• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Logic for Probabilities of Successive Events*

    2024-01-10 02:23:22YanjunLiJiajieZhao
    邏輯學(xué)研究 2023年6期

    Yanjun Li Jiajie Zhao

    Abstract. In the set language of probability theory,besides complement,intersection,and union,there is another important operation: product.The product of two basic events expresses that these events occur in succession.However,there is limited research about successive events in the literature on probability logic.In this paper,we propose a modal logic(called DML)to capture the reasoning about successive events in probability theory,and then we construct a probability logic (called PLDML) based on DML.We compare DML with standard modal logic on Kripke semantics and show that DML is equivalent to the normal modal logic on deterministic models.We also give a deductive system of PLDML and show its completeness.

    1 Introduction

    In probability theory,an event is expressed by a set.In the literature on logic for probabilities,the basic events and their Boolean combinations are well-studied.For example,the negation of an event A means that A does not happen.The conjunction of two events A and B means both A and B happen.The disjunction of two events A and B means that either A or B happens.However,successive events cannot be expressed by Boolean operators.In set language,successive events can be expressed by the product of basic events.

    Successive events are several events occurring in succession.It is worth pointing out that events occurring in succession might occur at the same time.Succession here is to indicate order not time.Consider the example of tossing a die,and we assume that all dies are fair.There are 6 possible results.The die might fall with 1,2,3,4,5,or 6 up.LetEbe the event that the die falls with an even number up,that is,

    The probability ofEeis.LetE>3be the event that the die falls with a number bigger than 3 up,that is,

    The probability ofE>3is.Now if two persons respectively toss a die at the same time,the result that the first die falls with an even number up and the second die falls with a number bigger than 3 up is successive events,which is represented by

    The probability ofEe×E>3is the product of the probability ofEeand the probability ofE>3,namely

    The research on logic for probabilities can date back to Fagin et al.([2,3]).They propose a probability logic where linear inequalities involving probabilities are allowed.For example,a typical formula ”w(φ) -2w(ψ)≥0” (or equivalentlyw(φ)≥2w(ψ))means that” the probability ofφis at least twice the probability ofψ”.The deductive system of the probability logic given by[2,3]is an extension of both propositional logic and linear inequality logic with some probability axioms and rules.The deductive system is weakly complete.

    Another way of formalizing probability is to interpret modal operators of modal logic as probability(see[4,6,7]).A modal formulaφmeans that the probability ofφis strictly greater thanr.In the model,the probability function assigns each measurable set a number in a base,where a base is a finite subset of the set[0,1]that satisfies some conditions.Due to the fact that the base is finite,this probability has the property of compactness,and it also has strong completeness.

    Zhou ([16,17]) proposes a probability logic which is an extension of propositional logic with probability operators.A formulaLrφmeans that the probability ofφis no less thanr,whereris a rational number between 0 and 1.The deductive system of this probability logic is an extension of propositional logic with some probability axioms and rules.One of these probability rules is aω-rule,which has an infinite number of premises and one conclusion.Zhou shows the weak completeness and confirms a conjecture of Larry Moss that the infinitary rule can be replaced by a finitary rule.

    Different from [16,17],Ognjanovi? et al.(see [10,11,12,13]) proposes a probability logic with not onlyω-rule but also infinitary derivations.A derivation(or a proof) in Ognjanovi?’s system is a well-founded tree in which some nodes might have an infinite number of successors(see[9]).Based on infinitary derivations,this probability logic is shown to have strong completeness.

    None of the papers mentioned above considers the probability of successive events in their logical language.In this paper,we propose a modal logic for reasoning about successive events and construct a probability logic based on it.The main contributions are listed as follows:

    · We consider a fragment of the language of linear temporal logic,in which successive events can be expressed.

    · We propose a semantics that combines the semantics of linear temporal logic(see[15])and the update semantics of public announcement logic(see[5,14]).

    · We compare this semantics with standard Kripke semantics.

    · We construct a probability logic based on this logic and give a complete deductive system.

    The paper is organized as follows.Section 2 introduces the modal logic DML to capture the reasoning about successive events.Section 3 gives the alternative Kripke semantics of DML.Section 4 proposes a probability logic based on DML and gives a deductive system PLDML.Section 5 shows the weak completeness of PLDML.Section 6 concludes with some remarks.

    2 A Modal Logic for Sequential Events

    In this section,we introduce the logic,called DML(Deterministic Modal Logic),to capture the reasoning about successive events in probability theory.

    Let P be a set of propositional letters.

    Definition 1(Language of DML).The language of DML,denoted byLDML,is defined by the following BNF(wherep ∈P):

    The auxiliary connectives⊥,,∨are defined as abbreviations as usual.

    The formula○φmeans that the eventφwill happen in the next step.What is more,the formulaφ ∧○nψwherenis the modal depth ofφmeans that the eventsφandψsuccessively happen.We use(φ;ψ)to denote the formulaφ ∧○ψ.

    The languageLDMLis a fragment of linear temporal logic without theuntilmodalityU.

    Definition 2(Model of DML).A DML-model(or simply a model)is a tripleM=〈S,Ω,V〉where

    ·Sis a non-empty set of states;

    · Ω?S?is a non-empty set of sequences overSthat is prefix-free;

    ·V: P2Sis a valuation that labels each propositional letter with a set of states.

    For eachρ ∈Ω,(M,ρ)is called a pointed model.

    Intuitively,eachs ∈Sstands for a basic event,and eachρ ∈Ω stands for a sequence of successive events.Please note that Ω is a subset ofS?.This means that only some successive events are allowed,which is in line with practice.For example,in sampling without replacement,only some basic events(not all possible basic events)can occur in succession.

