• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method

    2022-11-21 09:30:06HongLinZhou周宏霖YuHaoZhang張與豪YangLi李陽
    Chinese Physics B 2022年11期
    關(guān)鍵詞:李陽

    Hong-Lin Zhou(周宏霖) Yu-Hao Zhang(張與豪) Yang Li(李陽)

    Shi-Liang Li(李世亮)1,2,4, Wen-Shan Hong(洪文山)1,2,5,?, and Hui-Qian Luo(羅會(huì)仟)1,4,§

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Advanced Engineering,University of Science and Technology Beijing,Beijing 100083,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    5International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China

    High-quality superconducting Ca1-xNaxFe2As2 single crystals have been successfully grown by the NaAs-flux method, with sodium doping level x=0.4–0.64. The typical sizes of these crystals are more than 10 mm in ab-plane and ~0.1 mm along c-axis in thickness. X-ray diffraction,resistance and magnetization measurements are carried out to characterize the quality of these crystals. While no signature of magnetic phase transitions is detected in the normal state,bulk superconductivity is found for these samples, with a sharp transition at Tc ranging from 19.8 K (x=0.4) to 34.8 K(x=0.64). The doping dependences of the c-axis parameter and Tc are consistent with previous reports, suggesting a possible connection between the lattice parameters and superconductivity.

    Keywords: iron-based superconductors,crystal growth,flux method

    1. Introduction

    Unconventional superconductivity emerges either from stoichiometric or doped cuprates, nickelates, pnictides, and chalcogenides,[1–6]or from pressure tuned heavy fermion compounds, Cr-based and Mn-based compounds.[7–12]It is a great challenge to reveal the microscopic mechanism of superconductivity in these materials due to various phases coexisting or competing with each other.[3,5]To achieve such a goal, high quality crystals are certainly essential for the exploration of those complex interactions among electrons and atoms.[12–22]For iron arsenide superconductors, the crystal growth methods are quite limited due to the highly toxic arsenic vapor.[23]Usually, the iron arsenide crystals are grown by flux methods in sealed quartz tubes, where the flux could be NaCl/KCl mixture, Sn, FeAs, NaF, CaAs, NaAs, KAs,etc.[24–53]At the early stage, the 1111-type iron-based superconductor (FeSC) LaFeAsO1-xFxwere grown by NaCl/KCl flux,[24–26]and the obtained crystals with several micrometer sizes are only suitable for transport measurements.[27,28]Later,the 122-type FeSCs are grown by Sn flux or FeAs self-flux methods,which significantly improve the sample sizes to centimeter scale but probably with some impurity phases.[29–35]Similar grown applications are successful in other systems such as 111-type, 112-type, and 1144-type FeSCs.[36–43]After that,the NaF,CaAs,NaAs,KAs fluxes with lower melting points are demonstrated to be very useful to grow the 1111-type FeSCs as well as other systems.[44–49]In particular, the hole-like 12422-type systems and the hoped-doped 122-type FeSCs grown by NaAs or KAs show very homogeneous quality and bulk superconductivity.[50–55]

    The 122-type FeSCs are the most extensively studied systems due to available crystals with high quality and large sizes.[14–17]The parent compound of the‘122’families is typically in the form of AeFe2As2(Ae=alkaline earth metal,e.g., Ca, Sr, Ba), exhibiting both antiferromagnetic (AF) and structural phase transitions from 138 K to 203 K.[56–59]Superconductivity can be induced by hole (e.g., Na and K),electron (e.g., Ni, Co, Cu, Rh, Ir, Pd, La, Ce, and Pr),or isovalent (e.g., P and Ru) dopings on the alkaline earth metal, iron, and arsenic sites, respectively.[60–77]While the FeAs self-flux method can produce high quality crystals for those electron doped compounds throughout the phase diagram, homogeneous and tunable superconductivity in the hole doped compounds is still a challenge.[33–35,54,55]The 122-type FeSCs generally host a phase diagram with competing AF order and superconductivity similar to cuprates,but the details of the phase diagram strongly depend on the alkaline earth metal and the doped elements.[14,15]For example, in the electron doped systems such as Ba(Fe1-xNix)2As2or Ba(Fe1-xCox)2As2, the long-range stripe-type AF order in the orthorhombic lattice is gradually suppressed and degenerates to a short-range order finally disappearing aboveTcnear the optimal doping level.[78–81]The cases become more complicated in the hole doped systems, such as Ba1-xKxFe2As2,[82]Ba1-xNaxFe2As2,[83,84]Sr1-xNaxFe2As2,[85,86]and Ca1-xNaxFe2As2,[87]a tetragonal magnetic phase (so-calledC4phase) with ordered moments alongc-axis is revealed to competing with the orthorhombic magnetic phase (so-calledC2phase) just before the optimal doping level in the underdoped region, theC2phase may reentry at low temperature in Ba1-xKxFe2As2and Ca1-xNaxFe2As2.[82,87]Moreover,the superconducting dome for the same doped element is significantly distinct among Ba-, Sr-, and Ca-122 systems. Like say, the maximumTc= 30–35 K locates atx= 0.4, 0.55, and 0.75 for Ba1-xNaxFe2As2, Sr1-xNaxFe2As2, Ca1-xNaxFe2As2,respectively.[84–89]The Ca-122 compounds show a unique collapse tetragonal phase where both the AF fluctuations and superconductivity may be absent.[90–93]All these facts suggest that the chemical doping induced changes on the local crystalline structure are crucial to the electronic ground states in FeSCs besides the charge carrier concentration. Thus,further investigations on this issue are highly desired to understand the unconventional superconductivity in FeSCs, counting on high-quality and sizeable single crystals.

