• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sahlqvist Correspondence Theory for Modal Logic with Quantification over Relations*

    2024-01-10 02:23:26FeiLiangZhiguangZhao
    邏輯學研究 2023年6期

    Fei Liang Zhiguang Zhao

    Abstract. Lehtinen (2008) introduced a new concept of validity of modal formulas,where quantification over binary relations is allowed for the so called “helper modalities”,and the “boss modalities” are similar to ordinary modalities in modal logic in the sense that they are interpreted as a fixed binary relation in a Kripke frame.In the present paper,we study the correspondence theory for this validity notion.We define the class of Sahlqvist formulas for this validity notion,each formula of which has a first-order frame correspondent,and define the algorithm ALBARQ to compute the first-order correspondents of this class.

    1 Introduction

    Lehtinen ([6]) introduced a new concept of validity of modal formulas,which allows,from the perspective of second-order logic,quantification over binary relations.In this definition of validity,if the modal similarity type isτ={◇1,...,◇n},then we say that the modal formulaφisτ-valid in a setW(notationW?τ φ) iff it is valid in each frame F=(W,R1,...,Rn).With the help of the standard translation,assume that onlyp1,...,pkoccur inφ,then theτ-validity in a setWcan be equivalently written as:

    As is shown in[6,Example 5.1.2,5.1.3],this notion of validity can be used to define the size of the domain.Indeed,takeτ={◇},

    In this definition,set validity allows us to talk about the size of a domain,but we lose the possibility to talk about relations.Therefore,Lehtinen proposes a more general perspective by allowing some relations to behelpersand others to bebosses,such that we only quantify over the helpers and keep the bosses similar to the standard Kripke frame validity.

    In the new definition,the similarity typeτis defined to be the disjoint union ofτHandτB,where modalities inare calledhelpers,and modalities inare calledbosses.

    We say that a formula isτH-validin a frame(W,R1,...,Rn),if

    for all helper relationsH1,...,Hm.With the help of the standard translation,theτH-validityin F=(W,R1,...,Rn)can be reformulated as

    With the notion ofτH-validity,we can use modal formulas to define first-order properties of Kripke frames that cannot be defined using standard validity notion.

    Example 1(Example 5.1.7 in[6]).LetτB={◇},τH={◇H},and F=(W,R).Then we have

    In the present paper,we study the Sahlqvist correspondence theory of this validity notion,namely,we define a class of Sahlqvist formulas in the modal language of helpers and bosses,and define an Ackermann Lemma Based Algorithm ALBARQ1Here RQ stands for “relation quantifier”.to compute the first-order correspondents of Sahlqvist formulas.

    The structure of the paper is organized as follows: Section 2 presents preliminaries on modal logic of helpers and bosses.Section 3 defines Sahlqvist formulas and inequalities.Section 4 defines the expanded modal language,the first-order correspondence language and the standard translation,which will be used in the algorithm.Section 5 defines the Ackermann Lemma Based Algorithm ALBARQ.Section 6 proves the soundness of the algorithm.Section 7 shows that ALBARQsucceeds on Sahlqvist formulas.Section 8 gives some examples.Section 9 gives conclusions.

    2 Preliminaries

    In the present section,we collect the preliminaries on modal logic with helpers and bosses.For more details,see[6,Section 5].

    2.1 Language and Syntax

    Definition 1.Given a set Prop of propositional variables,a finite setτH={,...,},a finite setsuch thatτH ∩τB=?,the modal language with helpers and bosses is defined recursively as follows:

    wherep ∈Prop,◇∈τH ∪τB. □and?are defined in the standard way.We call a formulapureif it contains no propositional variables.We useτ:=(τH,τB) to denote thesimilarity typeof the language.Throughout the article,we will also make substantial use of the following expressions:

    (1) Aninequalityis of the formφ ≤ψ,whereφandψare formulas.

    (2) Aquasi-inequalityis of the formφ1≤ψ1& ...&φn ≤ψn ?φ ≤ψ.

    We will find it easy to work with inequalitiesφ ≤ψin place of implicative formulasφψin Section 3.

