摘要:糖基化是蛋白質(zhì)的重要翻譯后修飾之一,蛋白質(zhì)糖基化在許多病原體感染的過程中發(fā)揮關(guān)鍵作用。在病毒中,糖基化作用參與病毒與宿主的識別、進入,影響病毒的復制和感染性。在細菌中,糖基化在鞭毛蛋白和菌毛蛋白的形成中發(fā)揮重要作用,并且對于細菌黏附、定植、感染性和免疫逃逸至關(guān)重要。本文總結(jié)了感染中病原體蛋白質(zhì)糖基化作用及機制的相關(guān)研究,對中藥糖類藥物在抗感染治療方面的應用進行了闡述,為病原體蛋白糖基化與感染的基礎研究提供思路,為治療感染性疾病糖類藥物的開發(fā)奠定基礎。
關(guān)鍵詞:蛋白質(zhì)糖基化;感染;機制;糖類藥物;治療
中圖分類號:R37 文獻標志碼:A
Basic and applied research on glycosylation and infection of pathogen proteins
Ye Yilin, Liu Ruijie, Zhang Yuxin, Zhang Shaoxing, Lin Qiange, and Sun Guiqin
(School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053)
Abstract Glycosylation is a crucial post-translational modification of proteins, playing a pivotal role in the infection caused by various pathogens. In viruses, glycosylation is involved in the recognition and entry processes between viruses and hosts, influencing viral replication and infectivity. Similarly, bacteria rely on glycosylation for the formation of flagellin and fimbrial proteins, which are essential for bacterial adhesion, colonization, infection, and immune evasion. This review provided a comprehensive summary of relevant studies elucidating the role and mechanism of pathogen protein glycosylation in infection. It offered valuable insights for further basic research on pathogen protein glycosylation and infection while laying a solid foundation for the development of carbohydrate-based drugs to combat infectious diseases.
Key words Protein glycosylation; Infection; Mechanism; Carbohydrate-based drugs; Therapy
蛋白質(zhì)糖基化是在單糖或聚糖上與蛋白形成共價連接的過程,是最復雜的翻譯后修飾之一。糖基化修飾在蛋白質(zhì)折疊、靶向轉(zhuǎn)運、細胞間信號傳遞和亞細胞定位等生物學過程中發(fā)揮重要作用。糖基化有許多形式,根據(jù)糖基化位點的不同可分為N-糖基化、O-糖基化、C-糖基化、P-糖基化和磷脂酰肌醇化[1]。蛋白糖基化中N-糖基化是最常見的形式,是指在糖基轉(zhuǎn)移酶的作用下,聚糖連接到天冬酰胺(Asn)的過程。
蛋白質(zhì)糖基化的異常與許多疾病密切相關(guān),如自身免疫性疾病[2]、先天性糖基化障礙[3]和惡性腫瘤[4]等。近年來,蛋白糖基化與感染性疾病的研究亦成為熱點。研究表明,嚴重急性呼吸綜合征冠狀病毒2(SARS-CoV-2)的病毒蛋白及其受體血管緊張素轉(zhuǎn)換酶2(ACE2)均被高度糖基化[5],乙型肝炎病毒(hepatitis B virus, HBV)感染的整個生命周期幾乎都有糖基化過程的參與,包括信號識別、復制、分泌和免疫逃逸[6]。在Benz等[7]的研究中發(fā)現(xiàn),大腸埃希菌AIDA-I蛋白在胞質(zhì)中的糖基化對于其黏附過程至關(guān)重要。本文對感染性疾病中的蛋白質(zhì)糖基化作用及其機制進行綜述,為治療感染性疾病的糖類藥物研發(fā)提供科學依據(jù)。