    The length of the sequenceρis denoted as|ρ|.Then-th character of the sequenceρis denoted asρ[n].The suffix ofρstarting at thei-th character is denoted asρi.For example,letρ=s1s2s3s4.We then have that|ρ|=4,ρ[1]=s1,andρ3=s3s4.

    Given a modelM=〈S,Ω,V〉,we useM-nto denote the model〈S,Ω-n,V〉where Ω-n={ρn+1|ρ ∈Ω}.It is obvious that(M-n)-m=M-(n+m).What is more,we use[ρ]M(or simply[ρ])to denote the set{σ ∈Ω|ρis a prefix ofσ}.

    The intuition of the updated modelM-nis that after moving forwardnsteps,we will only consider the sequence of successive events that could be generated from this moment.In spirit,it is similar to the update model in public announcement logic.

    Definition 3(Semantics of DML).

    We use?φ?M(or simply?φ?)to denote the set{ρ|M,ρ?φ}.

    This semantics is different from the semantics of linear temporal logic.The key feature of this semantics is that a formula captures to a set of sequences of successive events.This makes DML to be a natural generalization of propositional logic for basic events,where a propositional formula corresponds to a set of basic events.This feature can be illustrated more clearly by the following examples.

    Example 1(Sampling with replacement).Imagine there is an opaque box,containing 4 red balls(R)and 1 black ball(B).You draw one ball from the box per time with a replacement.Now consider the case you draw from the box twice,which can be depicted by Figure 1.

    Figure 1: Sampling with replacement

    Let the propositional letterpRdenote “draw a red ball”,and letpBdenote “draw a black ball”.So we can construct the modelM=〈S,Ω,V〉as follows:

    ·S={s1,s2,s3,s4,s5,s6},

    · Ω={s1s3,s1s4,s2s5,s2s6},

    ·V(pR)={s1,s3,s5},andV(pB)={s2,s4,s6}.

    The formulapRrepresents the event that draws a red ball at the first time.By the semantics of DML,we get that?pR?={s1s3,s1s4}={[s1]}.

    The formula○pRrepresents the event that draws a red ball at the second time.By the semantics of DML,we get that?○pR?={s1s3,s2s5}.

    The formulapR;pBrepresents the successive events that firstly draw a red ball and secondly draw a black ball.By the semantics of DML,we get that?pR;pB?={s1s3}.

    In the remainder of this section,we will consider two operations on models:generated submodel and disjoint union.These two operations will play important roles in the proof in Section 5.

    Definition 4(Generated submodel).GivenM= 〈S,Ω,V〉andρ ∈Ω,the modelM|ρ=〈S′,Ω′,V′〉is defined as follows:

    ·S′={s ∈S|soccurs inρ};

    · Ω′={ρ};

    ·s ∈V′(p)if and only ifs ∈V(p).

    To show that the generated submodel preserves the truth of formulas,we will need the following proposition which can be easily checked.

    Proposition 1.Given two models M1= 〈S1,Ω1,V1〉and M2= 〈S2,Ω2,V2〉,we have that M1,ρ?φ if and only if M2,ρ?φ if the following conditions are satisfied:

    ·ρ ∈Ω1∩Ω2

    ·s ∈V1(p)if and only if s ∈V2(p)for each s occurs in ρ and each p.

    Proposition 2.For each formula φ ∈LDML,we have that M,ρ?φ if and only if M|ρ,ρ?φ.

    Proof.It can be proved by induction onφ.The base step and Boolean cases are straightforward.We will only consider the case thatφis of the form○ψ.

    Left-to-right:Assume thatM,ρ?○ψ.This means|ρ| >1 andM-1,ρ2?ψ.By inductive hypothesis,(M-1)|ρ2,ρ2?ψ.Then by proposition 1,we can get(M|ρ)-1,ρ2?ψ.By the semantics,we then have thatM|ρ,ρ?○ψ.

    Right-to-left:AssumeM|ρ,ρ?○ψ.This means|ρ|>1 and(M|ρ)-1,ρ2?ψ.Then by proposition 1,we can get(M-1)|ρ2,ρ2?ψ.By inductive hypothesis,M-1,ρ2?ψ.By the semantics,we then have thatM,ρ?○ψ.□

    Definition 5(Disjoint union).Let{M1,··· ,Mn}be a finite set of models such that there is no common state between each two of them.The model=〈S′,Ω′,V′〉is defined as follows:

    ·s ∈V′(p)if and only ifs ∈Vj(p)wheresis a state ofMj.

    Proposition 3.Given a finite set of models,{M1,··· ,Mn},for each formula φ ∈LDML,we have that Mi,ρ?φ if and only if,ρ?φ where1≤i ≤n.

    Proof.It can be proved by induction onφ.We will only consider the case thatφis of the form○ψ.

    Left-to-right:Assume thatMi,ρ?○ψ.This means|ρ| >1 and,ρ2?ψ.By the inductive hypothesis,,ρ2?ψ.Thus it follows by the semantics that,ρ?○ψ.

    3 Kripke Semantics of LDML

    In this section,we consider the standard Kripke semantics of the languageLDML,and show that DML is equivalent to the normal modal logic on the class of deterministic models.

    Definition 6(Kripke model).A Kripke model forLDMLis a tripleK= 〈S,R,V〉whereSandVare the same as Definition 2,andRis a deterministic binary relation onS,that is,ifsRtandsRvthent=v.For eachs ∈S,〈K,s〉is called a pointed Kripke model.

    From the definition above,it can be seen that in this paper we assume that all Kripke models are deterministic.This is because we only consider deterministic Kripke models in this paper.

    Definition 7(Kripke semantics).The Kripke semantics ofLDML,which in this paper is denoted as ?,is standard(cf.[1]),where the modal formula○φis interpreted as an existential modal formula:

    From the definition above,it can be seen that the interpretation of○φis the same as the existential modal formula(normally denoted as ◇φ)in standard modal logic.So,in this paper,we will abbreviate the formula?○?φas□φ.