    In this paper,we report a method to grow sizeable and homogenous Ca1-xNaxFe2As2single crystals with doping level fromx= 0.4 tox= 0.64. While AF order is absent in these batches of crystals, bulk superconductivity is found with transition temperatures ranging fromTc=20 K in thex=0.4 sample toTc=34.5 K in the optimally dopedx=0.64 sample. Compared to the FeAs self-flux method, this NaAs self-flux method is quite hard to reach the very underdoped level in Ca1-xNaxFe2As2. We summarize the results of Ca1-xNaxFe2As2in the literature and compare with the Ba1-xKxFe2As2system from underdoped region to optimal doping level. A linear dependence ofc-axis parameter and a parabolic dependence ofTcversus the doping levelxare found, respectively, suggesting a quantitative connection between the local crystalline structure and the unconventional superconductivity in FeSCs.

    2. Experimental details

    We used NaAs as flux to grow the Ca1-xNaxFe2As2single crystals. Firstly, three precursors NaAs, CaAs and Fe2As were prepared with highly pure raw materials Na(>99.5%),Ca(>99.9%), Fe(>99.5%) and As(>99.99%) by the solid state reaction method in evacuated and sealed quartz tubes.NaAs was synthesized by mixing many small pieces of Na and As powders and reacting at 400°C for 20 h. CaAs was prepared by mixing Ca grains and As powders and reacting at 400°C for 20 h then keeping at 630°C for another 20 h.Fe2As was synthesized by reacting the mixture of Fe and As powders at 500°C for 10 h then at 700°C for another 10 h. All heating process should be very carefully and gently under a rate less than 20°C/h,to avoid the danger from vapor of these raw materials. Secondly, these three precursors were mixed together at a molar ratio of CaAs:Fe2As:NaAs=(1-x):1:(x+3)to grow Ca1-xNaxFe2As2single crystals. After grinding for about 30 min, the mixture was loaded in an alumina crucible and then sealed under argon atmosphere in an Nb tube,this tube was further sealed in an evacuated quartz ampoule.Thirdly, the sealed mixture was placed in a box furnace and slowly heated up to 600°C and kept warm for 5 h to fully melt the NaAs flux, it was then heated to 980°C at a rate of 0.76°C/min, and to 1150°C at a rate of 0.425°C/min, hold for 24 h to melt the CaAs (melting point about 650°C) and Fe2As (melting point about 930°C) materials, followed by slowly cooling down to 650°C at a rate of 2°C/h to grow the crystals. Finally, the electricity of the furnace was turned off to cool down the mixture to room temperature naturally,until it is safe to fetch out. Large pieces of Ca1-xNaxFe2As2single crystals were obtained after crashing the tubes and cleaning the NaAs flux. Residual NaAs flux on the crystal surface can be fully dissolved in the deionized water.

    The crystal surface morphology and distribution of elements were examined by a scanning electron microscope(SEM)equipped with energy dispersive x-ray(EDX)analyzer.The chemical compositions of our crystals were determined by the inductively coupled plasma (ICP) analysis. The crystalline quality and doping effects on the lattice parameters were checked by single-crystal x-ray diffraction (XRD) on a 9 kW high-resolution diffraction system (SmartLab) with CuKαradiation(λ=1.5406 ?A)at room temperature in the reflection mode,with 2θranging from 10°to 65°. The Laue pattern was collected by an x-ray Laue camera(Photonic Sciences)in backscattering mode with incident beam alongc-axis. The resistivity was measured by the standard four-probe method in a physical property measurement system (Quantum Design-PPMS). The DC-magnetic susceptibility was measured with the zero-field-cooling (ZFC) method and a small fieldH=3 Oe in parallelc-axis in a magnetic property measurement system(Quantum Design-MPMS).