1 病原體蛋白糖基化與感染
1.1 糖基化與病毒感染
研究表明,病毒結(jié)構(gòu)蛋白的糖基化修飾可影響其對宿主的感染[8]。糖基化促進病毒與細胞識別、融合以及防止抗體中和等。Mathys等[9]研究發(fā)現(xiàn),人類免疫缺陷病毒(human immunodeficiency virus, HIV)的糖蛋白gp120的N-寡糖對于該糖蛋白的正確折疊至關(guān)重要,N-寡糖缺失會影響gp120的折疊和溶酶體降解,并導致病毒感染性喪失。研究表明,SARS-CoV-2的刺突蛋白被高度糖基化,能影響SARS-CoV-2與宿主的識別[10]。糖基化還與SARS-CoV-2引起的感染機制相關(guān),糖基化修飾參與SARS-CoV-2的復制、結(jié)合和進入[11]。Li等[12]發(fā)現(xiàn),刺突蛋白N331和N343糖基化的缺失降低了病毒感染性。此外,流感病毒(influenza virus, IAV)表面的刺突蛋白血凝素(hemagglutinin, HA)和神經(jīng)氨酸酶(neuraminidase, NA)均為糖蛋白,HA的糖基化對于其感染期間的折疊[13]和轉(zhuǎn)運[14]是至關(guān)重要的,HA的糖基化也調(diào)節(jié)病毒致病性[15]。
與此同時,宿主細胞表面受體的糖基化影響病毒感染。研究表明,SARS-CoV-2受體(ACE 2)也影響SARS-CoV-2的進入和感染[16]。HA受體結(jié)合位點附近的糖基化將影響其對受體的親和力水平[17]。
1.2 糖基化與細菌感染
研究表明,細菌許多表面蛋白是糖基化的,糖基化作用介導細菌與宿主的相互作用,比如細菌黏附和定植等[18-19]。2002年,Young等[20]首次報道了細菌空腸彎曲菌的N-糖基化途徑。隨后,研究者對細菌的糖基化開始關(guān)注,尤其針對空腸彎曲菌進行了更深入的研究,包括空腸彎曲菌鞭毛的糖基化位點[21]、糖基化介導鞭毛細絲間相互作用[22]等。2019年,Cain[23]通過蛋白質(zhì)組學方法,發(fā)現(xiàn)N-糖基化缺失導致蛋白結(jié)構(gòu)及表型改變,使空腸彎曲菌的運動性和趨化性受損,影響其侵襲宿主細胞。Aas等[24]研究發(fā)現(xiàn),淋病奈瑟菌的IV型菌毛可影響細菌黏附及穿過細胞屏障,菌毛蛋白PilE(IV型菌毛定植因子的主要亞基蛋白)發(fā)生O-糖基化。
研究表明,抑制幽門螺桿菌的鞭毛蛋白FlaA和FlaB的糖基化,細菌運動能力和毒力降低[25]。Teng等[26]進一步研究發(fā)現(xiàn),幽門螺桿菌黏附素AlpA/B和BabA/B的糖基化缺失,導致黏附素的抗性和穩(wěn)定性降低,并抑制細菌與宿主細胞的結(jié)合,提示影響?zhàn)じ剿靥腔嚓P(guān)的酶(包括LPS O抗原組裝和連接酶WecA、Wzk和WaaL)可能是預防或治療幽門螺桿菌感染的靶標。
1.3 糖基化與真菌感染
真菌的表面蛋白發(fā)生O-糖基化和N-糖基化,蛋白質(zhì)糖基化對于真菌的毒力和宿主識別是必不可少的。白念珠菌(Candida albicans)的Als蛋白是黏附素的主要家族之一,作為一種糖蛋白有助于真菌的黏附和定植[27]。研究發(fā)現(xiàn),白念珠菌N-甘露糖基化的缺乏,導致其體外生長速率降低[28-29],而生長速率的降低與毒力衰減密切相關(guān)[30]。在全身感染的小鼠模型中,破壞白念珠菌的甘露糖合成關(guān)鍵基因?qū)е缕涠玖p弱,并刺激了人單核細胞的促炎和抗炎細胞因子譜的改變[31]。Hall等[32]研究發(fā)現(xiàn),白念珠菌細胞壁的最外層存在多種甘露糖基化蛋白質(zhì),其糖蛋白結(jié)構(gòu)作為病原體相關(guān)分子模式(pathogen-associated molecular patterns, PAMP)參與免疫識別。
此外,絲狀真菌的糖基化對其生長、細胞壁合成和發(fā)育至關(guān)重要,例如煙曲霉(Aspergillus fumigatus)中參與細胞壁生物合成的蛋白質(zhì)發(fā)生N-糖基化,這些蛋白質(zhì)的錯誤折疊會導致細胞壁缺陷[33-34]。因此,對真菌糖基化的研究將為深入了解真菌與宿主的相互作用提供新思路,也為開發(fā)真菌感染的治療藥物提供依據(jù)。
1.4 糖基化與其他病原體感染