    Given a Kripke modelK= 〈S,R,V〉,a (possibly infinite) sequence of statess1s2··· is called aK-path if and only ifsnRsn+1for alln ≥1.Especially,eachs ∈Sis aK-path.AK-pathρis called a fullK-path if and only if either it is of infinite length orρ=s1···snand there is no sucht ∈SthatsnRt.

    The following proposition states that for each Kripke model,there are equivalent DML-models.

    Proposition 4.Given a Kripke model K=〈S,R,V〉,for each setΩof full K-paths,we have that〈S,Ω,V〉,ρ?φ if and only if K,s?φ where ρ[1]=s.

    Proof.We prove it by induction onφ.The basic step and Boolean cases are straightforward.Ifφ:=○ψ,there are two cases:|ρ|=1 or|ρ|>1.

    For the case of|ρ|=1,by the DML-semantics,we always have that〈S,Ω,V〉,ρ○ψ.Meanwhile,sinceρis a fullK-path and |ρ|=1,this follows that there is no such statetthatsRtinK.Thus,we also always have thatK,s○ψ.

    For the case of|ρ|>1,the proof is as follows:

    If 〈S,Ω,V〉,ρ?○ψ,it follows that 〈S,Ω-1,V〉,ρ2?ψ.By the inductive hypothesis,K,s2?ψwheres2=ρ[2].Due toρ[1]=s ∈S,we can getsRs2.Then by Kripke semantics,we have thatK,s?○ψ.

    IfK,s?○ψ,it follows that there exists a states2such thatsRs2andK,s2?ψ.By the inductive hypothesis,〈S,Ω′,V〉,ρ′?ψwhereρ′[1]=s2.By Proposition 1,we then have that〈S,{ρ′},V〉,ρ′?ψ.Sinceρ′is a fullK-path starting froms2andsRs2,it follows thatsρ′is also a fullK-path.Then by the DML-semantics,we have that〈S,{sρ′},V〉,sρ′?○ψ.□

    Next,we will show that for each DML-model,there is an equivalent Kripke model.

    Definition 8(M?).Given a DML-modelM= 〈S,Ω,V〉,a Kripke modelM?is defined as〈S?,RΩ,V ?〉where

    ·S?={σ|there existsρ ∈Ω such thatσis a suffix ofρ}.In other words,S?is the suffix-closure of Ω.

    ·ρR?σif and only ifσ=ρ2.It is obvious thatR?is deterministic.

    ·σ ∈V ?(p)if and only ifσ[1]∈V(p).

    Proposition 5.Given aDML-model M,we have that the Kripke model(M-1)? is a generated submodel of the Kripke model M?.

    Proof.The proof is omitted due to space limitations.□

    Proposition 6.M,ρ?φ if and only if M?,ρ?φ.

    Proof.It can be proved by induction onφ.We will only consider the case thatφis of the form○ψ.

    IfM,ρ?○ψ,it follows thatM-1,ρ2?ψ.By inductive hypothesis,we get(M-1)?,ρ2?ψ.By proposition 5,(M-1)?is generated submodel ofM?.SoM?,ρ2?ψ(cf.[1]).Due toρR?ρ2inM?,thus we can getM?,ρ?○ψ.

    IfM?,ρ?○ψ,it follows that there existsρ′such thatρR?ρ′andM?,ρ′?ψ.By the definition ofR?,we know thatρ′=ρ[2].Thus,M?,ρ[2]?ψ.What is more,by the definition ofS?,we know that eitherρ ∈Ω orρis a suffix of someσ ∈Ω.Either way,we have thatρ[2]is an element of the domain of(M-1)?.Since(M-1)?is a generated submodel of(M?),we then have that(M-1)?,ρ[2]?ψ.By inductive hypothesis,we then have thatM-1,ρ[2]?ψ.It follows thatM,ρ?○ψ.□

    The following lemma states that the logical consequence of DML is equivalent to that of standard modal logic on deterministic modal class.

    Lemma 1.For each φ ∈LDML,we have thatΓ ?φ if and only ifΓ ?φ.

    Proof.Suppose Γ ?φ,but Γφ.This follows that there is a pointed Kripke modelK,ssuch thatK,s?Γ butK,sφ.By proposition 4,we can get a DML-model〈S,R,V〉,ρsuch that〈S,R,V〉,ρ?Γ and〈S,R,V〉,ρφ,which is contradictory with the premise that Γ ?φ.Thus,we have shown that if Γ ?φthen Γ ?φ.

    Suppose Γ ?φ,but Γφ.This follows that there is a pointed DML-model〈S,R,V〉,ρsuch that 〈S,R,V〉 ?Γ but 〈S,R,V〉φ.We then can construct a Kripke modelM?by definition 8.It follows from Proposition 6 thatM??Γ andM?φ,which contradicts the premise that Γ ?φ.Thus,we have shown that if Γ ?φthen Γ ?φ.□

    Definition 9(Deductive system of DML).The deductive system DML is presented in Table 1.

    Table 1: The system DML

    It can be seen that DML is an extension of the K system of normal modal logic with the axiom Det which characterizes the class of deterministic Kripke models.

    Theorem 7.The systemDMLis sound and strongly complete with respect to the semantics ofDML.

    Proof.Since the system DML is sound and strongly complete with respect to the class of deterministic Kripke models(see[1]),by Lemma 1,it follows that DML is sound and strongly complete with respect to the semantics of DML.□

    4 A Prbabilistic Logic Based on DML

    In this section,we construct a probability logic based on the logic DML and give a deductive system of this probability logic.

    Definition 10(Language of PLDML).The language of PLDML,denoted asLPLDML,is defined as follows(whereψ1,··· ,ψn ∈LDMLanda1,··· ,an,a ∈Q)

    Formulas of the formsa1Pψ1+···+anPψn ??awhere??∈{>,<,≤,=}can be defined inLPLDML(see[3]).