    2.2 Semantics

    Definition 2.Given a similarity typeτ=(τH,τB),aτ-Kripke frameis a tuple F=(W,R1,...,Rn,H1,...,Hm)whereW≠ ?is thedomainof F,R1,...,Rn,H1,...,Hmareaccessibility relationswhich are binary relations onW,and eachRicorresponds to,eachHicorresponds to.The underlyingτB-Kripke frameof aτ-Kripke frame is a tuple F=(W,R1,...,Rn)where eachRicorresponds torespectively and no relations forare there.τB-Kripke frames are used to define validity.Aτ-Kripke modelis a pair M=(F,V)where F is aτ-Kripke frame andV: Prop(W) is avaluationon F.Now the satisfaction relation is defined as follows2The basic case and the Boolean cases are defined as usual,and here we only give the clauses for the modalities.: given anyτ-Kripke model M=(W,R1,...,Rn,H1,...,Hm,V),anyw ∈W,

    For any formulaφ,we let?φ?M={w ∈W|M,w?φ}denote thetruth setofφin M.The formulaφisglobally trueon M(notation:M ?φ)if?φ?M=W.The crucial difference between modal logic with helpers and bosses and ordinary modal logic is the definition of validity.Validity in the former is only defined onτB-Kripke frames:Aτ-formulaφisvalidon aτB-Kripke frame F=(W,R1,...,Rn)(notation:F ?φ)ifφis globally true on(F,H1,...,Hm,V)for all helper relationsH1,...,Hmand all valuationsV.The semantics of inequalities and quasi-inequalities are given as follows:

    The definitions of validity are similar to formulas.It is easy to see thatt M ?φ ≤ψiff M ?φψ.

    3 Sahlqvist Formulas and Inequalities

    In this section,we define Sahlqvist formulas and inequalities in the similarity typeτ,in the style of unified correspondence[2].We collect preliminaries here.

    Definition 3(Order-type).(cf.[4,p.346])For ann-tuple(p1,...,pn)of propositional variables,an order-typeεis an element in{1,?}n.We say thatpihas ordertype 1(resp.?)with respect toεifεi=1(resp.εi=?),and denoteε(pi)=1(resp.ε(pi)=?).We useε?to denote the order-type whereε?(pi)=1(resp.ε?(pi)=?)iffε(pi)=?(resp.ε(pi)=1).

    Definition 4(Signed generation tree).(cf.[5,Definition 4])Thepositive(resp.negative)generation treeof anyτ-formulaφis defined by first labelling the root of the generation tree ofφwith+(resp.-)and then labelling the children nodes as follows:

    · Assign the same sign to the children nodes of any node labelled with ∨,∧,,

    · Assign the opposite sign to the child node of any node labelled with ?;

    · Assign the opposite sign to the first child node and the same sign to the second child node of any node labelled with;

    Nodes in signed generation trees are calledpositive(resp.negative)if they are signed+(resp.-).

    We give an example of signed generation tree in Figure 1.

    Figure 1: Positive generation tree for (p ∨?□q)◇q

    For anyτ-formulaφ(p1,...pn),any order-typeεovern,and anyi=1,...,n,anε-critical nodein a signed generation tree ofφis a leaf node +piwhenεi=1 or -piwhenεi=?.Anε-critical branchin a signed generation tree is a branch from anε-critical node.Theε-critical occurrences are intended to be those which the algorithm ALBARQwill solve for.

    We use+p?+φ(resp.-p?+φ)to indicate that an occurrence of a propositional variablepinherits the positive(resp.negative)sign from the positive generation tree+φ,and say thatpispositive(resp.negative)inφif+p?+φ(resp.-p?+φ)for all occurrences ofpinφ.

    Definition 5.(cf.[5,Definition 5])Nodes in signed generation trees are calledouternodesandinner nodes,according to Table 1.Here □stands for,◇stands for

    Table 1: Outer and Inner nodes.

    A branch in a signed generation tree isexcellentif it is the concatenation of two pathsP1andP2,one of which might be of length 0,such thatP1is a path from the leaf consisting(apart from variable nodes)of inner nodes only,andP2consists(apart from variable nodes)of outer nodes only.

    Definition 6(Sahlqvist inequalities).(cf.[5,Definition 6]) For any order-typeε,the signed generation tree?φ(where?∈{+,-}) of a formulaφ(p1,...pn) isε-Sahlqvistif

    · for all 1≤i ≤n,everyε-critical branch with leafpiis excellent;

    · for every branch(notice that here it might not beε-critical)with occurrences of+◇Hor-□H,every node from the root to this occurrence of+◇Hor-□Hin the signed generation tree is an outer node.

    An inequalityφ ≤ψisε-Sahlqvistif the signed generation trees+φand-ψareε-Sahlqvist.An inequalityφ ≤ψisSahlqvistif it isε-Sahlqvist for someε.A formulaφψis Sahlqvist if the inequalityφ ≤ψis a Sahlqvist inequality.

