• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Types over p-adically Closed Fields

    2024-01-28 08:30:49NingyuanYaoZhentaoZhang
    邏輯學(xué)研究 2023年6期

    Ningyuan Yao Zhentao Zhang

    Abstract. The aim of this paper is to study types over a p-adically closed field.We classify the 1-types over an arbitrary p-adically closed field,which extends the previous work of Penazzi,Pillay and Yao(2019)on classifying 1-types over the standard model Qp of the field of p-adic numbers.We also study the orthogonality of pseudo-limit types and distance types and yield an analogue of the dichotomy of “cuts” and “noncuts” in the o-minimal context.

    1 Introduction

    This paper presents several new results on types inp-adically closed fields,the structures(in the language of rings)which are elementarily equivalent to the field Qpofp-adic numbers.We denote the theory of Qpin the language of rings bypCF.

    Delon showed in[3]that every type over Qpis definable.In[10],the authors classified the complete 1-types over the standard model Qpas follows:

    Theorem 1.[10]The complete1-types overQp are precisely the following:

    (i)The realized typestp(a/Qp)for each a ∈Qp?

    (ii)For each a ∈Qp and C,a coset ofinGm,the type pa,C saying that x is infinitesimally closed to a(i.e.v(x-a)>n for each n ∈N),and x-a ∈C?

    (iii)For each coset C as above the type p∞,C saying that x ∈C and v(x)

    whereGm the is multiplicative group of a very saturated elementary extension ofQp,and

    In this paper,we extend the above result to an arbitraryp-adically closed field:

    Theorem 2.Let K be a model of pCF,ΓK the value group of K,andas above.Then the complete1-types over K are precisely the following:

    (i)The realized typestp(a/K)for each a ∈K?

    (ii) (distance type around a point)For each cutΛ?ΓK(see Definition 2),c ∈K,and coset C of,the type pΛ,c,C saying thatΛ

    (iii) (Pseudo-limit type)For each pesudo-Cauchy sequence{ci}i∈I(see Definition1),the typesaying that x is a pseudo-limit of{ci}i∈I,and for any formula φ(x)over K,φ(x)∈iff φ(x)is eventually true(see Definition1)on{ci}i∈I.

    Note that whenKis Qp,any pseudo-limit type is realized since Qpis complete as a metric space.As the value group of Qpis Z and there are exactly two cut over Z,namely,?and Z,we see that case(ii)of Theorem 2 corresponds to case(ii)and(iii)of Theorem 1.

    Recall that ano-minimal structure is an ordered structure (M,<,...) in which every definable subsetX ?Mis a finite union of intervals and points.IfA ?Mandc ∈M,we call tp(c/A)a cut iff there area,b ∈dcl(A),the definable closure ofAinM,such thata

    In thepCF environment,it is reasonable to consider the pseudo-limit types and distance types as the analogues of “cut” and “noncut” in theo-minimal context,respectively.

    Assumingo-minimality,a result of[8]shows that if tp(c/A)is a type of cut overA,and tp(d/A)is a type of noncut overA,thencanddare algebraically independent overA,namely,cdcl(A,d)andddcl(A,c).Recall from[14]that two typesp(x)andq(y)overAare weakly orthogonal if they implies a complete typer(x,y)overA.It is easy to see that if tp(c/A)and tp(d/A)are weakly orthogonal,thencanddare algebraically independent overA.We extend Marker’s result topCF environment,showing that

    Theorem 3.Let K be a model of pCF,p(x)∈S1(K)a pseudo-limit type,and q(y)∈S1(K)a distance type,then p and q are weakly orthogonal.

    The paper is organized as follows:For the rest of the introduction we give precise definition and preliminaries relevant to our results.

    In Section 2,we study the the elementary extensions ofp-adically closed fields and their value groups.

    In Section 3,we will prove Theorem 2,classifying the 1-types over an arbitrary model ofpCF.

    In Section 4,we will prove Theorem 3,the orthogonality of pseudo-limit types and distance types.

    1.1 Notations

    LetTbe a complete theory with infinite models in a countable languageLandMa model ofT.We usually write tuples asa,b,x,yrather than,,,.ForAa subset ofM,anLA-formula is a formula with parameters fromA.Ifφ(x) is anLM-formula andA ?M,thenφ(A)is the collection of the realizations ofφ(x)fromA,namely,φ(A)={a ∈A|x||M|=φ(a)}.Similarly,ifX ?M|x|is a definable set defined by the formulaφ(x),then we useX(A)to denote the setφ(A)=X ∩A|x|.IfX ?Mnis definable inMandN ?M,we sometimes useX(x)to denote the formula which definesXandX(N)the subset ofNndefined by the formulaX(x).

    Assume thatA ?Manda ∈M.We say thatais in the algebraic closure ofA(inM),writtena ∈acl(A),if there is a formulaφ(x)overA(namely ofLA)such thatM|=φ(a),and moreover such thatφ(x)has only finitely many solutions inM.We say thatais in the definable closure ofA,a ∈dcl(A),if for someLA-formulaφ(x),ais the unique solution ofφ(x)inM.Note that both acl(-)and dcl(-)are idempotent operators,namely,acl(acl(A))=acl(A)and dcl(dcl(A))=dcl(A)for anyA ?M.For anyn-tuplea=(a1,...,an)∈Mn,we denote acl(A∪{a1,...,an})by acl(A,a).Similarly for dcl(A,a).

    Our notation for model theory is standard,and we will assume familiarity with basic notions such as very saturated models(or monster models),skolem functions,partial types,type-definable etc.References are[11]as well as[9].

    1.2 Background in p-adically Closed Fields

    Letpbe a prime and Qpthe field ofp-adic numbers.We call the complete theory of Qp(in the language of rings)thetheory of p-adically closed fields,writtenpCF.Ap-adic closed field is a model ofpCF,or equivalently,a field which is elementarily equivalent to Qp.A key point is the Macintyre’s theorem[7]thatpCF has quantifier elimination in the language of rings together with new predicatesPn(x)for then-th powers for eachn ∈N+.LetKbe ap-adically closed field,we denote its multiplicative group byK?,its valuation ring byRK,and its value group by ΓK.The value group ΓKis a model of Pr(Presburger arithmetic),namely,(ΓK,<,+)is elementary equivalent to (Z,+,<).The valuation on aKis the mapvfromKto ΓK ∪{∞}satisfying:

    ·∞>yandy+∞=∞+y=∞for ally ∈ΓK

    ·v(x)=∞x=0;

    ·v(x+y)≥min{v(x),v(y)}andv(x+y)=min{v(x),v(y)}whenv(x) ≠v(y);

    ·v(xy)=v(x)+v(y).