    Definition 11(Probability distribution).Let Ω be a finite set.A functionμ: Ω[0,1]is called aprobability distributionover Ω if and only if

    Definition 12(Model of PLDML).A PLDML-model is a pair(M,μ)where

    ·M=〈S,Ω,V〉is a DML-model where Ω is finite;

    ·μis a probability distribution over Ω.

    Definition 13(Semantics of PLDML).The satisfaction relation between a PLDMLmodel(M,μ)and a formulaφ ∈LPLDML,denoted as ?,is defined as follows:

    Example 2.Imagine drawing a ball from the box in Example 1,but this time without replacement.Assume that these balls are exactly the same except for the color.So for your first draw,the probability of getting red is 0.8(pR),and 0.2 for black(pB).For your second draw,the case will be: if you get a red ball on your first draw,the probability of getting a black ball increases to 0.75,since there are 3 red balls and 1 black ball left.If you get a black ball on your first draw,you will certainly draw a red ball in your next turn,because there is no black ball anymore.This sampling can be depicted by Figure 2.

    Figure 2: Sampling without replacement

    Let the DML-modelM=〈S,Ω,V〉be defined as follows:

    ·S={s1,s2,s3,s4,s5},

    · Ω={s1s3,s1s4,s2s5},

    ·V(pR)={s1,s3,s5}andV(pB)={s2,s4}.

    The probability distributionμon Ω is defined as follows:

    We then have the following:

    ·M,μ?PpR=,because ofμ(?pR?)=μ({[s1]})=.This means that the probability of the event that you draw a red ball at the first time is.

    ·M,μ?P○pR=,because ofμ(?○pR?)=μ({s1s3,s2s5})=.This means that the probability of the event that you draw a red ball at the second time is.

    ·M,μ?P(pR;pB)=,because ofμ(?pR;pB?)=μ({s1s4})=.This means that the probability of the successive events that you firstly draw a red ball and secondly draw a black ball is.

    Definition 14(Deductive system PLDML).The deductive system PLDMLis presented in Table 2.

    Table 2: The system PLDML

    The deductive system DML is similar to the deductive system proposed in[3]except for the rule Dst.The premise of the rule Dst in this paper is a formula provable in the system DML.

    Proposition 8.If φ1∈LDMLand φ2∈LDMLareDML-inconsistent,we then havethat

    Theorem 9(Soundness).The systemPLDMLis sound.

    Proof.The key is to show that each axiom is valid and that each rule preserves validity.

    Firstly,we will show that each axiom is valid.We will only focus on the axioms of probabilities.

    · The axiom NonNeg is valid,i.e.?Pψ ≥0.LetM= 〈S,Ω,V〉 be an arbitrary model andμbe an arbitrary probability distribution over Ω.Since?ψ?Mis a subset of Ω,it follows by Definition 11 thatμ(?ψ?M)≥0.Thus,we have thatM,μ?Pψ ≥0.

    · The axiom Cert is valid,i.e.?P?=1.Due to???M=Ω,it follows by Definition 11 thatμ(???M)=1.Thus,we have thatM,μ?P?=1.

    · The axiom Add is valid,i.e.?P(ψ1∧ψ2)+P(ψ1∧?ψ2)=Pψ1.Please note that?φ1∧φ2?M=?φ1?M∩?φ2?M,and?φ1∧?φ2?M=?φ1?M∩??φ2?M=?φ1?M ∩(Ω?φ2?M)=?φ1?M (?φ1?M ∩?φ2?M).This follows that?φ1∧φ2?and?φ1∧?φ2?are disjoint.By Definition 11,we have thatμ(?φ1∧φ2?M∪?φ1∧?φ2?M)=μ(?φ1∧φ2?M)+μ(?φ1∧?φ2?M).What is more,due to?φ1∧φ2?M∪?φ1∧?φ2?M=?φ1?M,it follows thatμ(?φ1?M)=μ(?φ1∧φ2?M)+μ(?φ1∧?φ2?M).Thus,we have thatM,μ?P(φ1∧φ2)+P(φ1∧?φ2)=P(φ1).

    Next,we need to show each rule preserves validity.We will only focus on the rule Dst.

    Suppose that?DMLψ1?ψ2,by Theorem 7,it follows that the formulaφ1?φ2∈LPLDMLis valid.We then have that?ψ1?M=?ψ2?Mfor each DML-modelM.Thus,we have thatμ(?φ1?M)=μ(?φ2?M).It follows thatM,μ?P(φ1)=P(φ2).□

    5 Completeness of PLDML

    Given a formula set Γ,we useSub(Γ)to denote the minimal extension of Γ such thatSub(Γ)is subformula closed,and useSub+(φ)to denote the minimal extension ofSub(φ) such that ifψ ∈Sub(φ) andψis not a negation formula then?ψ ∈Sub+(φ).

    If Γ is finite,bothSub(Γ)andSub+(Γ)are finite.

    Definition 15(DML/PLDML-Atom).Let Γ be a set ofLDML-formulas(LPLDMLformulas).A subsetsofSub+(Γ)is called a DML-atom(PLDML-atom)ofSub+(Γ)if and only ifsis a maximal DML-consistent(PLDML-consistent)subset ofSub+(Γ).

    We useAtDML(Γ) to denote the set of all DML-atoms ofSub+(Γ),and we useAtPLDML(Γ) to denote the set of all PLDML-atoms.We useφΘto denote the conjunction of all formulas in Θ if Θ is finite.

    Next,we will show that each PLDML-atom is satisfiable.Before that,we need the following two auxiliary propositions.Due to space limitations,the proofs are omitted.