    Example 2.An example of Sahlqvist formula in our language is ◇H□Bp □B◇Hp,which is similar to the Geach formula in ordinary modal logic.Notice that here we have position restrictions on the first occurrence of ◇H.

    The classification of outer nodes and inner nodes is based on how different connectives behave in the algorithm.When the input inequality is a Sahlqvist inequality,the algorithm first decompose the outer part of the formula,and then decompose the inner part of the formula,which will be shown in the success proof of the algorithm in Section 7.

    The difference between the present setting and ordinary modal logic is that we have additional requirement of the positions of helper modalities,which will be clear from the execution of the algorithm.

    4 The Expanded Modal Language,First-Order Correspondence Language and Standard Translation

    4.1 The Expanded Modal Language

    In the present subsection,we define the expanded modal language,which will be used in the execution of the algorithm:

    where i∈Nom arenominalsas in hybrid logic which are interpreted as singleton sets,∈τH,∈τB,S={(i1,j1),...,(ik,jk)}for some pairs(i1,j1),...,(ik,jk).

    The reason for introducing the nominals and S-modalities is to compute the minimal valuations for propositional variables and for the H-modalities(which are essentially quantified by second-order quantifiers in the validity definition),therefore we can eliminate them to get a quasi-inequality which is essentially quantified by firstorder quantifiers.

    □Sand ◇Sare interpreted on the relationS:={(V(i1),V(j1)),...,(V(ik),V(jk))}.For ■and ◆,they are interpreted as the box and diamond modality on the inverse relation,S-1,according to the superscipt and subscript,respectively.TheS-modalities are interpreted as the computation result of the minimal relations for the helper modalities,which is similar to the minimal valuations of propositional variables in the algorithm ALBARQ.

    For the semantics of the expanded modal language,the valuation is defined asV: Prop ∪NomP(W)whereV(i)is defined as a singleton as in hybrid logic,and the additional semantic clauses can be given as follows:

    4.2 The first-order correspondence language and the standard translation

    In the first-order correspondence language,we have a binary predicate symbolHicorresponding to the binary relationHi,a binary predicate symbolRjcorresponding to the binary relationRj,a set of constant symbolsicorresponding to each nominal i,a set of unary predicate symbolsPcorresponding to each propositional variablep.Notice that we do not have binary predicate symbols for theSrelations.

    Definition 7.For the standard translation of the expanded modal language,the basic propositional cases and the Boolean cases as well as the modal cases for boss modalities are defined as usual and hence omitted,the other cases are defined as follows:

    It is easy to see that this translation is correct:

    Proposition 1(Folklore.).For any Kripke modelM,any w ∈W and any expanded modal formula φ,

    For inequalities,quasi-inequalities,the standard translation is given in a global way:

    Definition 8.·ST(φ ≤ψ):=?x(STx(φ)STx(ψ));

    ·ST(φ1≤ψ1&...&φn ≤ψn ?φ ≤ψ):=ST(φ1≤ψ1)∧...∧ST(φn ≤ψn)ST(φ ≤ψ).

    Proposition 2(Folklore.).For any Kripke modelM,any inequalityIneq,any quasiinequalityQuasi,

    5 The Algorithm ALBARQ

    In this section,we define the algorithm ALBARQwhich computes the firstorder correspondents of input Sahlqvist formulas,in the style of[3,4].The algorithm receives an input formulaφψand transforms it into an inequalityφ ≤ψ.Then the algorithm goes in three steps.

    1.Preprocessing and first approximation:

    In the generation tree of+φand-ψ3The discussion below relies on the definition of signed generation tree in Section 3.In what follows,we identify a formula with its signed generation tree.,

    (a) Apply the distribution rules:

    (b) Apply the splitting rules: rewriteα ≤β ∧γasα ≤βandα ≤γ;rewriteα ∨β ≤γasα ≤γandβ ≤γ;

    (c) Apply the monotone and antitone variable-elimination rules:

    forβ(p)positive inpandα(p)negative inp.

    We denote by Preprocess(φψ)the finite set{φi ≤ψi}i∈Iof inequalities obtained after the exhaustive application of the previous rules.Then we apply the following first approximation rule to every inequality in Preprocess(φψ):

    Here,i0and i1are special fresh nominals.Now we get a set of inequalities{i0≤φi,ψi ≤?i1}i∈I.

    2.The reduction stage:

    In this stage,for each{i0≤φi,ψi ≤?i1},we apply the following rules to prepare for eliminating all the propositional variables and helper modalities:

    (a) Splitting rules(similar to the splitting rules in Stage 1);

    (b) Approximation rules:

    The nominals introduced by the approximation rules must not occur in the system before applying the rule,and ◇stands for,or ◇S,□stands for,or □S.