    3. Results and discussion

    We have successfully grown 5 batches of Ca1-xNaxFe2As2single crystals with nominal dopingx=0.3,0.4, 0.5, 0.6, 0.7. The actual doping concentrationx′is determined by the ICP method and listed in Table 1, where the relative errors are about 5% as estimated from the analyses on several pieces of crystals. Due to the excess NaAs precursor as the flux in the mixture, even a small nominalxcould result in significant actual dopings, givingx′=0.2+0.64x.Such effect hampers us to reach low doping level in the underdoped region in comparison to the FeAs-flux method.[33,94,95]For high doping levels, the Na concentration seems to reach a saturation point in this method. So far, overdoped Ca1-xNaxFe2As2crystals are still very hard to obtain, but overdoped Ba1-xKxFe2As2including KFe2As2can be grown by the KAs-flux method.[54,55,96,97]In the following, we use the actual doping level to refer to our samples.The homogeneity of our crystals is examined by SEM and EDX analyses,the results of three typical dopingsx=0.40, 0.44, and 0.64 are shown in Fig. 1. The SEM photos show flat surfaces with some crack edges from different layers. EDX analyses on four elements all exhibit homogenous distributions.

    Fig.1. (a)–(c)SEM photos of the cleaved surfaces and element distribution analyses for Ca1-xNaxFe2As2 (x=0.40,0.44 and 0.64)crystals.(b)A typical EDX spectrum for one single crystal with x=0.64.

    Fig. 2. (a) The x-ray diffraction patterns at room temperature for Ca1-xNaxFe2As2 single crystals. (b) A photo of Ca0.6Na0.4Fe2As2 platy monocrystal. (c)Typical Laue reflection at room temperature for our crystals.

    The crystalline quality is checked by x-ray diffraction and presented in Fig. 2. Figure 2(a) shows the XRD patterns with the incident beam along thec-axis of our crystals. All diffraction peaks indexed as (0,0,l) (l=even) are sharp and no diffraction from impurity phases is observed.With the increase of Na doping, the 2θof the last peak shifts to low angle side, suggesting increasingc-axis lattice parameter. We have calculated thec-axis parameter by fitting the peak positions and listed in Table 1. The photo in Fig.2(b)shows the typical sizes of our Ca1-xNaxFe2As2single crystals. The dimensions of the largest crystal are about 17 mm×16 mm×0.5 mm. The cleaved surface is shiny under the light,and the texture is brittle. The Laue reflection inab-plane for Ca0.36Na0.64Fe2As2is shown in Fig.2(c). Again,the bright and sharp scattering spots indicate the high quality of this sample, clear orientations along [1,0,0] and [1,1,0] of the crystal can be easily identified.

    Table 1. Doping concentrations, c-axis parameter, and Tc of ourCa1-xNaxFe2As2 single crystals.

    Figure 3(a)shows the electrical resistance inab-plane under zero field as a function of temperature.We normalize them by the resistance at 300 K for comparison,all of them show a smooth evolution in the normal state and a sharp superconducting transition atTc. To search for the signature of any magnetic transitions, we plot the first-order derivative of the resistance versus temperature in the inset of Fig. 3(a). Only a narrow peak corresponding to the superconducting transition can be identified,the value ofTcfor each doping is listed in Table 1, too. Therefore, for all samples with actual doingx=0.40–0.64,they are paramagnetic in the normal state,which is consistent with the previous reports on polycrystalline samples.[82,87]We also notice that the residual resistance just aboveTcis less than 10%of the room temperature resistance, giving a large residual resistivity ratio RRR≈10.Such large RRR also confirms the high quality of our crystals. For references,RRR is about 5 for optimally hole-doped Ba1-xKxFe2As2,[33]and about 2 for optimally electron-doped Ba(Fe1-xNix)2As2.[34]For high pure KFe2As2grown by KAs flux, RRR can be over than 2000.[96,97]The superconducting volume of these Ca1-xNaxFe2As2crystals was measured by magnetization under a magnetic field of 3 Oe alongc-axis in ZFC mode. We only checked three typical samples withx=0.40, 0.44, and 0.64 as shown in Fig. 3(b). All of them show sharp superconducting transitions with a strong diamagnetic signal and a narrow width ΔT <2 K.The magnetic susceptibility 4πχ=-1 at low temperatures indicate the full Meissner state, namely bulk superconductivity in these samples. In the parent compound CaFe2As2,a magnetic transition with stripe-type order can be probed at aboutTN=170 K by the magnetization under high field,which shows a deletion belowTNand a linear temperature dependence aboveTN.[14,58]However, the normal state resistance is more sensitive to the magnetic/structural transitions in FeSCs,[33–36]thus we do not have to measure the magnetization up to high temperatures to further search the magnetic order.