    Proposition 10.LetΓbe a finite set of LDML-formulas.We have that the disjunction of all atoms is provable inDML,namely

    Proposition 11.LetΓbe a finite set of LDML-formulas and ψ be a formula in Sub+(Γ).We have that

    Lemma 2.Given a finitePLDML-atomΘ,there is aPLDML-model(M,μ)such that M,μ?ψ for each ψ ∈Θ.

    Proof.Let Γ be the set ofLDML-formulas that occurs in Θ.It is obvious that Γ is finite.So,Sub+(Γ) is finite as well.Therefore,there are finite many DMLatoms ofSub+(Γ).Let the set of all the DML-atoms ofSub+(Γ)beAtDML(Γ)={Δ1,··· ,Δn}.

    For each 1≤i ≤n,since Δiis DML-consistent,it follows by Theorem 7 that Δiis satisfiable.Let(Mi,ρ)be a pointed model such thatMi,ρ?Δi.To indicate this fact,we will write the sequenceρa(bǔ)sρΔi

    Firstly,we generate the submodelofMifor each 1≤i ≤n.By Proposition 2,it follows that,ρΔi?Δifor each 1≤i ≤n.

    Secondly,we do the disjoint union ofWe useM= 〈S,Ω,V〉 to denote the disjoint union model.By the definition of disjoint union,it follows that Ω={ρΔ1,··· ,ρΔn}.By Proposition 3,it follows thatM,ρΔi?Δifor each 1≤i ≤n.Moreover,since each Δiis a maximal DML-consistent subset ofSub+(Γ),it follows that any two atoms Δiand Δjwhere 1≤i,j ≤nare DML-inconsistent.Therefore,any two atoms are not satisfiable.Thus,each Δiis only satisfied byM,ρΔi.So,we have that?Δi?M={ρΔi}.

    Next,we need to show that there is a probability distributionμover Ω such thatM,μ?Θ.

    By a similar process presented in [3],it can be proved that there indeed is a probability distributionμover Ω such that

    · If(a1Pψ1+···+ajPψj ≥a)∈Θ,thenM,μ?a1Pψ1+···+ajPψj ≥a.

    · If(a1Pψ1+···+ajPψj ≥a)Θ,thenM,μa1Pψ1+···+ajPψj ≥a.

    Due to space limitations,the proof details of this result are omitted.With this result,it can be shown by induction onφthat for eachψ ∈Sub+(Θ),

    It follows thatM,μ?ψfor allψ ∈Θ.□

    Theorem 12(Weak completeness).The systemPLDMLis weak complete,that is,if a formula φ ∈LPLDMLisPLDML-consistent then it is satisfiable.

    Proof.Sinceφis PLDML-consistent,it follows by Lindenbaum’s lemma that there is a PLDML-atom Θ ofSub+(φ)such thatφ ∈Θ.By Lemma 2,we then have that there is a PLDML-modelM,μsuch thatM,μ?ψfor allψ ∈Θ.Thus,φis satisfied byM,μ,then it is satisfiable.□

    6 Conclusion

    In this paper,we propose semantics for a modal language to capture the reasoning about successive events in probability theory.We prove that this logic(called DML)is equivalent to the normal modal logic on deterministic Kripke models.We then construct a probability logic on DML and show the completeness of its deductive system PLDML.

    There is no nesting of probabilistic operators and modal operators in the probability logic PLDML.Hence,one of the natural future directions is to extend PLDMLto allow nesting probabilistic operators and modal operators.This will allow us to express formulas like ”φ;(Pψ=a)”,which could help us to reconsider the notion of independence in probability theory.Traditionally,the independence of two eventsAandBis defined asμ(AB)=μ(A) ×μ(B).This definition is challenged in various aspects(see[8]).We suggest that independence might be defined asφ;Pψ=a ?P((φ∨?ψ);ψ)=a,which means that the occurrence ofφhas no effect on the probability ofψ(see[8]).We will investigate this definition of independence in future work.