    Note that the valuation ringRK={x ∈K|v(x)≥0}and the relationv(x)≤v(y) are definable in the language of rings (see [4]),so is quantifier-free definable in Macintyre’s language.We will freely use the variables and parameters from the value group sort.

    Throughout this paper,(K,+,×,0,1) will denote a very saturated model (or monster model)ofpCF andKan(arbitrary)small elementary submodel of K,where we say that a setXissmallif |X| < |K|.We use Gmto denote the multiplicative group of K,so Gm(K)=K?is the multiplicative group ofK.Before getting into details we recall some basic facts which will be used freely in this section and the rest of the paper.

    First,the topology onKis the valuation topology.Consider the formula

    wherex,yare of the home sort andγis of the value group sort.For anyc ∈Kandδ ∈ΓK,we callB(c,K,δ)an open ball of centercand radiusδ.

    Fact 1.

    · Thep-adic field Qpis a complete,locally compact topological field,with basis given by the setsB(c,Qp,n)forc ∈Qp,n ∈Z.

    ·Kis also a topological field,with basis given by the setsB(c,K,δ)forc ∈K,δ ∈ΓK,but not need to be complete or locally compact.

    · For eachc ∈Kandγ ∈ΓK,B(c,K,δ)=B(c′,K,δ) wheneverc′∈B(c,K,δ).

    · For eachc ∈Kandγ ∈ΓK,B(c,K,δ)is clopen.

    · For eachc ∈Kandγ ∈ΓK,B(c,K,δ) is a disjoint union ofB(c0,K,δ+1),...,B(cp-1,K,δ+1)for somec0,...,cp-1∈B(c,K,δ).

    It is well-known thatpCF satisfiesHensel’s Lemma:

    Fact 2(Hensel).Letf(t)be a polynomial overRKin one variablet,and letα ∈RK,e ∈N.Suppose thatv(f(α))≥2e+1 andv(f′(α))≤e,wheref′denotes the derivative off.Then there exists a unique?∈RKsuch thatv(?)≥e+1 andf(α+?)=0.

    Recall thatPn(x)denotes the formula saying thatxis ann-th power,and thatpCF has quantifier elimination after adding predicates for allPn(x).It is easy to see from the Hensel’s Lemma that eachPn(K?)is an open subgroup of the multiplicative groupK?with finite index,and each coset ofPn(K?)contains representatives from Z(see[1,7]for details).

    The following lemma can also be conclude directly from the Hensel’s Lemma.Nevertheless we give a proof here for convenience.

    Lemma 1.Let a,b ∈K?.If v(a)≥v(b)+2v(n)+1,then a and a-b are in the same coset of Pn(K?)in K?,namely,K|=?λ(Pn(λb)?Pn(λ(b-a))).

    Proof.Let?∈Ksuch thatv(?)≥2v(n)+1.Consider the polynomialf(t)=tn-(1+?).Sincef(1)=?andf′(1)=n.It follows from the Hensel’s Lemma thatf(t)has a root inK,which means that 1+?is ann-th power wheneverv(?)≥2v(n)+1.

    Now suppose thatv(a)>v(b)+2v(n)+1,thenv(b-a)=min{v(a),v(b)}=v(b).Let?=a/(b-a),we see that

    so 1+?is ann-th power.Since

    we see thatbandb-aare in the same coset ofPn(K?).□

    The partial type{Pn(x)|n ∈N+}defines a subgroup of Gm,we call it thedefinable connected componentof Gm,and denote it by.Note that every coset ofis type-definable over?.

    Recall that awell-indexed sequenceinKis a sequence{ai}i∈IinKwhose termsaiare indexed by the elementsiof an infinite well-ordered set(I,<)without a last element.

    Definition 1.Let{ai}i∈Ibe a well-indexed sequence inK.

    · We say that{ai}i∈Iis apseudo-Cauchy sequenceif for some indexi0we have thatv(ak-aj)>v(aj-ai)wheneverk>j>i>i0.

    · We say thata?∈K is apseudo-limitof{ai}i∈Iifv(ai-a?) is eventually strictly increasing,that is,for some indexi0,we have thatv(ak-a?)>v(aja?)wheneverk>j>i0.

    · We say that a formulaφ(x)overKiseventually trueon{ai}i∈Iif there is somei0∈Isuch thatK|=φ(ai)for alli>i0.

    Remark 1.Since K is a monster model,a compactness argument shows that any pseudo-Cauchy sequence{ai}i∈IinKhas a(not necessary unique)pseudo-limit in K.

    Using cell decomposition in the form of Denef[4]or[5],the following can be easily derived,cf.[2],Lemma 4:

    Fact 3.LetX ?Km+1be a definable subset,andbj:XKdefinable functions,forj=1,...,r.Then there exists a finite partition ofXsuch that each partAhas form

    and for each(x,y)∈A,we have

    withx ∈Km,D ?Kmdefinable,0

    Remark 2.It is easy to see from Fact 3 that

    · Every one-variable formulaφ(x)overKis equivalent to a disjoint disjunction of the formulas of the form

    withc ∈K,γi ∈ΓK,λ ∈Z,and □ieither<,≤or no condition.

    · Ifs(x)is aK-definable function anda?∈K,then there are 0

    Another goodness ofpCF is that it has definable Skolem functions(See [13]),i.e.for any formulaφ(x,y) overKwithK|=?x?yφ(x,y),we can find aKdefinable functionfφsuch thatK|=?xφ(x,fφ(x)).So for anyA ?K,dcl(A)is an elementary substructure ofK.The reader is referred to[1]for additional details ofp-adically closed fields.