除了上述提到的細菌、病毒與真菌外,糖基化也參與支原體[35-36]、衣原體[37]、螺旋體[38]和寄生蟲[39]等其他病原體感染的過程。研究發(fā)現(xiàn),肺炎支原體在谷氨酰胺Gln49處發(fā)生N-糖基化[35],通過P1黏附蛋白結(jié)合具有唾液酸殘基的糖蛋白受體[36],從而影響其發(fā)病機制和感染。Lujan等[37]研究發(fā)現(xiàn),沙眼衣原體(Ct)的半乳糖凝集素-1(Gal1)是一種內(nèi)源性聚糖結(jié)合蛋白,通過N-糖基化依賴性機制,Gal1通過促進Ct-宿主細胞相互作用來促進Ct黏附和侵襲,增強衣原體感染。最近有研究表明,瘧原蟲表面存在糖基化現(xiàn)象,靶向糖基磷脂酰肌醇(Glycosylphosphatidylinositol, GPI)生物合成或N-糖基化的化合物對惡性瘧原蟲具有抑制活性[40]。Divya等[41]報道,瘧原蟲裂殖子表面蛋白的N-糖基化,對瘧原蟲侵入細胞至關(guān)重要。
2 病原體蛋白糖基化影響感染的機制
病原體蛋白的糖基化可能參與黏附、定植、識別及影響病原體的毒力等,對感染的發(fā)生至關(guān)重要。明確糖基化在感染進程中作用的機制,可為病原體的感染機制研究提供依據(jù),同時為基于病原體蛋白糖基化為靶點的藥物研發(fā)新思路。
2.1 病原體糖基化參與黏附和定植
黏附是大多數(shù)病原體感染致病的第一步,細菌黏附并定植在宿主皮膚、黏膜上皮細胞表面后,才能侵入組織細胞生長繁殖并擴散。Chan等[42]研究發(fā)現(xiàn),肺炎鏈球菌的黏附素富絲氨酸重復蛋白(serine rich repeat protein, SRRP)發(fā)生O-糖基化,影響與肺細胞表面的角蛋白10等相互作用,對SRRP的O-糖缺失突變后,小鼠血液中和呼吸道上皮細胞表面(鼻咽除外)中肺炎鏈球菌的含量顯著減少,因此肺炎鏈球菌的糖基化對其致病較為關(guān)鍵。
此外,鞭毛蛋白的糖基化影響病原體的黏附與定植。鞭毛作為細菌的運動器官,可實現(xiàn)細菌的趨化性運動,可以使細菌逃離宿主的免疫系統(tǒng),并促進感染發(fā)生。彎曲桿菌屬細菌的鞭毛表面存在糖分子,研究證實彎曲桿菌鞭毛蛋白上存在19個O-糖基化位點,鞭毛O-糖的修飾結(jié)構(gòu)具有多樣性[43]。彎曲桿菌鞭毛蛋白O-糖的缺乏,使鞭毛纖維的合成停止,導致細菌無法運動,進一步使其無法在消化系統(tǒng)定植及逃逸宿主免疫細胞的攻擊。Ewing等[22]研究發(fā)現(xiàn),空腸彎曲菌81-176菌株的主要鞭毛蛋白FlaA缺乏糖基化導致其在合成假丹明酸(pseudaminic acid, Pse)衍生物方面出現(xiàn)功能障礙,可能影響鞭毛纖維的組裝及其運動功能。
2.2 病原體糖基化影響與宿主的識別
病毒蛋白的糖基化可以影響與宿主細胞表面受體的結(jié)合,從而影響病毒的復制和感染。例如,Deshpande等[15]報道,H5N2流感病毒血凝素的糖基化,影響HA的裂解并影響病毒的毒力和致病性。Sun等[44]研究發(fā)現(xiàn),N-糖基化增強了H5N6禽流感病毒的血凝素穩(wěn)定性,促進了病毒與宿主細胞的結(jié)合。Fran?ois等[45]通過使HIV-1病毒高度保守的天冬酰胺260處糖基化序列缺失,突變體病毒株與CD4結(jié)合顯著降低,說明gp120的Asn-260位點糖基化影響HIV-1病毒進入。另外,宿主細胞受體的糖基化影響其與病毒的結(jié)合。Barnard等[46]研究發(fā)現(xiàn),宿主黏液和紅細胞上的唾液酸修飾,對甲型流感病毒(influenza A virus, IAV)的血凝素和神經(jīng)氨酸酶具有抑制作用。
此外,細菌糖蛋白的糖基化修飾影響其感染的研究中,Alemka等[47]報道,空腸彎曲菌膜蛋白突變N-糖鏈缺失導致其更容易被宿主腸道蛋白酶水解,表明該菌膜蛋白的N-糖能使其避免宿主蛋白酶的水解。Bath等[48]報道,機體的黏蛋白作為一種糖蛋白聚合物,可通過抑制肺炎鏈球菌溶血素的表達來降低肺炎鏈球菌的毒力。
3 糖類藥物與抗感染
糖分子在生命過程中發(fā)揮重要生物學作用,參與信號轉(zhuǎn)導、細胞間黏附和分子識別等過程[49]。近年來,糖類藥物在許多感染性疾病的治療中發(fā)揮重要作用,早在1944年,研究發(fā)現(xiàn)氨基糖苷類抗生素鏈霉素(含有兩個糖環(huán)結(jié)構(gòu))可用于抗結(jié)核治療[50]。研究表明,含有戊糖的核苷類似物阿糖腺苷(vidarabine)可用于皰疹病毒感染的治療[51],核苷類似物瑞德西韋(remdesivir)獲FDA批準用于治療COVID-19[52]。氨基糖苷類抗生素普拉佐米星(plazomicin),可用于治療嚴重細菌感染[53]。本文將常見的含糖結(jié)構(gòu)抗感染藥物進行統(tǒng)計分析,詳見表1。