    Fig. 3. (a) The temperature dependence of resistance for Ca1-xNaxFe2As2 crystals. All data are normalized by the room temperature resistance. The inset shows the first-order derivative of the resistance.(b)Magnetization measured under ZFC mode for three typical dopings x=0.40,0.44,0.64.

    Finally,we compare the doping dependence of thec-axis parameter and superconducting transitionTcwith the previous reports on Ca1-xNaxFe2As2.[75–77,87,89]As shown in Fig. 4,our results can merge well with previous reports for both parameters. In Fig. 4(a), we also plot the doping dependence of thec-axis parameter in Ba1-xKxFe2As2.[33,95]As we can see, for both hole doped systems, thec-axis lattice is continuously stretched by chemical substitutions, as the radius of alkali metal is larger than alkali earth metal.[98,99]Thecaxis has a linear relationship with doping levelxin the underdoped regime:c=0.78x+11.7 for Ca1-xNaxFe2As2andc= 0.88x+12.98 for Ba1-xKxFe2As2,[95,98,99]with similar slopes. With thoseTcof Ca1-xNaxFe2As2summarized in Fig. 4(b),[75–77,87,89]we can roughly fit by a parabolic function:Tc=-155.2x2+227.18x-48.89. Such a relation probably suggests that the superconducting behavior in the underdoped region is also strongly related to thed-spacing between Fe-As layers. Particularly, for those systems with smallerc-axis parameters thus closer distance of the adjacent Fe–As layers, the inter Fe–As layer coupling is stronger, thus to reach the optimal superconductivity upon doping requires higher concentration. This naturally explains the increasing doping to the optimal level in (Ba,Sr,Ca)1-xNaxFe2As2systems, where their parent compounds (Ba,Sr,Ca)Fe2As2have decreasingc-axis:c=13.04,12.37,11.75 ?A at room temperature, respectively.[84–89]For the overdoped region, although thec-axis continuously increasing upon doping, strong mismatches of the Fermi surface sizes are expected to suppress the superconducting pairing.[5]It was proposed in Ref.[100]thatTcis higher when the pnictogen height and As–Fe–As bond angle more close to form a regular tetrahedron among many systems of FeSCs. This could be a consequence from competing interactions strongly associated with the local crystalline structure.

    Fig. 4. (a) Doping dependence of the c-axis parameters in the Ca1-xNaxFe2As2 system[75–77,87,89] in comparison with the Ba1-xKxFe2As2 system.[33,95,98,99] Here the relative errors for the chemical compositions of our sample are about 5% from the ICP measurements, errors for other samples are obtained from the above-mentioned literature, and the solid lines are linear fittings. (b) Summary of the doping dependence of Tc in Ca1-xNaxFe2As2.[75–77,87,89] The solid line is a parabolic fitting to all data.

    4. Summary

    In summary,we have successfully grown a series of large Ca1-xNaxFe2As2single crystals with actual Na dopingx=0.4–0.64 using the NaAs-flux method. These crystals show bulk superconductivity but no magnetic transitions. The positive doping dependences both forTcandc-axis lattice parameter suggest that they are probably related.These homogeneous and sizable crystals provide us chances to further investigate the unconventional superconductivity in FeSCs,especially for those techniques requiring large crystals,such as inelastic neutron scattering and μSR.

    Acknowledgements

    The authors thank Professor Xing-Ye Lu, Dr. Zhen Tao,Dr. Li-Hong Yang, Dr. Jie Li and Mr. Wei-Wen Huang for assistance in sample characterization.

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0704200),the National Natural Science Foundation of China (Grant Nos.11822411 and 11961160699), the Strategic Priority Research Program (B) of the CAS (Grants Nos. XDB25000000 and XDB33000000), the K. C. Wong Education Foundation(Grant No. GJTD-2020-01), the Youth Innovation Promotion Association of CAS (Grant No. Y202001), the Postdoctoral Innovative Talent program (Grant No. BX2021018),and the China Postdoctoral Science Foundation (Grant No.2021M700250).