    2 Extensions of Models

    Lemma 2.Suppose that S is a small subset ofK,thendcl(S)=acl(S)inK.

    ProofAssume thata ∈acl(S).There is a finite setDdefined overSwith the smallest cardinality such thata ∈D.Then letf(x)=∏d∈D(x-d)and Aut(K/S)the group of automorphisms of K fixingSpoint-wise.Since everyσ ∈Aut(K/S)fixesDset-wisely,we see that each coefficient offis Aut(K/S)-invariant.Thus,all coefficients offare in dcl(S)by the saturation of K.As definable Skolem functions exist,some rootboffis in dcl(dcl(S))=dcl(S).Ifb≠a,thenDis defined overSwith cardinality< |D|anda ∈D,which is impossible.Thus,a=b ∈dcl(S).□

    For anyS ?K,acl(S)is the same whether computed inKor K.So we have that

    Corollary 1.If S ?K,thendcl(S)=acl(S)in K.

    By[6],the algebraic closure operation acl(-)in any modelKofpCF defines apre-geometry,namely the exchange axiom is satisfied: ifa,b ∈K,A ?Kandb ∈acl(A,a)acl(A),thena ∈acl(A,b).Fora ∈K,we write dcl(K,a)asK〈a〉,which is an elementary extension ofK.It is easy to see from Lemma 1 and the exchange axiom that:

    Lemma 3.Let a ∈KK.Then there is no proper middle extension between K ?K〈a〉,i.e.no L such that KLK〈a〉.

    Recall from[12]that Pr=Th(Z,+,<,0,{Dn}n>0)has definable Skolem functions,quantifier elimination in the language{+,<,0,{Dn}n>0},and is decidable,where eachDnis a unary predicate symbol for the set of elements divisible byn.For anyA ?M|=Pr,we see that dcl(A)is an elementary substructure ofM.Clearly,the value group ΓKof K is a monster model of Pr.

    Lemma 4.Let K0?K,and G an elementary substructure ofΓK extendingΓK0.Then there is K1such that K0?K1?K and G=ΓK1.

    Proof.Let

    ThenKis not empty sinceK0∈K.Applying Zorn’s Lemma to(K,?),and letK1be a maximal element ofK.We claim thatGis the value group ofK1.Otherwise,there isα ∈GΓK1.Take anya ∈Ksuch thatv(a)=α.Thenv(a-c)=min{v(a),v(c)} ∈Gfor eachc ∈K1.By Remark 2,for eachb ∈dcl(K1,a)=K1〈a〉,there are 0

    Sov(K1〈a〉)?Gand thus the proper extensionK1〈a〉ofK1is also inK.A contradiction.□

    We see from Lemma 4 that anyM|=Pr is isomorphic to a value group of someK?K.In this paper,we consider any (small) model of Pr as a value group of of someK?K.We also write dcl(M,α)asM〈α〉forα ∈ΓK.

    Lemma 5.Let K′?K and a ∈K′K such that v(a)=αΓK.ThenΓK〈a〉=ΓK〈α〉.

    Proof.It is easy to see that

    since ΓK ∪{α}?v(dcl(K,a)).Suppose for a contradiction that ΓK〈α〉is a proper subset of ΓK〈a〉.Then by Lemma 4,there isK′such thatK ?K′?K〈a〉 such that ΓK′=ΓK〈α〉.Since ΓK′is proper middle extension between ΓKand ΓK〈a〉,it follows thatK′is a proper middle extension betweenKandK〈a〉.This contradicts to Lemma 3.□

    Corollary 2.Let M|=Prand α ∈ΓKM,then there is no middle extension between M and M〈α〉,i.e.there is no N such that MNM〈α〉.

    Proof.Suppose Not,then there isβ ∈M〈α〉such that

    By Lemma 4,there isK′|=pCF such that ΓK′=M.Take anya ∈K such thatv(a)=α,thenM〈α〉 is the value group ofK′〈a〉 by Lemma 5.Take anyb ∈K′〈a〉 such thatv(b)=β,then applying Lemma 5 again,M〈β〉 is the value group ofK′〈b〉.We conclude thatK′〈b〉 is a proper middle extension betweenK′andK′〈a〉.A contradiction.□

    3 Classification of 1-types

    Recall that K is the monster model ofpCF and Gmis the multiplicative group of K.From now on,we fixKas a small elementary submodel of K andK?=Gm(K)the multiplicative group ofK.

    Definition 2.Suppose that(Γ,+,<,0)is a model of Presburger arithmetic.We say that Λ?Γ is acutof Γ if

    · For eachγ,β ∈Λ,ifγ ∈Λ andβ<γ,thenβ ∈Λ;

    · For eachn ∈Z andγ ∈Λ,γ+n ∈Λ.

    i.e.Λ is downward closed and satisfying Λ+Z=Λ.

    Lemma 6.Let a?∈KK,and

    ThenΛis a cut ofΓK

    Proof.It is easy to see that Λ is downward closed.It suffices to show thatδ ∈Λ impliesδ+1∈Λ.Suppose thatv(c-a?) >δfor somec ∈Kandδ ∈ΓK,we see from Fact 1 that there arec0,...,cp-1∈Ksuch thatB(c,K,δ)is a disjoint union ofB(c0,K,δ+1),...,B(cp-1,K,δ+1).Since K is an elementary extension ofK,B(c,K,δ)is also a disjoint union ofB(c0,K,δ+1),...,B(cp-1,K,δ+1).Asa?∈B(c,K,δ),there isiδ+1 as required.□

    Theorem 4.Let K be a model of pCFandbe the definableconnected component ofGm.Then the complete1-types over K are precisely the following:

    (a)The realized typestp(a/K)for each a ∈K?

    (b) (distance type around a point)For each cutΛ?ΓK,c ∈K,and coset C of,the type pΛ,c,C saying thatΛ

    (c) (Pseudo-limit type)For each pesudo-Cauchy sequence{ci}i∈I,the type(x)saying that x is a pseudo-limit of{ci}i∈I.In this case,(x)is determined by the sequence{ci}i∈I:For each formula φ(x)over K,φ(x)∈(x)iff φ(x)is eventually true on{ci}i∈I.