3.1 糖類小分子與抗感染
3.1.1 糖類抗菌藥物
含有糖類結(jié)構(gòu)的小分子藥物在治療細菌感染方面,同樣發(fā)揮關(guān)鍵作用。氨基糖苷類是含有糖結(jié)構(gòu)的廣譜抗生素,例如鏈霉素、巴龍霉素和卡那霉素等已廣泛應用于臨床治療革蘭陽性菌或革蘭陰性菌感染,通過特異性結(jié)合30 S亞基(16S rRNA)的A位點發(fā)揮作用,干擾蛋白質(zhì)合成[73]。大環(huán)內(nèi)酯類抗生素由一個或多個糖分子基團和大環(huán)內(nèi)酯環(huán)組成,可以與細菌核糖體50 S亞基的肽基轉(zhuǎn)移酶中心結(jié)合,從而阻止肽鏈的延伸,例如克拉霉素、羅紅霉素、阿奇霉素等,用于治療支原體等多種感染性疾病[74]。此外,DNA解旋酶、RNA聚合酶和肽聚糖也是糖類抗菌藥物的重要靶點[75-77],例如,Lin等[78]發(fā)現(xiàn),非達霉素含兩個糖單元,其活性成分脂蟲素A3(Lpm)和RNA聚合酶之間相互作用,從而抑制了細菌轉(zhuǎn)錄的過程。
3.1.2 糖類抗病毒藥物
核苷類似物是一類重要的抗病毒藥物,由與呋喃糖部分連接的核堿基組成,模擬內(nèi)源性核苷并摻入DNA和RNA合成,以抑制病毒復制[79]。到目前為止,超過10種含糖的核苷酸類似物已被批準用作抗病毒藥物。例如,阿糖腺苷(vidarabine),它能抑制病毒DNA聚合酶活性并抑制病毒復制[58];克拉夫定(clevudine)含有非天然L-構(gòu)型的糖分子部分,已獲批用于治療乙型肝炎病毒(HBV)感染[59]。此外,索非布韋(sofosbuvir)是1種含有核糖的磷酸化核苷類似物,可用于治療某些特定基因型的丙型肝炎病毒(hepatitis C virus, HCV)[60],且對寨卡病毒和埃博拉病毒有抑制活性[80]。
亞氨基糖是1種糖苷類似物,通過競爭性抑制葡萄糖苷酶,影響包膜病毒糖蛋白N-糖鏈的合成,從而發(fā)揮抗病毒作用[81]。研究表明,亞氨基糖對多種包膜病毒具有抗病毒活性,包括登革病毒[82-83]、流感病毒[63,84]、丙型肝炎病毒[85-86]和人類免疫缺陷病毒[87-88]等。Misumi等[61]研究發(fā)現(xiàn),亞氨基糖可緩解小鼠甲型肝炎病毒(hepatitis A virus, HAV)感染的肝臟炎癥癥狀。Norton等[62]報道,亞氨基糖抑制HBV包膜糖蛋白的成熟,刺激病毒特異性淋巴細胞的產(chǎn)生。目前,亞氨基糖尚未用于臨床治療病毒感染,但亞氨基糖靶向宿主酶,對病毒突變具有抵抗力,因此,亞氨基糖對于開發(fā)廣譜抗病毒藥物具有巨大潛力[81]。
3.2 中藥糖類分子與抗感染
3.2.1 中藥糖類單體與抗感染
中藥發(fā)揮作用的物質(zhì)主要是其所含的各種活性單體成分,中藥單體具有來源廣泛、安全性高、毒副作用小的特點,因此,對于中藥單體藥理作用的研究成為當今國內(nèi)外學者研究的熱點[89]。Lin等[64]研究表明,中藥單體柴胡皂苷b2(saikosaponin b2)是一種天然的萜類化合物,其化學結(jié)構(gòu)由多個糖基組成,柴胡皂苷b2在非細胞毒性濃度下可有效抑制HCV的感染,包括中和病毒顆粒、抑制病毒的附著和進入。Lee等[65]也發(fā)現(xiàn),柴胡皂苷b2抑制HCV的進入、復制和翻譯,且柴胡皂苷B2與達卡他韋聯(lián)合使用對HCV耐藥突變毒株效果更佳。
黃芩苷是從黃芩根中提取分離出來的一種黃酮類化合物,具有抗炎、抗病毒、抗腫瘤、抗菌、抗驚厥、抗氧化、保肝和神經(jīng)保護作用,在臨床醫(yī)學與藥物基礎研究領域占有重要地位。Zhao等[66]研究發(fā)現(xiàn),黃芩苷可抑制金黃色葡萄球菌感染并抑制炎癥反應,并增強巨噬細胞的抗菌活性。此外,黃芩苷也發(fā)揮抗病毒感染的作用,耿雪等[67]發(fā)現(xiàn),黃芩苷可能通過介導抑制SARS-CoV-2病毒S蛋白與細胞表面受體的融合過程,在非吸附階段抑制病毒的入侵,發(fā)揮抗新冠病毒活性。黃芩苷可以通過下調(diào)IL-2和IL-6的水平緩解呼吸道合胞病毒(respiratory syncytial virus, RSV)感染引發(fā)的炎癥反應,調(diào)節(jié)IFN-α和IFN-β的表達量來發(fā)揮抗RSV作用[68-69]。
3.2.2 中藥多糖與抗感染