    猜你喜歡
    李陽
    Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    繽紛手繪鞋,陪讀媽媽“繪”出致富路
    家庭百事通(2017年4期)2017-04-12 23:13:19
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    非典型婚外情結(jié)局
    中外文摘(2016年8期)2016-12-22 16:25:13
    開在心頭的花
    上海故事(2016年8期)2016-08-10 16:42:43
    非典型婚外情結(jié)局,車禍中一只帶傷的手在謀殺
    感謝你曾經(jīng)的欺負(fù)
    久久香蕉精品热| 国产人妻一区二区三区在| 日韩有码中文字幕| 日韩大尺度精品在线看网址| 永久网站在线| 欧美精品国产亚洲| www.www免费av| 欧美高清性xxxxhd video| 国产精品人妻久久久久久| 免费在线观看影片大全网站| 国产免费av片在线观看野外av| 国产黄色小视频在线观看| 国产人妻一区二区三区在| 天堂网av新在线| 亚洲成人免费电影在线观看| 国产精品av视频在线免费观看| 18禁在线播放成人免费| 可以在线观看的亚洲视频| 成年人黄色毛片网站| 日本在线视频免费播放| 免费人成在线观看视频色| 欧美日韩综合久久久久久 | 国产伦精品一区二区三区视频9| 日韩欧美免费精品| 国产精品亚洲av一区麻豆| netflix在线观看网站| 国产精品一区二区性色av| 黄色女人牲交| 一本久久中文字幕| 淫妇啪啪啪对白视频| 在线天堂最新版资源| 搡女人真爽免费视频火全软件 | 亚洲国产精品sss在线观看| 中文字幕熟女人妻在线| 日本黄色片子视频| 黄色配什么色好看| 国产高清激情床上av| 69av精品久久久久久| 中出人妻视频一区二区| 白带黄色成豆腐渣| 亚洲av.av天堂| 一边摸一边抽搐一进一小说| 久久久久久久亚洲中文字幕 | 在线免费观看不下载黄p国产 | 日韩欧美国产一区二区入口| 亚洲熟妇熟女久久| 精品免费久久久久久久清纯| 国产视频一区二区在线看| 永久网站在线| 男人舔女人下体高潮全视频| 久久久久久大精品| 毛片一级片免费看久久久久 | 亚洲精品成人久久久久久| 男人舔女人下体高潮全视频| 亚洲最大成人av| 国产中年淑女户外野战色| 免费av观看视频| 神马国产精品三级电影在线观看| 偷拍熟女少妇极品色| 首页视频小说图片口味搜索| 看十八女毛片水多多多| 久久中文看片网| 男插女下体视频免费在线播放| 久久人妻av系列| 亚洲国产高清在线一区二区三| 色吧在线观看| 一级作爱视频免费观看| 中文字幕久久专区| 亚洲精品在线观看二区| 亚洲av熟女| 亚洲男人的天堂狠狠| 成年版毛片免费区| 久久久久久久久大av| 在线观看午夜福利视频| 日本一本二区三区精品| ponron亚洲| 色综合站精品国产| 蜜桃亚洲精品一区二区三区| 国产精品1区2区在线观看.| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 成年女人看的毛片在线观看| 国产成人福利小说| 国产精品伦人一区二区| 国产毛片a区久久久久| 精品国产三级普通话版| 给我免费播放毛片高清在线观看| 久久久久久久久中文| 精品人妻1区二区| 超碰av人人做人人爽久久| 特大巨黑吊av在线直播| 亚洲人成网站在线播放欧美日韩| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 亚洲av中文字字幕乱码综合| 亚洲成人精品中文字幕电影| 中国美女看黄片| 国产色爽女视频免费观看| av在线蜜桃| 琪琪午夜伦伦电影理论片6080| aaaaa片日本免费| 一本综合久久免费| 日韩欧美一区二区三区在线观看| 精品熟女少妇八av免费久了| 综合色av麻豆| 欧美日韩福利视频一区二区| 国产精品亚洲美女久久久| 一级a爱片免费观看的视频| 夜夜爽天天搞| 日韩欧美国产在线观看| 此物有八面人人有两片| 久久久久久久精品吃奶| 夜夜躁狠狠躁天天躁| 国内少妇人妻偷人精品xxx网站| 综合色av麻豆| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 哪里可以看免费的av片| 极品教师在线视频| 日本成人三级电影网站| 亚洲av免费在线观看| 亚洲成人久久爱视频| 日日摸夜夜添夜夜添av毛片 | 国产精品久久久久久人妻精品电影| 国产久久久一区二区三区| 午夜福利在线观看免费完整高清在 | 免费搜索国产男女视频| 国产成人a区在线观看| 国产高清视频在线播放一区| 日本免费a在线| 直男gayav资源| 我的老师免费观看完整版| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 国产一区二区三区视频了| 丰满乱子伦码专区| 亚洲不卡免费看| 