    直男gayav资源| 欧美3d第一页| 午夜老司机福利剧场| 不卡视频在线观看欧美| 天堂网av新在线| 啦啦啦中文免费视频观看日本| 国产精品一区二区性色av| 一级毛片aaaaaa免费看小| 建设人人有责人人尽责人人享有的 | 少妇被粗大猛烈的视频| 日本熟妇午夜| 少妇人妻精品综合一区二区| 插逼视频在线观看| 国产老妇伦熟女老妇高清| 亚洲av一区综合| 日本av手机在线免费观看| 日韩中字成人| 亚洲图色成人| 一本一本综合久久| 黄片无遮挡物在线观看| 亚洲av日韩在线播放| 亚洲经典国产精华液单| 人妻少妇偷人精品九色| 涩涩av久久男人的天堂| 久久久久网色| 嫩草影院新地址| 免费看不卡的av| 国产91av在线免费观看| 五月天丁香电影| 国产免费视频播放在线视频| 国产一区二区亚洲精品在线观看| eeuss影院久久| 亚洲av国产av综合av卡| 一区二区三区免费毛片| av.在线天堂| 亚州av有码| 又爽又黄a免费视频| 老司机影院成人| 久久影院123| 欧美最新免费一区二区三区| 狂野欧美激情性bbbbbb| 久久韩国三级中文字幕| 国产一区二区在线观看日韩| 不卡视频在线观看欧美| av专区在线播放| 成人欧美大片| 亚洲欧美精品自产自拍| 丝袜脚勾引网站| 国产亚洲午夜精品一区二区久久 | 少妇猛男粗大的猛烈进出视频 | 韩国高清视频一区二区三区| 最后的刺客免费高清国语| 视频中文字幕在线观看| 亚洲自拍偷在线| 国产精品伦人一区二区| 能在线免费看毛片的网站| 亚洲国产精品成人综合色| 亚洲人成网站在线观看播放| 最近最新中文字幕大全电影3| 97在线人人人人妻| 偷拍熟女少妇极品色| 97人妻精品一区二区三区麻豆| 精品熟女少妇av免费看| 色综合色国产| 99热这里只有精品一区| 欧美高清性xxxxhd video| 午夜福利高清视频| 丰满少妇做爰视频| 欧美一区二区亚洲| 香蕉精品网在线| av.在线天堂| 97超碰精品成人国产| 大又大粗又爽又黄少妇毛片口| 日日啪夜夜爽| av黄色大香蕉| 色哟哟·www| 最近最新中文字幕免费大全7| 高清视频免费观看一区二区| 在线观看美女被高潮喷水网站| 最近中文字幕2019免费版| 久久久精品免费免费高清| 色视频www国产| 亚洲国产成人一精品久久久| 日韩欧美精品免费久久| 一级片'在线观看视频| 日韩av不卡免费在线播放| 成人美女网站在线观看视频| 在线亚洲精品国产二区图片欧美 | 人体艺术视频欧美日本| 亚洲av男天堂| 3wmmmm亚洲av在线观看| 26uuu在线亚洲综合色| 中文资源天堂在线| 老女人水多毛片| 欧美3d第一页| 国产精品久久久久久精品电影小说 | 欧美日韩一区二区视频在线观看视频在线 | 成人漫画全彩无遮挡| 久久韩国三级中文字幕| 91aial.com中文字幕在线观看| 精品熟女少妇av免费看| 精品酒店卫生间| 国语对白做爰xxxⅹ性视频网站| 狠狠精品人妻久久久久久综合| a级毛片免费高清观看在线播放| 男的添女的下面高潮视频| 亚洲成色77777| 色视频www国产| 亚洲人成网站在线播| 久久6这里有精品| av在线蜜桃| 久久亚洲国产成人精品v| 国产成人一区二区在线| 国产成人a区在线观看| 欧美日韩亚洲高清精品| a级一级毛片免费在线观看| 2021少妇久久久久久久久久久| 人妻少妇偷人精品九色| 最近的中文字幕免费完整| 国产精品国产三级国产专区5o| 久久精品久久久久久久性| 亚洲,欧美,日韩| 黄色一级大片看看| 老女人水多毛片| 免费少妇av软件| 国产成人aa在线观看| 亚洲人与动物交配视频| 日本欧美国产在线视频| 老司机影院成人| 最近的中文字幕免费完整| 亚洲自拍偷在线| 色视频在线一区二区三区| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影小说 | 赤兔流量卡办理| 国产免费又黄又爽又色| 狠狠精品人妻久久久久久综合| 狂野欧美激情性bbbbbb| 99久久中文字幕三级久久日本| 一区二区av电影网| 高清毛片免费看| 久久久国产一区二区| 搞女人的毛片| 亚洲国产精品999| 成人午夜精彩视频在线观看| 韩国高清视频一区二区三区| 欧美性猛交╳xxx乱大交人| 一级毛片久久久久久久久女| 国产高清国产精品国产三级 | 亚洲欧美日韩无卡精品| 亚洲av国产av综合av卡| 精品人妻视频免费看| 丝袜喷水一区| 欧美高清成人免费视频www| 国产精品不卡视频一区二区| 免费黄色在线免费观看| 在线观看国产h片| 青春草亚洲视频在线观看| 女人十人毛片免费观看3o分钟| 最后的刺客免费高清国语| 美女cb高潮喷水在线观看| 高清日韩中文字幕在线| 我的老师免费观看完整版| 黄色日韩在线| 国产淫语在线视频| 日日摸夜夜添夜夜添av毛片| 亚洲成人av在线免费| 午夜福利在线观看免费完整高清在| 成人毛片60女人毛片免费| 亚洲美女搞黄在线观看| 国产av国产精品国产| 国产av国产精品国产| 国产人妻一区二区三区在| 国产片特级美女逼逼视频| 国精品久久久久久国模美| 欧美xxxx黑人xx丫x性爽| 免费观看无遮挡的男女| 狂野欧美激情性xxxx在线观看| kizo精华| 尾随美女入室| 亚洲欧美日韩东京热| 欧美三级亚洲精品| 免费av观看视频| 午夜免费男女啪啪视频观看| 久热这里只有精品99| 男女那种视频在线观看| 一级av片app| 国产亚洲av片在线观看秒播厂| kizo精华| 女人久久www免费人成看片| av在线蜜桃| 欧美bdsm另类| 1000部很黄的大片| 日产精品乱码卡一卡2卡三| 久久久久久九九精品二区国产| 哪个播放器可以免费观看大片| 日韩不卡一区二区三区视频在线| 久久精品综合一区二区三区| 欧美激情在线99| 亚洲精品久久午夜乱码| 日本午夜av视频| 亚洲av中文av极速乱| 日韩欧美精品v在线| 日韩av免费高清视频| 国产黄色免费在线视频| 大香蕉久久网| 久久久久久久久久人人人人人人| 成人毛片a级毛片在线播放| 街头女战士在线观看网站| 精品人妻视频免费看| 我的女老师完整版在线观看| 精品久久国产蜜桃| 麻豆国产97在线/欧美| 91在线精品国自产拍蜜月| 人妻少妇偷人精品九色| 91精品国产九色| 亚洲人与动物交配视频| 亚洲精品成人av观看孕妇| 超碰97精品在线观看| 黄色欧美视频在线观看| 