現(xiàn)代藥理學證明,多糖是中藥的重要結(jié)構(gòu)成分,具有抗病毒[90]、抗炎[91]等多種生物活性。Zhao等[70]研究發(fā)現(xiàn),黃芩多糖(scutellaria polysaccharide, SPS)與新城疫病毒(newcastle virus, NDV)混合后病毒滴度降低,可顯著抑制新城疫病毒對雞胚成纖維細胞的感染性。Xue 等[72]研究發(fā)現(xiàn),黃芪多糖通過抑制氧化應激和阻斷NF-κB通路來抑制豬圓環(huán)病毒2型(porcine circovirus 2, PCV2)病毒的復制。研究表明[92],海洋硫酸多糖由于其富含陰離子而與病毒表面的陽離子相互作用,阻止了病毒的黏附和進入,在防止病毒入侵機體的方面發(fā)揮重要作用,可作為治療COVID-19的潛在抗病毒候選藥物。
此外,中藥多糖可促進宿主病毒免疫反應,增強機體免疫功能,激活吞噬作用并刺激干擾素系統(tǒng),可通過調(diào)節(jié)多種炎癥因子、緩解氧化應激來發(fā)揮抗炎和抗氧化作用。例如,板藍根多糖除了抑制甲型流感病毒的復制,還能通過抑制宿主TLR3信號傳導緩解病毒引起的炎癥反應,以此來發(fā)揮抗病毒作用[71]。
4 展望
糖基化是一種關(guān)鍵的蛋白質(zhì)翻譯后修飾,糖基化修飾在蛋白質(zhì)折疊、靶向轉(zhuǎn)運、細胞間信號傳遞等生物學過程中十分常見。在感染性疾病中,病原體的蛋白質(zhì)糖基化作用對于感染至關(guān)重要,糖基化作用參與細菌鞭毛與菌毛蛋白的合成,影響病毒與宿主細胞受體的識別。通過探索病原體蛋白質(zhì)糖基化影響感染的機制,為靶向病原體糖蛋白修飾的藥物以及治療感染性疾病糖類藥物的開發(fā)奠定基礎。
已有諸多研究表明,中藥糖類分子具有抗感染作用,如柴胡皂苷b2、SPS、黃芪多糖和海洋硫酸多糖具有抗病毒作用,黃芩苷和板藍根多糖具有抗菌、抗炎癥的作用。與化學合成的糖類藥物相比,來源于天然植物的中藥糖類分子具有來源廣泛、毒副作用小、安全性高的優(yōu)點,可有效減少抗生素的使用,是近年來國內(nèi)外研究的熱點。因此,通過研究中藥糖類分子的抗感染作用及其機制,可為中藥的臨床合理應用提供參考價值,為靶向病原體糖蛋白修飾的中藥糖類藥物開發(fā)提供新思路。
參 考 文 獻
Bagdonaite I, Wandall H H. Global aspects of viral glycosylation[J]. Glycobiology, 2018, 28(7): 443-467.
Gindzienska-Sieskiewicz E, Klimiuk P A, Kisiel D G, et al. The changes in monosaccharide composition of immunoglobulin G in the course of rheumatoid arthritis[J]. Clin Rheumatol, 2007, 26(5): 685-690.
Need A C, Shashi V, Hitomi Y, et al. Clinical application of exome sequencing in undiagnosed genetic conditions[J]. J Med Genet, 2012, 49(6): 353-361.
Stowell S R, Ju T, Cummings R D. Protein glycosylation in cancer[J]. Annu Rev Pathol, 2015, 10: 473-510.
Gong Y, Qin S, Dai L, et al. The glycosylation in SARS-CoV-2 and its receptor ACE2[J]. Signal Transduct Target Ther, 2021, 6(1): 396.
劉學恩, 張超, 張平博, 等. 糖基化在乙型肝炎病毒感染過程中的臨床價值[J]. 中國病毒病雜志, 2024, 14(3): 218-224.
Benz I, Schmidt M A. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin[J]. Mol Microbiol, 2001, 40(6): 1403-1413.
Feng T, Zhang J, Chen Z, et al. Glycosylation of viral proteins: Implication in virus-host interaction and virulence[J]. Virulence, 2022, 13(1): 670-683.
Mathys L, Fran?ois K O, Quandte M, et al. Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity[J]. PLoS One, 2014, 9(6): e101181.
