亚洲国产成人精品| 水蜜桃什么品种好| 亚洲av日韩在线播放| 一本一本综合久久| 国产精品一区二区性色av| 亚洲av免费高清在线观看| 国产免费福利视频在线观看| 日本欧美国产在线视频| 国产熟女欧美一区二区| 国模一区二区三区四区视频| 成人亚洲精品一区在线观看 | 美女主播在线视频| 青春草国产在线视频| 日韩av不卡免费在线播放| 久久久久久久国产电影| 欧美少妇被猛烈插入视频| 三级男女做爰猛烈吃奶摸视频| 人妻系列 视频| 高清日韩中文字幕在线| 国产精品99久久久久久久久| 毛片女人毛片| 少妇人妻一区二区三区视频| 午夜精品一区二区三区免费看| 精品少妇久久久久久888优播| 制服丝袜香蕉在线| 中文字幕免费在线视频6| 色哟哟·www| 在线a可以看的网站| 日韩一区二区三区影片| 国产欧美另类精品又又久久亚洲欧美| 成人高潮视频无遮挡免费网站| 男人爽女人下面视频在线观看| 黄片wwwwww| 美女被艹到高潮喷水动态| 王馨瑶露胸无遮挡在线观看| 2022亚洲国产成人精品| 一级爰片在线观看| av国产精品久久久久影院| 纵有疾风起免费观看全集完整版| 日本三级黄在线观看| 美女xxoo啪啪120秒动态图| av.在线天堂| 91精品国产九色| 欧美少妇被猛烈插入视频| 精品国产露脸久久av麻豆| 欧美丝袜亚洲另类| www.色视频.com| 日日摸夜夜添夜夜添av毛片| 老司机影院成人| 亚洲欧洲国产日韩| 免费av观看视频| 男插女下体视频免费在线播放| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲av天美| 激情 狠狠 欧美| 亚洲电影在线观看av| 国产欧美日韩一区二区三区在线 | 色综合色国产| 国产精品国产三级国产专区5o| 一本色道久久久久久精品综合| 亚洲,欧美,日韩| 国产精品一区www在线观看| 亚洲国产av新网站| 色5月婷婷丁香| 久久久久网色| 久久久久久久久大av| 高清视频免费观看一区二区|