成人免费观看视频高清| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩卡通动漫| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 亚洲精品中文字幕在线视频 | 99热6这里只有精品| 乱码一卡2卡4卡精品| 青春草视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品国产精品| 欧美成人午夜免费资源| 亚洲天堂国产精品一区在线| 人人妻人人爽人人添夜夜欢视频 | 国产伦精品一区二区三区四那| 岛国毛片在线播放| 亚洲av日韩在线播放| 免费观看a级毛片全部| 自拍欧美九色日韩亚洲蝌蚪91 | 国产老妇伦熟女老妇高清| 国产v大片淫在线免费观看| 国产精品久久久久久精品电影小说 | 午夜老司机福利剧场| 亚洲国产精品成人久久小说| 三级国产精品片| 赤兔流量卡办理| 欧美+日韩+精品| 免费观看在线日韩| 亚洲欧美日韩无卡精品| 午夜福利在线在线| 亚洲av日韩在线播放| 日本wwww免费看| 日本爱情动作片www.在线观看| 美女高潮的动态| 高清视频免费观看一区二区| 尾随美女入室| 日韩欧美一区视频在线观看 | 午夜福利高清视频| 国产有黄有色有爽视频| 国产成人精品福利久久| 91久久精品电影网| 欧美日韩精品成人综合77777| 少妇人妻久久综合中文| 亚洲av一区综合| av国产久精品久网站免费入址| 少妇熟女欧美另类| 高清在线视频一区二区三区| 国产欧美日韩精品一区二区| 十八禁网站网址无遮挡 | 99久久精品热视频| 日韩中字成人| 亚洲国产欧美在线一区| 亚洲av成人精品一二三区| 又大又黄又爽视频免费| 在线观看美女被高潮喷水网站| 人妻少妇偷人精品九色| 男女无遮挡免费网站观看| 人妻制服诱惑在线中文字幕| 1000部很黄的大片| 国产成人精品婷婷| 午夜福利视频1000在线观看| 久久久久久久大尺度免费视频| av专区在线播放| 日韩av不卡免费在线播放| 啦啦啦在线观看免费高清www| 一级毛片我不卡| 免费黄频网站在线观看国产| 久久鲁丝午夜福利片| 欧美精品人与动牲交sv欧美| 大香蕉久久网| 国产高清不卡午夜福利| 欧美日韩视频精品一区| 91在线精品国自产拍蜜月| 亚洲av电影在线观看一区二区三区 | 欧美成人一区二区免费高清观看| 亚洲欧美日韩另类电影网站 | 黄色怎么调成土黄色| 少妇人妻精品综合一区二区| 免费少妇av软件| 国产欧美亚洲国产| 男女边摸边吃奶| 久久精品综合一区二区三区| 亚洲国产欧美人成| 日韩三级伦理在线观看| 日韩欧美 国产精品| 91久久精品电影网| 国产国拍精品亚洲av在线观看| 大香蕉97超碰在线| 国产色爽女视频免费观看| 国产成人午夜福利电影在线观看| 日本免费在线观看一区| 国产精品一及| 久久综合国产亚洲精品| 亚洲欧美日韩另类电影网站 | 啦啦啦中文免费视频观看日本| 国产爽快片一区二区三区| 伦精品一区二区三区| 中文天堂在线官网| 国产精品99久久99久久久不卡 | 可以在线观看毛片的网站| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 国产成人福利小说| 日本一二三区视频观看| 亚洲av在线观看美女高潮| 大香蕉久久网| 黄片无遮挡物在线观看| 亚洲av一区综合| 成年免费大片在线观看| 波多野结衣巨乳人妻| 中文欧美无线码| 超碰av人人做人人爽久久| 黄色怎么调成土黄色| 亚洲最大成人手机在线| 欧美成人午夜免费资源| 三级经典国产精品| 国产精品无大码| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 看十八女毛片水多多多| 一区二区av电影网| 久久精品久久精品一区二区三区| 狠狠精品人妻久久久久久综合| 欧美最新免费一区二区三区| 国产精品国产三级专区第一集| 嫩草影院精品99| 免费看日本二区| 大香蕉久久网| 日韩大片免费观看网站| 国产美女午夜福利| 欧美老熟妇乱子伦牲交| 色综合色国产| 日韩欧美一区视频在线观看 | 超碰av人人做人人爽久久| 成人亚洲精品av一区二区| 亚洲欧美成人精品一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲一级一片aⅴ在线观看| 日韩免费高清中文字幕av| 真实男女啪啪啪动态图| 你懂的网址亚洲精品在线观看| 亚洲精品乱久久久久久| 一区二区三区乱码不卡18| 在线 av 中文字幕| 日韩视频在线欧美| 亚洲精华国产精华液的使用体验| 欧美日韩国产mv在线观看视频 | 国产成人a区在线观看| 热99国产精品久久久久久7| 国产精品久久久久久久久免| 亚洲经典国产精华液单| 精品久久久久久久久亚洲| 男女边吃奶边做爰视频| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 亚洲真实伦在线观看| 超碰av人人做人人爽久久| 久热久热在线精品观看| 白带黄色成豆腐渣| 亚洲av.av天堂| 色婷婷久久久亚洲欧美| 国产伦精品一区二区三区四那| 日韩人妻高清精品专区| 亚洲最大成人中文| 成人一区二区视频在线观看| h日本视频在线播放| 男女啪啪激烈高潮av片| 亚州av有码| av国产久精品久网站免费入址| 免费人成在线观看视频色| 久久国产乱子免费精品| 丰满少妇做爰视频| 少妇的逼水好多| 少妇人妻一区二区三区视频| 嫩草影院新地址| 真实男女啪啪啪动态图| 日韩av不卡免费在线播放| 中国国产av一级| 国产精品久久久久久精品古装| 插逼视频在线观看| 亚洲最大成人av| 日本三级黄在线观看| 国产免费一级a男人的天堂| 免费大片18禁| 国产日韩欧美亚洲二区| 制服丝袜香蕉在线| 女人久久www免费人成看片| 婷婷色综合大香蕉| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 亚洲精品日韩av片在线观看| 六月丁香七月| 国产精品伦人一区二区| 久久久久久久久久人人人人人人| 亚洲怡红院男人天堂| 久久久久网色| 亚洲性久久影院| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看| 久久人人爽av亚洲精品天堂 | 