Casalino L, Gaieb Z, Goldsmith J A, et al. Beyond Shielding: The Roles of Glycans in SARS-CoV-2 Spike Protein[J]. BioRxiv, 2020, 6(10): 1722-1734.
Reis C A, Tauber R, Blanchard V. Glycosylation is a key in SARS-CoV-2 infection[J]. J Mol Med (Berl), 2021, 99(8): 1023-1031.
Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity[J]. Cell, 2020, 182(5): 1284-94.e9.
Roberts P C, Garten W, Klenk H D. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin[J]. J Virol, 1993, 67(6): 3048-3060.
Ohuchi R, Ohuchi M, Garten W, et al. Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity[J]. J Virol, 1997, 71(5): 3719-3725.
Deshpande K L, Fried V A, Ando M, et al. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence[J]. Proc Natl Acad Sci U S A, 1987, 84(1): 36-40.
Nishiga M, Wang D W, Han Y, et al. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives[J]. Nat Rev Cardiol, 2020, 17(9): 543-558.
Alymova I V, York I A, Air G M, et al. Glycosylation changes in the globular head of H3N2 influenza hemagglutinin modulate receptor binding without affecting virus virulence[J]. Sci Rep, 2016, 6: 36216.
Lu Q, Yao Q, Xu Y, et al. An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis[J]. Cell Host Microbe, 2014, 16(3): 351-363.
Lu Q, Li S, Shao F. Sweet talk: Protein glycosylation in bacterial interaction with the host[J]. Trends Microbiol, 2015, 23(10): 630-641.
Young N M, Brisson J R, Kelly J, et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni[J]. J Biol Chem, 2002, 277(45): 42530-42539.
McNally D J, Hui J P, Aubry A J, et al. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach[J]. J Biol Chem, 2006, 281(27): 18489-18498.
Ewing C P, Andreishcheva E, Guerry P. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176[J]. J Bacteriol, 2009, 191(22): 7086-7093.
Cain J A, Dale A L, Niewold P, et al. Proteomics reveals multiple phenotypes associated with N-linked glycosylation in Campylobacter jejuni[J]. Mol Cell Proteomics, 2019, 18(4): 715-734.
Aas F E, Vik A, Vedde J, et al. Neisseria gonorrhoeae O-linked pilin glycosylation: Functional analyses define both the biosynthetic pathway and glycan structure[J]. Mol Microbiol, 2007, 65(3): 607-624.
Salah Ud-Din A I M, Roujeinikova A. Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: Prospects for development of novel therapeutics[J]. Cell Mol Life Sci, 2018, 75(7): 1163-1178.
Teng K W, Hsieh K S, Hung J S, et al. Helicobacter pylorii employs a general protein glycosylation system for the modification of outer membrane adhesins[J]. Gut Microbes, 2022, 14(1): 2130650.
Dranginis A M, Rauceo J M, Coronado J E, et al. A biochemical guide to yeast adhesins: Glycoproteins for social and antisocial occasions[J]. Microbiol Mol Biol Rev, 2007, 71(2): 282-294.
Bates S, Hughes H B, Munro C A, et al. Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans[J]. J Biol Chem, 2006, 281(1): 90-98.
Southard S B, Specht C A, Mishra C, et al. Molecular analysis of the Candida albicans homolog of Saccharomyces cerevisiae MNN9, required for glycosylation of cell wall mannoproteins[J]. J Bacteriol, 1999, 181(24): 7439-7448.
Rieg G, Fu Y, Ibrahim A S, et al. Unanticipated heterogeneity in growth rate and virulence among Candida albicans AAF1 1 mutants[J]. Infect Immun, 1999, 67(7): 3193-3198.
Mora-Montes H M, Bates S, Netea M G, et al. Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction[J]. Eukaryot Cell, 2007, 6(12): 2184-2193.
Hall R A, Gow N A. Mannosylation in Candida albicans: Role in cell wall function and immune recognition[J]. Mol Microbiol, 2013, 90(6): 1147-1161.
Zhang L, Zhou H, Ouyang H, et al. Afcwh41 is required for cell wall synthesis, conidiation, and polarity in Aspergillus fumigatus[J]. FEMS Microbiol Lett, 2008, 289(2): 155-165.
Zhang L, Feng D, Fang W, et al. Comparative proteomic analysis of an Aspergillus fumigatus mutant deficient in glucosidase I (AfCwh41)[J]. Microbiology (Reading), 2009, 155(Pt 7): 2157-2167.
Daubenspeck J M, Jordan D S, Simmons W, et al. General N-and O-linked glycosylation of lipoproteins in mycoplasmas and role of exogenous oligosaccharide[J]. PLoS One, 2015, 10(11): e0143362
Williams C R, Chen L, Driver A D, et al. Sialylated receptor setting influences Mycoplasma pneumoniae attachment and gliding motility[J]. Mol Microbiol, 2018, 109(6): 735-744.