    Proof.Letp(x)∈S1(K)be a non-realized type anda?|=p.Let

    Then Λ is a cut of ΓKby Lemma 6.Leta?|=p.Now we have two cases:

    ?Case 1:There isc ∈Ksuch thatv(a?-c)is maximal among the set{v(a?-d):d ∈K}.Thenv(a?-c)∈ΓKΓKrealizes the cut Λ,i.e.Λ

    Claim 1.LetΣΛ,C(x,c)be the partial type saying thatΛ

    Proof.Clearly,every formulaφ(x)∈p(x) is consistent with ΣΛ,C(x,c) since ΣΛ,C(x,c)?p.

    Now suppose thatφ(x)is consistent with ΣΛ,C(x,c).We aim to show thata?|=φ(x).By Remark 2,we can assume thatφ(x)is of the form

    withα1,α2∈ΓK,d ∈K,ands ∈Z.Letb?∈K realize the partial type

    Then bothv(a?-c)andv(b?-c)realize the cut Λ.As bothv(a?-c)andv(b?-c)are not in ΓK,we have that

    Ifv(c-d)∈Λ,then

    which means thata?|=α1□1v(x-d)□2α2.

    Ifv(c-d)Λ,then both

    realize the cut Λ,so

    which also means thata?|=α1□1v(x-d)□2α2.

    We now show thata?also realizesPn(s(x-d)).Ifv(c-d)∈Λ,we have

    By Lemma 1,we see that (a?-d),(c-d) and (b?-d) are in the same coset ofPn(Gm).Soa?|=Pn(s(x-d)) as required.Similarly,ifv(c-d)Λ,then we have both

    Which implies thata?-danda?-care in the same coset ofPn(Gm),also,b?-dandb?-care in the same coset ofPn(Gm).Since(b?-c)and(a?-c)are in the same coset of,we see that K |=Pn(s(b?-d))?Pn(s(a?-d)).Soa?|=Pn(s(x-d)).This complete the proof of the Claim.□

    Clearly,we see for the above Claim thatpis determined by the partial type ΣΛ,C(x,c)when Case 1 happens.

    ?Case 2.There is no suchcas in the previous case.First we show thatv(a?-c)∈ΓKfor eachc ∈K.To see this,suppose that there isc ∈Ksuch thatv(a?-c)ΓK,then for anyc≠d ∈K,we have

    This contradicts our assumption.So we conclude that Λ={v(a?-c)|c ∈K}.We claim that Λ has a well-ordered cofinal subetI.Let

    Applying Zorn’s Lemma to(W,?),and letIbe a maximal element ofW,it is easy to see thatIis cofinal in Λ.Since Λ is a cut,it has no largest element,we see thatIis infinite.Take a sequence{ci ∈K|i ∈I}such thatv(a?-ci)=i,Thena?is a pseudo-limit of{ci}i∈I.

    Claim 2.A formula φ(x)over K is in p(x)iff φ(x)is eventually true on{ci ∈K|i ∈I}.

    Proof.Assume again that the formulaφ(x)is of the form

    withα1,α2∈ΓK,d ∈Kands ∈Z.Leti0∈Isuch thatv(a?-ci)>v(a?-d)+2v(n)+1 for alli>i0.As

    for alli>i0,we see that

    Applying Lemma 1,we have that (a?-d) and (ci-d) are in the same coset ofPn(Gm).So

    for alli>i0.We conclude thatφ(x)∈piffφ(x)is eventually true on{ci ∈K|i ∈I}.This completes the proof.□

    We see from Claim 1 and Claim 2 that eachp(x)∈S1(K)is either a realized type,or a distance type determined by a cut Λ,a pointc ∈Kand,a cosetCof,or a pseudo-limit type determined by a pseudo-Cauchy sequence.

    Conversely,the proof of Claim 1 indicates that for each cut Λ?K,c ∈K,and cosetCof,the partial type ΣΛ,C(x,c) determines a complete 1-type overK.Similarly,the proof of Claim 2 indicates that each pseudo-Cauchy sequence also determines a complete 1-type overK.□

    4 Orthogonality of 1-types

    As we mentioned in the introduction,distance types and pseudo-limit types are the analogues of “noncut” and “cut” in theo-minimal context respectively.We aim to show the orthogonality of distance types and pseudo-limit types in this section.

    Lemma 7.Let a ∈KK.Then

    · tp(a/K)is a pseudo-limit type iffΓK〈a〉=ΓK.

    · tp(a/K)is a distance type iffΓK〈a〉≠ΓK.Moreover,iftp(a/K)is a distance type around c ∈K thenΓK〈a〉=ΓK〈v(a-c)〉.

    Proof.It is easy to see from Theorem 4 that tp(a/K) is a pseudo-limit type iffv(a-b)∈ΓKfor allb ∈K.So ΓK〈a〉=ΓKimplies that tp(a/K)is a pseudo-limit type.

    Now suppose that ΓK〈a〉≠ΓK.To see that tp(a/K)is a distance type,it suffices to show thatv(a-c)ΓKfor somec ∈K.Letsbe aK-definable function such thatv(s(a))ΓK,then by Remark 2,

    for some 0

    For the “moreover” part,suppose that tp(a/K)is a distance type aroundc ∈K,we have seen that everyδ ∈ΓK〈a〉is of the form 1/e(v((a-d)n)+γ)with 0

    Remark 3.It is easy to see from Lemma 7 that a non-realized type can not be both of distance and pseudo-limit simultaneously.

    Lemma 8.Let a ∈KK and b ∈K〈a〉K,thentp(b/K)is in the same case oftp(a/K),i.e.tp(b/K)is distance type(resp.pseudo-limit type),iftp(a/K)is.

    Proof.We see from Lemma 3 that thatK〈b〉=K〈a〉and hence,ΓK〈a〉=ΓK〈b〉.By Lemma 7,tp(a/K)is a distance type iff ΓK〈a〉=ΓK〈b〉≠ ΓKiff tp(b/K)is a distance type.□

    Lemma 9.Iftp(c/K)is a distance type andtp(d/K)is a pseudo-limit type,then c and d are algebraic independent over K,i.e.cacl(K,d)=dcl(K,d)and dacl(K,c)=dcl(K,c).