亚洲电影在线观看av| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 国产极品精品免费视频能看的| 90打野战视频偷拍视频| 日韩欧美在线二视频| 国产午夜福利久久久久久| 午夜福利免费观看在线| 日本在线视频免费播放| 好男人电影高清在线观看| 精品免费久久久久久久清纯| 午夜久久久久精精品| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月| 又爽又黄a免费视频| 99久久久亚洲精品蜜臀av| av在线天堂中文字幕| 国产成人啪精品午夜网站| 日本黄大片高清| 极品教师在线免费播放| 最近最新中文字幕大全电影3| 色哟哟哟哟哟哟| 亚洲精品色激情综合| 免费人成视频x8x8入口观看| 亚洲美女搞黄在线观看 | 国产视频内射| 国产av麻豆久久久久久久| 亚洲国产高清在线一区二区三| 97超视频在线观看视频| 久久性视频一级片| 国产在线精品亚洲第一网站| 日本熟妇午夜| 国产高清视频在线播放一区| 99热只有精品国产| 成人无遮挡网站| 色av中文字幕| 成人国产综合亚洲| 男女下面进入的视频免费午夜| 观看美女的网站| 欧美3d第一页| 中文资源天堂在线| 此物有八面人人有两片| 哪里可以看免费的av片| 真人一进一出gif抽搐免费| 亚洲不卡免费看| 国产精品国产高清国产av| 午夜免费成人在线视频| 国产精品一及| 99久久无色码亚洲精品果冻| 国产v大片淫在线免费观看| 国产精品不卡视频一区二区 | 一级作爱视频免费观看| 看免费av毛片| 12—13女人毛片做爰片一| 十八禁网站免费在线| 青草久久国产| 最近最新中文字幕大全电影3| 欧美区成人在线视频| 高清日韩中文字幕在线| 欧美成人一区二区免费高清观看| 欧美日韩国产亚洲二区| АⅤ资源中文在线天堂| 别揉我奶头 嗯啊视频| 久久精品人妻少妇| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区四那| 精品人妻偷拍中文字幕| 亚洲最大成人av| 欧美成人免费av一区二区三区| 搞女人的毛片| 亚洲国产精品sss在线观看| 久久6这里有精品| 又爽又黄无遮挡网站| 亚洲午夜理论影院| 精品人妻偷拍中文字幕| 99在线人妻在线中文字幕| 亚洲av免费高清在线观看| 人妻丰满熟妇av一区二区三区| 国产极品精品免费视频能看的| www.999成人在线观看| av女优亚洲男人天堂| 国产av麻豆久久久久久久| 久久热精品热| 一个人免费在线观看的高清视频| 少妇人妻精品综合一区二区 | 久久久久久久久久成人| 少妇被粗大猛烈的视频| 欧美黑人巨大hd| 亚洲天堂国产精品一区在线| av在线观看视频网站免费| 性色avwww在线观看| 国产精品亚洲美女久久久| 五月玫瑰六月丁香| 国产在视频线在精品| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 久久精品91蜜桃| 亚洲七黄色美女视频| 国产欧美日韩精品一区二区| 国产精品免费一区二区三区在线| 免费黄网站久久成人精品 | 熟女电影av网| 色综合站精品国产| 亚洲三级黄色毛片| 国产私拍福利视频在线观看| 亚洲avbb在线观看| 国产三级在线视频| 在线观看午夜福利视频| 白带黄色成豆腐渣| 嫩草影院精品99| 国产色爽女视频免费观看| 18禁黄网站禁片免费观看直播| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看| 小蜜桃在线观看免费完整版高清| 国产av不卡久久| 欧洲精品卡2卡3卡4卡5卡区| 村上凉子中文字幕在线| 18禁黄网站禁片午夜丰满| 午夜两性在线视频| 欧美黑人巨大hd| 亚洲一区二区三区不卡视频| or卡值多少钱| 天堂av国产一区二区熟女人妻| 亚洲激情在线av| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 中国美女看黄片| 99国产精品一区二区三区| 国产国拍精品亚洲av在线观看| 日本在线视频免费播放| 一区福利在线观看| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 日韩高清综合在线| 波野结衣二区三区在线| 国产精品久久久久久人妻精品电影| 国产精品人妻久久久久久| 国产高清视频在线观看网站| av在线老鸭窝| 宅男免费午夜| 中文在线观看免费www的网站| 美女大奶头视频| 狂野欧美白嫩少妇大欣赏| 亚洲国产高清在线一区二区三| 久久久久久久精品吃奶| 亚洲国产日韩欧美精品在线观看| 欧美性猛交黑人性爽| 淫妇啪啪啪对白视频| 久久99热这里只有精品18| 中出人妻视频一区二区| 最好的美女福利视频网| xxxwww97欧美| 我的老师免费观看完整版| 90打野战视频偷拍视频| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 午夜福利在线观看吧| 亚洲国产日韩欧美精品在线观看| 亚洲最大成人av| 日日夜夜操网爽| 国产精品免费一区二区三区在线| 中文在线观看免费www的网站| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩东京热| 舔av片在线| 国产欧美日韩精品一区二区| 亚洲内射少妇av| 国产大屁股一区二区在线视频| 久久精品夜夜夜夜夜久久蜜豆| 女人被狂操c到高潮| 久久欧美精品欧美久久欧美| 国产中年淑女户外野战色| 悠悠久久av| 免费观看的影片在线观看| .