Lujan A L, Croci D O, Gambarte Tudela J A, et al. Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection[J]. Proc Natl Acad Sci U S A, 2018, 115(26): E6000-e9.
Vechtova P, Sterbova J, Sterba J, et al. A bite so sweet: The glycobiology interface of tick-host-pathogen interactions[J]. Parasit Vectors, 2018, 11(1): 594.
Gowda D C, Miller L H. Glycosylation in malaria parasites: What do we know?[J]. Trends Parasitol, 2024, 40(2): 131-146.
Fenollar à, Ros-Lucas A, Pía Alberione M, et al. Compounds targeting GPI biosynthesis or N-glycosylation are active against Plasmodium falciparum[J]. Comput Struct Biotechnol J, 2022, 20: 850-863.
Divya M, Prabhu S R, Satyamoorthy K, et al. Therapeutics through glycobiology: An approach for targeted elimination of malaria[J]. Biologia (Bratisl), 2023: 1-5.
Chan J M, Gori A, Nobbs A H, et al. Streptococcal serine-rich repeat proteins in colonization and disease[J]. Front Microbiol, 2020, 11: 593356.
Merino S, Tomás J M. Gram-negative flagella glycosylation[J]. Int J Mol Sci, 2014, 15(2): 2840-2857.
Sun H, Deng G, Sun H, et al. N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals[J]. PNAS Nexus, 2022, 1(3): pgac085.
Fran?ois K O, Balzarini J. The highly conserved glycan at asparagine 260 of HIV-1 gp120 is indispensable for viral entry[J]. J Biol Chem, 2011, 286(50): 42900-42910.
Barnard K N, Alford-Lawrence B K, Buchholz D W, et al. Modified sialic acids on mucus and erythrocytes inhibit influenza a virus hemagglutinin and neuraminidase functions[J]. J Virol, 2020, 94(9): e01567-19.
Alemka A, Nothaft H, Zheng J, et al. N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness[J]. Infect Immun, 2013, 81(5): 1674-1682.
Bath J, Bj?nes E, Goekeri C, et al. Mucins protect against Streptococcus pneumoniae virulence by suppressing pneumolysin expression[J]. J Clin Invest, 2024, 134(19): e182769.
Bertozzi C R, Kiessling L L. Chemical glycobiology[J]. Science, 2001, 291(5512): 2357-2364.
Schatz A, Waksman S A. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms[J]. Proc Soc Exp Biol Med, 1944, 57(2): 244-248.
Shope T C, Kauffman R E, Bowman D, et al. Pharmacokinetics of vidarabine in the treatment of infants and children with infections due to herpesviruses[J]. J Infect Dis, 1983, 148(4): 721-725.
Eastman R T, Roth J S, Brimacombe K R, et al. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19[J]. ACS Cent Sci, 2020, 6(5): 672-683.
Shaeer K M, Zmarlicka M T, Chahine E B, et al. Plazomicin: A next-generation aminoglycoside[J]. Pharmacotherapy, 2019, 39(1): 77-93.
Brittain D C. Erythromycin[J]. Med Clin North Am, 1987, 71(6): 1147-1154.
Bryskier A. Roxithromycin: Review of its antimicrobial activity[J]. J Antimicrob Chemother, 1998, 41(Suppl B): 1-21.
Hall W H, Braude A, Spink W W. Streptomycin[J]. Bull Univ Minn Hosp Minn Med Found, 1946, 18(8): 109-135
Linzenmeier G. Kanamycin[J]. Dtsch Med Wochenschr, 1958, 83(51): 2298-2302.
Whitley R, Alford C, Hess F, et al. Vidarabine: A preliminary review of its pharmacological properties and therapeutic use[J]. Drugs, 1980, 20(4): 267-282.
Yoo B C, Kim J H, Kim T H, et al. Clevudine is highly efficacious in hepatitis B e antigen-negative chronic hepatitis B with durable off-therapy viral suppression[J]. Hepatology, 2007, 46(4): 1041-1048.
Lawitz E, Jacobson I M, Nelson D R, et al. Development of sofosbuvir for the treatment of hepatitis C virus infection[J]. Ann N Y Acad Sci, 2015, 1358: 56-67.
Misumi I, Li Z, Sun L, et al. Iminosugar glucosidase inhibitors reduce hepatic inflammation in hepatitis a virus-infected ifnar1(-/-) mice[J]. J Virol, 2021, 95(11): e0005821.
Norton P A, Menne S, Sinnathamby G, et al. Glucosidase inhibition enhances presentation of de-N-glycosylated hepatitis B virus epitopes by major histocompatibility complex class I in vitro and in woodchucks[J]. Hepatology, 2010, 52(4): 1242-1250.
Hussain S, Miller J L, Harvey D J, et al. Strain-specific antiviral activity of iminosugars against human influenza A viruses[J]. J Antimicrob Chemother, 2015, 70(1): 136-152.
Lin L T, Chung C Y, Hsu W C, et al. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry[J]. J Hepatol, 2015, 62(3): 541-548.