    Proof.Suppose for a contradiction thatc ∈dcl(K,d).Asc/∈K,it follows from Lemma 8 that tp(c/K)is a also a pseudo-limit type,which is impossible by Lemma 7.Similarly,we haveddcl(K,c).□

    For bothaandbrealize distance types overK,we have a rough relation between tp(a/K〈b〉)and tp(b/K〈a〉):

    Proposition 1.If both a and b realize distance types over K,thentp(a/K〈b〉)is in the same case oftp(b/K〈a〉),i.e.tp(a/K〈b〉)is a realized(resp.distance,pesudo-limit)type iftp(b/K〈a〉)is.

    Proof.Sincea,b/∈K,we see thatb ∈K〈a〉 iffa ∈K〈b〉 by Lemma 3.So tp(a/K)is realized iff tp(b/K)is realized.

    Now we assume thatb/∈K〈a〉.Suppose for a contradiction that tp(b/K〈a〉)is a distance type but tp(a/K〈b〉) is a pseudo-limit type.Then by Lemma 7 we have that ΓK〈a〉ΓK〈a,b〉and ΓK〈b〉=ΓK〈a,b〉.Sincearealizes a distance types overK,we see that ΓKΓK〈a〉,and hence ΓK〈a〉is a proper middle extension between Γ and ΓK〈b〉=ΓK〈a,b〉.Applying Lemma 7 again,there isα ∈ΓK〈b〉such that ΓK〈b〉=ΓK〈α〉.We conclude that ΓK〈a〉is a proper middle extension between Γ and ΓK〈α〉,this contradicts to Corollary 2.

    Similarly,it is impossible that tp(b/K〈a〉)is pseudo-limit but tp(a/K〈b〉)is a distance type.□

    We now show that pseudo-limit types and distance types are weakly orthogonal.

    Proposition 2.Suppose thattp(a/K)is a distance type andtp(c/K)is a pseudo-limit of a sequence{ci}i∈I ?K.Thentp(c/K〈a〉)is also a pseudo-limit of the sequence{ci}i∈I.

    Proof.Firstly,c/∈K〈a〉.Suppose not,K ?K〈c〉?K〈a〉implies thatK〈c〉=K〈a〉,whereas ΓK〈c〉=ΓKand ΓK≠ΓK〈a〉.

    Secondly,tp(c/K〈a〉)can not be a distance type.Suppose not,we can assume that tp(c/K〈a〉) is a distance type around some pointf ∈K〈a〉.Iff ∈K,thenv(c-f)is maximal among{v(c-e)|e ∈K},and thus tp(c/K)is a distance type,which is a contradiction.Sof ∈K〈a〉K,and by Lemma 8,we see that tp(f/K)is a distance type around a pointd ∈K.Since

    we have that

    which is impossible becausev(f-d)ΓKby Lemma 7.Thus,we conclude that tp(c/K〈a〉)is a pseudo-limit of a well-indexed sequence{fj}j∈J ?K〈a〉.

    To see that tp(c/K〈a〉)is a pseudo-limit of the sequence{ci}i∈I,it suffices to show that for eachj ∈Jthere isi ∈Isuch thatv(c-ci)≥v(c-fj).Suppose for a contradiction that there isj0∈Jsuch thatv(c-fj0)>v(c-ci)for alli ∈I.We see from Lemma 8 that tp(fj0/K)is a distance type.Suppose that tp(fj0/K)is arounde ∈K.Then,for alli ∈I,

    As tp(c/K)is a pseudo-limit of{ci}i∈Iande ∈K,there isi0∈Isuch thatv(cci) >v(c-e) for alli ∈Iwithi>i0.Then we have that,for everyi ∈Iwithi>i0,

    We conclude from(1)and(2)that,

    and then

    for alli ∈Iwithi>i0.Sincecis a pseudo-limit of{ci}i∈I,we see thatv(c-e)is maximal among{v(c-d)|d ∈K},and hence tp(c/K)is a distance type.It is a contradiction.□

    We conclude the orthogonality of pseudo-limit types and distance types directly from Proposition 2:

    Theorem 5.Suppose that p(x)∈S1(K)is a pseudo-limit type and q(y)∈S1(K)is a distance type,then there is r(x,y)∈S2(K)such that p(x)∪q(y)?r(x,y).

    Proof.Take anyr(x,y)∈S2(K)such thatp(x)∪q(x)?r(x,y).We now show thatp(x)∪q(y)?r(x,y).Leta|=p(x) andc|=q(y),then it suffices to show that(a,c) |=r(x,y).Suppose that(a′,c′) |=r(x,y).Since tp(a/K)=tp(a′/K),by the saturation of K,there isc′′∈K such that tp(a,c′′/K)=tp(a′,c′/K).Sor=tp(a,c′′/K) andq=tp(c/K)=tp(c′′/K).Assume thatqis a pseudo-limit of a sequence (ci)i∈I ?K.We see from Proposition 2 that both tp(c/K〈a〉) and tp(c′′/K〈a〉)are pseudo-limit of the sequence(ci)i∈I.By Lemma 4,tp(c/K〈a〉)=tp(c′′/K〈a〉).So tp(a,c/K)=tp(a,c′′/K)=r(x,y)as required.□