国产精品久久| 99国产精品一区二区蜜桃av| 国内精品一区二区在线观看| 精品免费久久久久久久清纯| 在线十欧美十亚洲十日本专区| 国产精品女同一区二区软件 | 午夜影院日韩av| 三级毛片av免费| 国产高潮美女av| 一本一本综合久久| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 麻豆成人av在线观看| 欧美在线一区亚洲| 成年版毛片免费区| 色精品久久人妻99蜜桃| 国产老妇女一区| 色精品久久人妻99蜜桃| 日本成人三级电影网站| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女| 日韩高清综合在线| 亚洲第一区二区三区不卡| 十八禁人妻一区二区| 波野结衣二区三区在线| 99riav亚洲国产免费| .国产精品久久| 天天躁日日操中文字幕| 欧美日韩综合久久久久久 | 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 国产人妻一区二区三区在| 国产精品一区二区性色av| 久久午夜亚洲精品久久| 我的老师免费观看完整版| 亚洲av免费高清在线观看| 成人特级黄色片久久久久久久| 午夜老司机福利剧场| 欧美日韩综合久久久久久 | 少妇人妻精品综合一区二区 | 国产一区二区激情短视频| 亚洲国产欧美人成| 桃红色精品国产亚洲av| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 男女视频在线观看网站免费| 国产探花在线观看一区二区| 少妇人妻一区二区三区视频| 日韩高清综合在线| 国产精品99久久久久久久久| 亚洲av美国av| 国内精品一区二区在线观看| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 精品久久久久久久久久久久久| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 亚洲最大成人中文| av在线天堂中文字幕| 国产伦在线观看视频一区| 少妇裸体淫交视频免费看高清| 韩国av一区二区三区四区| 黄色视频,在线免费观看| 色5月婷婷丁香| 一级毛片久久久久久久久女| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 国产白丝娇喘喷水9色精品| 欧美成人a在线观看| 在线观看66精品国产| 欧美成人一区二区免费高清观看| 动漫黄色视频在线观看| 日韩有码中文字幕| 免费看a级黄色片| 成人鲁丝片一二三区免费| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 亚洲熟妇中文字幕五十中出| 中文字幕av在线有码专区| 国产一区二区三区在线臀色熟女| 日韩国内少妇激情av| 男女之事视频高清在线观看| 波野结衣二区三区在线| 成年人黄色毛片网站| 91久久精品电影网| 一级黄片播放器| 国产午夜精品久久久久久一区二区三区 | 亚洲电影在线观看av| 1024手机看黄色片| 亚洲精品在线观看二区| 精品午夜福利视频在线观看一区| 久久久成人免费电影| 真实男女啪啪啪动态图| 久久精品综合一区二区三区| 特级一级黄色大片| 精品99又大又爽又粗少妇毛片 | 一个人观看的视频www高清免费观看| 国产精品98久久久久久宅男小说| 青草久久国产| 男人舔奶头视频| 美女高潮的动态| 中文字幕人成人乱码亚洲影| 中出人妻视频一区二区| 免费av毛片视频| 欧美一级a爱片免费观看看| 国产一区二区亚洲精品在线观看| 亚洲一区二区三区不卡视频| 老鸭窝网址在线观看| 在线天堂最新版资源| 国产欧美日韩一区二区精品| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 国产91精品成人一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲无线在线观看| 亚洲最大成人中文| 嫁个100分男人电影在线观看| 国产精品一区二区性色av| 三级毛片av免费| 亚洲国产精品sss在线观看| 俄罗斯特黄特色一大片| 夜夜躁狠狠躁天天躁| 成人特级av手机在线观看| 91狼人影院| 丝袜美腿在线中文| 国产一区二区三区视频了| 少妇人妻精品综合一区二区 | 欧美色欧美亚洲另类二区| av国产免费在线观看| 亚洲男人的天堂狠狠| 欧美黄色片欧美黄色片| 色综合婷婷激情| 欧美成人性av电影在线观看| 久久香蕉精品热| 久99久视频精品免费| 最好的美女福利视频网| 色尼玛亚洲综合影院| www.999成人在线观看| 国产亚洲精品综合一区在线观看| 久久久久久久精品吃奶| 国产一级毛片七仙女欲春2| 中文字幕精品亚洲无线码一区| 丁香欧美五月| av在线老鸭窝| 乱人视频在线观看| .