Lee W P, Lan K L, Liao S X, et al. Antiviral effect of saikosaponin B2 in combination with daclatasvir on NS5A resistance-associated substitutions of hepatitis C virus[J]. J Chin Med Assoc, 2019, 82(5): 368-674.
Zhao D, Du B, Xu J, et al. Baicalin promotes antibacterial defenses by modulating mitochondrial function[J]. Biochem Biophys Res Commun, 2022, 621: 130-136.
耿雪, 王雪, 周倩, 等. 黃芩苷對SARS-CoV-2侵襲的抑制作用研究[J]. 藥學研究, 2024, 43(4): 333-337.
Cheng K, Wu Z, Gao B, et al. Analysis of influence of baicalin joint resveratrol retention enema on the TNF-alpha, SIgA, IL-2, IFN-gamma of rats with respiratory syncytial virus infection[J]. Cell Biochem Biophy, 2014, 70(2): 1305-1309.
秦笙. 黃芩苷對呼吸道合胞病毒感染的抑制效應及機制研究[D]. 廣州: 南方醫(yī)科大學, 2023.
Zhao X N, Liu J Z. Scutellaria polysaccharide inhibits the infectivity of Newcastle disease virus to chicken embryo fibroblast[J]. J Sci Food Agric, 2014, 94(4): 779-784.
Li Z, Li L, Zhou H, et al. Radix isatidis polysaccharides inhibit influenza a virus and influenza a virus-induced inflammation via suppression of host TLR3 signaling in vitro[J]. Molecules, 2017, 22(1): 116.
Xue H, Gan F, Zhang Z, et al. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway[J]. Int J Biol Macromol, 2015, 81: 22-30.
Becker B, Cooper M A. Aminoglycoside antibiotics in the 21st century[J]. ACS Chem Biol, 2013, 8(1): 105-115.
Qin Y, Ma S. Recent advances in the development of macrolide antibiotics as antimicrobial agents[J]. Mini Rev Med Chem, 2020, 20(7): 601-625.
Dighe S N, Collet T A. Recent advances in DNA gyrase-targeted antimicrobial agents[J]. Eur J Med Chem, 2020, 199: 112326.
Mosaei H, Harbottle J. Mechanisms of antibiotics inhibiting bacterial RNA polymerase[J]. Biochem Soc Trans, 2019, 47(1): 339-350.
Derouaux A, Sauvage E, Terrak M. Peptidoglycan glycosyltransferase substrate mimics as templates for the design of new antibacterial drugs[J]. Front Immunol, 2013, 4: 78.
Lin W, Das K, Degen D, et al. Structural basis of transcription inhibition by fidaxomicin (Lipiarmycin A3)[J]. Mol Cell, 2018, 70(1): 60-71.e15.
Jordheim L P, Durantel D, Zoulim F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases[J]. Nat Rev Drug Discov, 2013, 12(6): 447-464.
Reznik S E, Tiwari A K, Ashby C R, Jr. Sofosbuvir: A potential treatment for ebola[J]. Front Pharmacol, 2018, 9: 1139.
Alonzi D S, Scott K A, Dwek R A, et al. Iminosugar antivirals: The therapeutic sweet spot[J]. Biochem Soc Trans, 2017, 45(2): 571-582.
Wu S F, Lee C J, Liao C L, et al. Antiviral effects of an iminosugar derivative on flavivirus infections[J]. J Virol, 2002, 76(8): 3596-3604.
Courageot M P, Frenkiel M P, Dos Santos C D, et al. Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum[J]. J Virol, 2000, 74(1): 564-572.
Warfield K L, Barnard D L, Enterlein S G, et al. The iminosugar UV-4 is a broad inhibitor of influenza A and B viruses ex vivo and in mice[J]. Viruses, 2016, 8(3): 71.
Chapel C, Garcia C, Bartosch B, et al. Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors[J]. J Gen Virol, 2007, 88(Pt 4): 1133-1143.
Steinmann E, Whitfield T, Kallis S, et al. Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus[J]. Hepatology, 2007, 46(2): 330-338.
Gruters R A, Neefjes J J, Tersmette M, et al. Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase[J]. Nature, 1987, 330(6143): 74-77.
Fleet G W, Karpas A, Dwek R A, et al. Inhibition of HIV replication by amino-sugar derivatives[J]. FEBS Lett, 1988, 237(1-2): 128-132.
Newman D J. Modern traditional Chinese medicine: Identifying, defining and usage of TCM components[J]. Adv Pharmacol, 2020, 87: 113-158.
Kim M, Kim S R, Park J, et al. Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo[J]. Carbohydr Polym, 2022, 281: 119057.
Wen L, Sheng Z, Wang J, et al. Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity[J]. Food Chem, 2022, 373(Pt A): 131374.
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19)[J]. Carbohydr Res, 2021, 505: 108326.