    亚洲成人久久爱视频| 成人国产一区最新在线观看| 好看av亚洲va欧美ⅴa在| 国产在线男女| 亚洲av中文字字幕乱码综合| 国产探花在线观看一区二区| 国产精品一区二区免费欧美| 国产精品嫩草影院av在线观看 | 亚洲av不卡在线观看| 欧美成狂野欧美在线观看| www.www免费av| 色精品久久人妻99蜜桃| 91久久精品国产一区二区成人| 亚洲熟妇中文字幕五十中出| 亚洲国产欧洲综合997久久,| av国产免费在线观看| 亚洲精品亚洲一区二区| 又粗又爽又猛毛片免费看| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产高清在线一区二区三| 欧美三级亚洲精品| 全区人妻精品视频| 又紧又爽又黄一区二区| 在线十欧美十亚洲十日本专区| 国产精品乱码一区二三区的特点| 亚洲一区二区三区不卡视频| 老司机深夜福利视频在线观看| 国产亚洲精品综合一区在线观看| 国内精品久久久久精免费| 天堂网av新在线| 亚洲三级黄色毛片| 亚洲在线自拍视频| 看免费av毛片| 午夜免费男女啪啪视频观看 | a级毛片a级免费在线| 国产一区二区在线av高清观看| АⅤ资源中文在线天堂| 精品久久久久久久久av| 色哟哟·www| 偷拍熟女少妇极品色| 亚洲av一区综合| 深爱激情五月婷婷| 亚洲aⅴ乱码一区二区在线播放| 欧美在线一区亚洲| 男女视频在线观看网站免费| 高清毛片免费观看视频网站| 亚洲最大成人手机在线| 亚洲欧美日韩高清专用| 日韩有码中文字幕| 99热这里只有是精品在线观看 | 人人妻,人人澡人人爽秒播| 人人妻,人人澡人人爽秒播| .国产精品久久| 亚洲最大成人中文| 亚洲人成伊人成综合网2020| 狂野欧美白嫩少妇大欣赏| 免费在线观看成人毛片| 在线看三级毛片| 亚洲欧美精品综合久久99| 又爽又黄a免费视频| 国产欧美日韩精品一区二区| 在线观看舔阴道视频| 伊人久久精品亚洲午夜| 日韩精品中文字幕看吧| 一级黄色大片毛片| 精品一区二区三区人妻视频| 12—13女人毛片做爰片一| 人人妻人人澡欧美一区二区| 日韩中字成人| 精品一区二区免费观看| 97超视频在线观看视频| 色综合站精品国产| 偷拍熟女少妇极品色| 丝袜美腿在线中文| a在线观看视频网站| 18禁裸乳无遮挡免费网站照片| 男人和女人高潮做爰伦理| 久99久视频精品免费| 欧美3d第一页| www.熟女人妻精品国产| 国内精品久久久久精免费| 18+在线观看网站| 亚洲欧美日韩东京热| 在线观看66精品国产| 亚洲 欧美 日韩 在线 免费| 51国产日韩欧美| 性色av乱码一区二区三区2| 一区二区三区四区激情视频 | 一个人免费在线观看电影| 亚洲狠狠婷婷综合久久图片| 国产一区二区三区在线臀色熟女| 女生性感内裤真人,穿戴方法视频| 国产国拍精品亚洲av在线观看| 天堂√8在线中文| 中文字幕熟女人妻在线| 超碰av人人做人人爽久久| 日韩av在线大香蕉| 国模一区二区三区四区视频| 久久性视频一级片| 中文字幕精品亚洲无线码一区| 很黄的视频免费| 亚洲第一欧美日韩一区二区三区| 极品教师在线视频| 内地一区二区视频在线| 精品一区二区三区av网在线观看| 免费在线观看日本一区| 国产成人啪精品午夜网站| 亚洲人成网站高清观看| 国产在线男女| 伊人久久精品亚洲午夜| 熟女电影av网| 成人国产一区最新在线观看| 精品人妻视频免费看| avwww免费| 我的女老师完整版在线观看| 麻豆国产97在线/欧美| 淫秽高清视频在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲aⅴ乱码一区二区在线播放| 国产成人影院久久av| 一本一本综合久久| 最新在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 亚洲午夜理论影院| 成人高潮视频无遮挡免费网站| 国产精品1区2区在线观看.| 女同久久另类99精品国产91| 国产爱豆传媒在线观看| 久久国产乱子免费精品| 国产精品久久久久久精品电影| a级毛片免费高清观看在线播放| 亚洲av一区综合| 亚洲五月婷婷丁香| 狂野欧美白嫩少妇大欣赏| 欧美另类亚洲清纯唯美| 成人美女网站在线观看视频| 国产激情偷乱视频一区二区| 一个人看视频在线观看www免费| 国产精品一区二区三区四区免费观看 | 日本三级黄在线观看| 国产成人a区在线观看| 成人永久免费在线观看视频| 在线天堂最新版资源| 日本免费一区二区三区高清不卡| 深夜a级毛片| 十八禁网站免费在线| 免费大片18禁| 亚洲最大成人手机在线| 亚洲成a人片在线一区二区| 婷婷丁香在线五月| 99精品在免费线老司机午夜| 黄色一级大片看看| 国内少妇人妻偷人精品xxx网站| 国产真实伦视频高清在线观看 | 国产一区二区激情短视频| 欧美成人性av电影在线观看| 久99久视频精品免费| 校园春色视频在线观看| 麻豆一二三区av精品| 看十八女毛片水多多多| 波多野结衣高清无吗| 国产蜜桃级精品一区二区三区| 欧美性感艳星| 桃红色精品国产亚洲av| 国内精品久久久久久久电影| av黄色大香蕉| 亚洲av中文字字幕乱码综合| 亚洲经典国产精华液单 | 久久久色成人| aaaaa片日本免费| 国产色婷婷99| 亚洲av二区三区四区| 国产三级中文精品| 国产精品av视频在线免费观看| 天堂动漫精品| 免费看美女性在线毛片视频| 简卡轻食公司| 亚洲av电影不卡..在线观看| 成人欧美大片| 国产精品国产高清国产av| 两个人的视频大全免费| 午夜福利欧美成人| 欧美性猛交黑人性爽| 免费观看的影片在线观看| 欧美中文日本在线观看视频| 在线播放国产精品三级| 国产午夜精品论理片| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 亚洲成a人片在线一区二区| 欧美最黄视频在线播放免费| 在线观看66精品国产| 少妇人妻一区二区三区视频| 亚洲av成人av| 一区二区三区免费毛片| 国产日本99.