国产精品久久| 精品一区二区三区视频在线| 日韩欧美精品v在线| 91麻豆av在线| 91av网一区二区| 成年免费大片在线观看| 国产av在哪里看| 99热这里只有是精品在线观看 | 久久草成人影院| 精品人妻视频免费看| 久久精品国产99精品国产亚洲性色| 日韩欧美国产一区二区入口| 欧美色欧美亚洲另类二区| 男女下面进入的视频免费午夜| 男女那种视频在线观看| 露出奶头的视频| 757午夜福利合集在线观看| 男插女下体视频免费在线播放| 在线观看av片永久免费下载| 老司机福利观看| 亚洲精品色激情综合| 国产亚洲精品综合一区在线观看| 欧美黑人巨大hd| 国产高潮美女av| 亚洲精品456在线播放app | 午夜精品在线福利| 亚洲成人精品中文字幕电影| 国产 一区 欧美 日韩| 国产精品三级大全| 婷婷亚洲欧美| 简卡轻食公司| 欧美bdsm另类| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影| 九九在线视频观看精品| 无人区码免费观看不卡| 久久这里只有精品中国| 啦啦啦韩国在线观看视频| 一夜夜www| 精品国产亚洲在线| 美女高潮的动态| 国产私拍福利视频在线观看| 在线播放无遮挡| 午夜福利在线观看吧| 中文字幕av成人在线电影| 欧美日韩亚洲国产一区二区在线观看| 天堂√8在线中文| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人影院久久av| 婷婷精品国产亚洲av在线| 成熟少妇高潮喷水视频| 十八禁网站免费在线| 搞女人的毛片| 在现免费观看毛片| 18禁黄网站禁片免费观看直播| 亚洲在线自拍视频| 免费大片18禁| 欧美日韩黄片免| 性欧美人与动物交配| 97超视频在线观看视频| 特级一级黄色大片| 一本一本综合久久| 精华霜和精华液先用哪个| 淫妇啪啪啪对白视频| 超碰av人人做人人爽久久| 久久精品91蜜桃| 成人鲁丝片一二三区免费| 亚洲,欧美精品.| 国产精品亚洲美女久久久| 日本一二三区视频观看| 亚洲国产精品sss在线观看| 精品久久久久久久久久免费视频| 性色av乱码一区二区三区2| 亚洲中文字幕一区二区三区有码在线看| 亚洲一区高清亚洲精品| 亚洲18禁久久av| 亚洲欧美日韩东京热| 精品一区二区三区视频在线| 欧美bdsm另类| 午夜视频国产福利| 午夜福利在线观看吧| 人人妻,人人澡人人爽秒播| 天堂影院成人在线观看| 18禁在线播放成人免费| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产99精品国产亚洲性色| 欧美黑人欧美精品刺激| 欧美日韩瑟瑟在线播放| 国产成人aa在线观看| 久久这里只有精品中国| 国产精品不卡视频一区二区 | 最好的美女福利视频网| 99热这里只有是精品50| 欧美成人性av电影在线观看| 成人毛片a级毛片在线播放| 欧美高清性xxxxhd video| 久久久久久大精品| 久久香蕉精品热| 又爽又黄无遮挡网站| АⅤ资源中文在线天堂| 国语自产精品视频在线第100页| 99热6这里只有精品| 美女黄网站色视频| 天天一区二区日本电影三级| 日韩有码中文字幕| 欧美午夜高清在线| 91狼人影院| 亚洲欧美日韩高清专用| 日本 av在线| 国产亚洲精品综合一区在线观看| 日本一二三区视频观看| 亚洲精品成人久久久久久| 国产精品野战在线观看| 在线观看午夜福利视频| 深夜a级毛片| 国产欧美日韩精品一区二区| 国模一区二区三区四区视频| 久久国产乱子伦精品免费另类| 免费观看精品视频网站| 老鸭窝网址在线观看| av在线观看视频网站免费| 亚洲在线自拍视频| 啪啪无遮挡十八禁网站| 午夜免费成人在线视频| 欧美一级a爱片免费观看看| 啪啪无遮挡十八禁网站| 亚洲精品一区av在线观看| 国内精品久久久久精免费| 欧美黑人巨大hd| 亚洲乱码一区二区免费版| 欧美最黄视频在线播放免费| 久久天躁狠狠躁夜夜2o2o| 午夜福利18| 日日摸夜夜添夜夜添小说| 午夜老司机福利剧场| 亚洲成人中文字幕在线播放| 成人精品一区二区免费| 国产亚洲av嫩草精品影院| 最新中文字幕久久久久| 亚洲成av人片在线播放无| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 亚洲av电影不卡..在线观看| 国产一区二区三区在线臀色熟女| 国产一级毛片七仙女欲春2| 欧洲精品卡2卡3卡4卡5卡区| 偷拍熟女少妇极品色| 久久久久久九九精品二区国产| 一本精品99久久精品77| 欧美激情在线99| 午夜免费成人在线视频| 中文字幕久久专区| 最后的刺客免费高清国语| 国产一区二区在线观看日韩|