蜜桃久久精品国产亚洲av| 日本黄大片高清| xxx大片免费视频| 三级国产精品片| 国产午夜精品一二区理论片| 欧美日韩在线观看h| 一级毛片我不卡| 91狼人影院| 日韩三级伦理在线观看| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 久久人人爽av亚洲精品天堂 | 国产精品99久久99久久久不卡 | 免费观看的影片在线观看| 91精品一卡2卡3卡4卡| 亚洲伊人久久精品综合| 欧美xxxx性猛交bbbb| 日韩国内少妇激情av| 亚洲av.av天堂| 水蜜桃什么品种好| 九草在线视频观看| 少妇人妻久久综合中文| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 一级毛片电影观看| 水蜜桃什么品种好| 欧美高清成人免费视频www| 精品国产三级普通话版| 国产人妻一区二区三区在| 国产欧美亚洲国产| 国产黄a三级三级三级人| 日韩亚洲欧美综合| 国产欧美亚洲国产| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看| 80岁老熟妇乱子伦牲交| 黄片wwwwww| 久久久久精品性色| 国产精品一区二区三区四区免费观看| 我的女老师完整版在线观看| 少妇人妻精品综合一区二区| 黄色配什么色好看| 国产精品三级大全| videos熟女内射| 日本午夜av视频| 少妇人妻精品综合一区二区| av福利片在线观看| 国产一区二区亚洲精品在线观看| 中国三级夫妇交换| 久久国内精品自在自线图片| 免费av观看视频| 国产伦精品一区二区三区视频9| 国产乱来视频区| 身体一侧抽搐| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品999| 国产亚洲91精品色在线| 国产欧美日韩一区二区三区在线 | 亚洲精品,欧美精品| 最近中文字幕高清免费大全6| 国产免费又黄又爽又色| 97人妻精品一区二区三区麻豆| 国产片特级美女逼逼视频| 91精品一卡2卡3卡4卡| 各种免费的搞黄视频| 香蕉精品网在线| 男的添女的下面高潮视频| 国产成人a∨麻豆精品| 欧美高清成人免费视频www| 色吧在线观看| 国产v大片淫在线免费观看| 91久久精品电影网| 美女内射精品一级片tv| 麻豆成人av视频| 激情五月婷婷亚洲| 精品久久久噜噜| 九九久久精品国产亚洲av麻豆| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 免费观看无遮挡的男女| 久久久精品免费免费高清| 国产成人91sexporn| 亚洲成人一二三区av| 日韩人妻高清精品专区| 舔av片在线| 大又大粗又爽又黄少妇毛片口| 亚洲综合色惰| 国产久久久一区二区三区| 国产一区二区三区av在线| 日韩 亚洲 欧美在线| 在线天堂最新版资源| 91精品伊人久久大香线蕉| 国产毛片在线视频| 一边亲一边摸免费视频| 亚洲av在线观看美女高潮| 91aial.com中文字幕在线观看| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在| videossex国产| 国产精品一区二区三区四区免费观看| 美女xxoo啪啪120秒动态图| 国产伦精品一区二区三区四那| 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 国产午夜精品久久久久久一区二区三区| 男人爽女人下面视频在线观看| 国产精品一区二区三区四区免费观看| 在线观看美女被高潮喷水网站| 久久久欧美国产精品| 国产av不卡久久| 观看免费一级毛片| 精品久久久久久电影网| 建设人人有责人人尽责人人享有的 | 亚洲综合色惰| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 最近2019中文字幕mv第一页| 国产免费福利视频在线观看| 亚洲高清免费不卡视频| 久久鲁丝午夜福利片| 亚洲av一区综合| 熟女av电影| a级毛片免费高清观看在线播放| 久久久a久久爽久久v久久| 少妇人妻久久综合中文| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 香蕉精品网在线| 久久99精品国语久久久| 乱系列少妇在线播放| 三级国产精品欧美在线观看| 18禁在线无遮挡免费观看视频| 内射极品少妇av片p| 在线观看国产h片| 18+在线观看网站| 91久久精品国产一区二区三区| 男女无遮挡免费网站观看| 色吧在线观看| 成年av动漫网址| 少妇被粗大猛烈的视频| 三级国产精品片| 亚洲一区二区三区欧美精品 | 老司机影院毛片| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 久久人人爽av亚洲精品天堂 | 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 国产伦精品一区二区三区四那| 一级a做视频免费观看| av专区在线播放| 一级毛片电影观看| 99久久精品一区二区三区| 日韩三级伦理在线观看| 新久久久久国产一级毛片| 日韩制服骚丝袜av| 特大巨黑吊av在线直播| 在线观看一区二区三区| 国产在线一区二区三区精| 亚洲av男天堂| 亚洲人成网站高清观看| 草草在线视频免费看| 三级国产精品片| 亚洲精品亚洲一区二区| 亚洲精品第二区| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| 男人舔奶头视频| 精品人妻熟女av久视频| 欧美精品人与动牲交sv欧美| 国产美女午夜福利| 亚洲精品久久久久久婷婷小说| a级毛色黄片| 欧美日韩在线观看h| 香蕉精品网在线| 亚洲欧洲国产日韩| 久久久久久久久久久丰满| 亚洲国产精品专区欧美| 美女高潮的动态| 亚洲精品视频女| 婷婷色av中文字幕| 亚洲欧洲国产日韩| 在线观看人妻少妇| 国产男人的电影天堂91| 少妇的逼水好多| 亚洲内射少妇av| 国产成人一区二区在线| 性插视频无遮挡在线免费观看| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 免费观看av网站的网址| av女优亚洲男人天堂| 国产乱人视频| 亚洲欧美日韩另类电影网站 |