免费观看| 亚洲天堂国产精品一区在线| 人妻制服诱惑在线中文字幕| 国产爱豆传媒在线观看| 男人舔女人下体高潮全视频| 国产一区二区亚洲精品在线观看| 久久午夜福利片| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站高清观看| 在线观看66精品国产| 在线观看一区二区三区| 一个人免费在线观看的高清视频| 日韩高清综合在线| 国产单亲对白刺激| 国产午夜精品论理片| 成人特级黄色片久久久久久久| 一a级毛片在线观看| 免费观看人在逋| 国产69精品久久久久777片| 亚洲人成网站在线播| 怎么达到女性高潮| 日本成人三级电影网站| 日韩欧美精品v在线| 女生性感内裤真人,穿戴方法视频| 日韩欧美精品免费久久 | 国产乱人视频| 亚洲片人在线观看| 一级毛片久久久久久久久女| 欧美日韩福利视频一区二区| 九色国产91popny在线| av天堂中文字幕网| 亚洲精品一区av在线观看| 精品久久久久久久久av| 中亚洲国语对白在线视频| 美女高潮的动态| 国产激情偷乱视频一区二区| 亚洲电影在线观看av| 少妇被粗大猛烈的视频| 日韩欧美免费精品| 一级黄片播放器| 窝窝影院91人妻| 欧美三级亚洲精品| 亚洲av美国av| 99riav亚洲国产免费| 欧美极品一区二区三区四区| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 亚洲自偷自拍三级| 最后的刺客免费高清国语| 一卡2卡三卡四卡精品乱码亚洲| 国产精品99久久久久久久久| 91午夜精品亚洲一区二区三区 | 国产免费av片在线观看野外av| 亚洲av第一区精品v没综合| 一级黄片播放器| 看片在线看免费视频| 不卡一级毛片| 欧美黑人欧美精品刺激| 美女cb高潮喷水在线观看| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 欧美在线黄色| 欧美zozozo另类| 无人区码免费观看不卡| 国产在线男女| 精品人妻偷拍中文字幕| 久久中文看片网| 美女cb高潮喷水在线观看| 中文字幕人妻熟人妻熟丝袜美| 757午夜福利合集在线观看| 亚洲精品一区av在线观看| 我要看日韩黄色一级片| www.www免费av| 精品一区二区三区av网在线观看| 成人特级黄色片久久久久久久| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久人妻精品电影| 校园春色视频在线观看| 人妻制服诱惑在线中文字幕| 色在线成人网| 亚洲无线在线观看| 热99re8久久精品国产| 亚洲一区二区三区不卡视频| 深夜a级毛片| 精品免费久久久久久久清纯| 最新在线观看一区二区三区| 中文资源天堂在线| 无遮挡黄片免费观看| 久久久久久大精品| 99精品久久久久人妻精品| 老司机午夜福利在线观看视频| 又爽又黄a免费视频| 国产av麻豆久久久久久久| 亚洲欧美日韩东京热| 日韩成人在线观看一区二区三区| a级毛片免费高清观看在线播放| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 欧美又色又爽又黄视频| 国产精品爽爽va在线观看网站| 亚洲成人久久爱视频| 麻豆一二三区av精品| 国产精品综合久久久久久久免费| 天堂√8在线中文| 午夜福利视频1000在线观看| 久久久久久久亚洲中文字幕 | 亚洲精品影视一区二区三区av| 成人亚洲精品av一区二区| .国产精品久久| 他把我摸到了高潮在线观看| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 国产激情偷乱视频一区二区| 亚洲专区中文字幕在线| 国产精品三级大全| 成人av在线播放网站| 午夜久久久久精精品| 欧美在线黄色| 天美传媒精品一区二区| 校园春色视频在线观看| 国产午夜福利久久久久久| 高清日韩中文字幕在线| 一本久久中文字幕| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 国产欧美日韩精品亚洲av| 国产视频内射| 国产精品98久久久久久宅男小说| 美女黄网站色视频| 男人的好看免费观看在线视频| 久久久久精品国产欧美久久久| h日本视频在线播放| eeuss影院久久| 免费观看的影片在线观看| 看片在线看免费视频| 欧美又色又爽又黄视频| 有码 亚洲区| 亚洲欧美激情综合另类| 少妇熟女aⅴ在线视频| 国产精品免费一区二区三区在线| 欧美成狂野欧美在线观看| 久久久久久久久中文| 少妇被粗大猛烈的视频| 97热精品久久久久久| 亚洲在线自拍视频| 精品人妻1区二区| 偷拍熟女少妇极品色| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av| 级片在线观看| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av天美| 国产一区二区三区视频了| 深爱激情五月婷婷| 久久精品国产亚洲av天美| .国产精品久久| 色综合亚洲欧美另类图片| av女优亚洲男人天堂| 国产熟女xx| 久久这里只有精品中国| 十八禁人妻一区二区| 国产精品野战在线观看| 精华霜和精华液先用哪个| 亚洲精品久久国产高清桃花| 看免费av毛片| 人人妻人人澡欧美一区二区| 99久久无色码亚洲精品果冻| 中文字幕久久专区| 亚洲精品一区av在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久亚洲中文字幕 | 在现免费观看毛片| 91九色精品人成在线观看| 中文字幕人成人乱码亚洲影| 精品欧美国产一区二区三| 中文资源天堂在线| 他把我摸到了高潮在线观看| 无人区码免费观看不卡| 日韩精品中文字幕看吧| 哪里可以看免费的av片| 成年女人毛片免费观看观看9| 久久国产精品影院| 一二三四社区在线视频社区8| 美女 人体艺术 gogo| 国产精品一区二区三区四区免费观看 | 久久久精品欧美日韩精品| 国产久久久一区二区三区| 中文字幕av成人在线电影| 亚洲精品影视一区二区三区av| 成人一区二区视频在线观看| 久久人人精品亚洲av| 最后的刺客免费高清国语| 在线观看舔阴道视频| 热99在线观看视频| 亚洲五月婷婷丁香| 色av中文字幕| 国产在线精品亚洲第一网站| 国产在视频线在精品| 精品日产1卡2卡| 很黄的视频免费| 久久久色成人| 一区二区三区四区激情视频 | 日本黄色片子视频| 搞女人的毛片| 国产精品影院久久| 亚洲七黄色美女视频| 99热这里只有是精品在线观看 | 欧美一区二区国产精品久久精品| 婷婷丁香在线五月| av在线蜜桃| av视频在线观看入口| 99精品在免费线老司机午夜| 男人舔女人下体高潮全视频| 成人av在线播放网站| 欧美激情久久久久久爽电影| 一进一出好大好爽视频| 夜夜夜夜夜久久久久| 久久香蕉精品热| 深爱激情五月婷婷| 久久久久精品国产欧美久久久| 永久网站在线| 男女之事视频高清在线观看| 男女那种视频在线观看| 午夜福利欧美成人| 精品熟女少妇八av免费久了| 亚洲色图av天堂| 国产黄a三级三级三级人| 国产精品久久久久久久久免 | 欧美bdsm另类| 国产淫片久久久久久久久 | 最好的美女福利视频网| 国产精品久久视频播放| 国产精品99久久久久久久久| 精品久久国产蜜桃| 国产久久久一区二区三区| 亚洲精品一区av在线观看| 成年人黄色毛片网站| 757午夜福利合集在线观看| 亚洲国产欧美人成| 观看免费一级毛片| 91av网一区二区| 久久久色成人| 精品福利观看| 99国产综合亚洲精品| 久久久精品大字幕| 亚洲国产精品999在线| 国产淫片久久久久久久久 | 午夜a级毛片| 国产精品美女特级片免费视频播放器| 简卡轻食公司| 搞女人的毛片| 我要看日韩黄色一级片| 免费在线观看日本一区| 国产免费男女视频| 欧美乱色亚洲激情| 男女床上黄色一级片免费看| 在线看三级毛片| 永久网站在线| 69av精品久久久久久| 国产精品99久久久久久久久| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 日本五十路高清| 真人一进一出gif抽搐免费| 免费无遮挡裸体视频| 一夜夜www| 国产在线男女| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 嫩草影视91久久| 在现免费观看毛片| 在线a可以看的网站| 观看美女的网站| 99久久99久久久精品蜜桃| 99在线人妻在线中文字幕| 日本在线视频免费播放| 最新中文字幕久久久久| 夜夜夜夜夜久久久久| 亚洲专区中文字幕在线| 国产亚洲精品久久久com| 婷婷亚洲欧美| 99国产综合亚洲精品| 在线国产一区二区在线| 精品午夜福利在线看| 国产av一区在线观看免费| 国产野战对白在线观看| 中文字幕精品亚洲无线码一区| 色哟哟哟哟哟哟| 一本久久中文字幕| 波野结衣二区三区在线| 狠狠狠狠99中文字幕| 国产精品亚洲美女久久久| a级毛片a级免费在线| 99久久精品一区二区三区| 深夜精品福利| 中文在线观看免费www的网站| 久久久久久久久大av| 亚洲国产精品久久男人天堂| 在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 日本与韩国留学比较| 一级黄片播放器| 中文字幕av成人在线电影| 国产精品美女特级片免费视频播放器| 成人av一区二区三区在线看| 成年人黄色毛片网站| 九九在线视频观看精品| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 国产高清有码在线观看视频| 国产精品乱码一区二三区的特点| av在线天堂中文字幕| 久久久久免费精品人妻一区二区| 国产精品三级大全| 成人一区二区视频在线观看| 亚洲国产欧美人成| 国产精品人妻久久久久久| 色哟哟·www| 日日摸夜夜添夜夜添小说| АⅤ资源中文在线天堂| 淫妇啪啪啪对白视频| 精品久久国产蜜桃| 美女被艹到高潮喷水动态| 十八禁网站免费在线| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 又爽又黄a免费视频| 国产精品,欧美在线| 国产精品永久免费网站| 香蕉av资源在线| 亚洲天堂国产精品一区在线| 美女黄网站色视频| 国产综合懂色| 国产91精品成人一区二区三区| 尤物成人国产欧美一区二区三区| 久久亚洲精品不卡| 久久伊人香网站| 高清日韩中文字幕在线| 久久久精品大字幕| 亚洲熟妇中文字幕五十中出| 免费在线观看日本一区| 床上黄色一级片| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 成人欧美大片| 亚洲av日韩精品久久久久久密| 国产精品不卡视频一区二区 | 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 久久人人爽人人爽人人片va | 精品一区二区三区人妻视频| 1024手机看黄色片| av在线蜜桃| 国产欧美日韩一区二区精品| 每晚都被弄得嗷嗷叫到高潮| 国产人妻一区二区三区在| 日本免费一区二区三区高清不卡| 欧美xxxx性猛交bbbb| 国产三级在线视频| 中出人妻视频一区二区| 亚洲片人在线观看| 亚洲天堂国产精品一区在线| 丰满人妻一区二区三区视频av| 中文字幕久久专区| 亚洲国产欧美人成| 在线播放无遮挡| 美女xxoo啪啪120秒动态图 | 性色av乱码一区二区三区2| 久久精品国产亚洲av涩爱 | 精品一区二区三区视频在线| 身体一侧抽搐| 亚洲av免费高清在线观看| 91久久精品电影网| 日韩有码中文字幕| 午夜福利在线在线| 日本撒尿小便嘘嘘汇集6| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 国产精品一区二区三区四区久久| 欧美最黄视频在线播放免费| 国产精品爽爽va在线观看网站| 99国产精品一区二区三区| 69av精品久久久久久| 在线观看66精品国产| 禁无遮挡网站| 中文字幕av成人在线电影| 夜夜夜夜夜久久久久| 搡老岳熟女国产| 国产精品久久电影中文字幕| www.色视频.com| 国产色婷婷99| 亚洲av日韩精品久久久久久密| 91九色精品人成在线观看| 51午夜福利影视在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 99久久久亚洲精品蜜臀av| aaaaa片日本免费| 色噜噜av男人的天堂激情| 老女人水多毛片| 麻豆国产97在线/欧美| netflix在线观看网站| 日日干狠狠操夜夜爽| 在线a可以看的网站| 麻豆国产av国片精品| 久久欧美精品欧美久久欧美| 亚洲欧美精品综合久久99| 欧美国产日韩亚洲一区| 在线观看一区二区三区| 国产大屁股一区二区在线视频| 久久精品影院6| 韩国av一区二区三区四区| а√天堂www在线а√下载|