    (c) Residuation rules:

    (d) Ackermann rules:

    By the Ackermann rules,we compute the minimal/maximal valuation for propositional variables and minimal valuation for helper modalities and use the Ackermann rules to eliminate all the propositional variables and helper modalities.These three rules are the core of ALBARQ,since their application eliminates propositional variables and helper modalities.In fact,all the preceding steps are aimed at reaching a shape in which the Ackermann rules can be applied.Notice that an important feature of these rules is that they are executed on the whole set of inequalities,and not on a single inequality.

    The right-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis positive inp,and eachγinegative inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The left-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis negative inp,and eachγipositive inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The right-handed Ackermann rule for helper modalities:

    where:

    3.Output:If in the previous stage,for some{i0≤φi,ψi ≤?i1},the algorithm gets stuck,i.e.some propositional variables or helper modalities cannot be eliminated by the application of the reduction rules,then the algorithm halts and output “failure”.Otherwise,each initial tuple{i0≤φi,ψi ≤?i1}of inequalities after the first approximation has been reduced to a set of pure inequalities Reduce(φi ≤ψi)without helper modalities,and then the output is a set of quasi-inequalities{&Reduce(φi ≤ψi)?i0≤?i1:φi ≤ψi ∈Preprocess(φψ)}without helper modalities,where &is the big metaconjunction in quasi-inequalities.Then the algorithm use the standard translation to transform the quasi-inequalities into first-order formulas.

    6 Soundness of ALBARQ

    In the present section,we will prove the soundness of the algorithm ALBARQwith respect to Kripke frames.The basic proof structure is similar to[7].

    Theorem 3(Soundness).IfALBARQruns successfully on φψ and outputsFO(φψ),then for any τB-Kripke frameF=(W,R1,...,Rn),

    Proof.The proof goes similarly to [4,Theorem 8.1].Letφi ≤ψi,1≤i ≤ndenote the inequalities produced by preprocessingφψafter Stage 1,and{i0≤φi,ψi ≤?i1}denote the inequalities after the first-approximation rule,Reduce(φi ≤ψi) denote the set of pure inequalities after Stage 2,and FO(φ ■ψ) denote the standard translation of the quasi-inequalities into first-order formulas,then we have the following chain of equivalences:

    · The equivalence between(1)and(2)follows from Proposition 4;

    · the equivalence between(2)and(3)follows from Proposition 5;

    · the equivalence between(3)and(4)follows from Propositions 6,7 and 8;

    · the equivalence between(4)and(5)follows from Proposition 2.□

    In the remainder of this section,we prove the soundness of the rules in Stage 1,2 and 3.

    Proposition 4(Soundness of the rules in Stage 1).For the distribution rules,the splitting rules and the monotone and antitone variable-elimination rules,they are sound in both directions inF,i.e.the inequality before the rule is valid inFiff the inequality(-ies)after the rule is(are)valid inF.

    Proof.The proof is the same as[7,Proposition 6.2].□

    Proposition 5.(2)and(3)are equivalent,i.e.the first-approximation rule is sound inF.

    Proof.The proof is the same as[7,Proposition 6.3].□

    The next step is to show the soundness of each rule of Stage 2.For each rule,before the application of this rule we have a set of inequalitiesS(which we call thesystem),after applying the rule we get a set of inequalitiesS′,the soundness of Stage 2 is then the equivalence of the following two conditions:

    · F ?&S ?i0≤?i1;

    · F ?&S′?i0≤?i1;

    where&Sdenote the meta-conjunction of inequalities ofS.It suffices to show the following property:

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relationsH1,...,Hm,any valuationVon it,if(F,H1,...,Hm,V)?S,then there is a valuationV′and binary relations,...,such thatV′(i0)=V(i0),V′(i1)=V(i1)and(F,,...,,V′)?S′;

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relations,...,,any valuationV′on it,if(F,,...,H′m,V′) ?S′,then there is a valuationVand binary relationsH1,...,Hmsuch thatV(i0)=V′(i0),V(i1)=V′(i1)and(F,H1,...,Hm,V)?S.

    Proposition 6.The splitting rules,the approximation rules for ◇,□,■,the residuation rules for?,◇,□are sound inF.

    Proof.The proof is similar to[7,Proposition 6.4 and 6.11].□

    Proposition 7.The Ackermann rules for propositional variables are sound inF.

    Proof.The proof is similar to[7,Proposition 6.17].□

    Proposition 8.The right-handed Ackermann rule for helper modalities is sound inF.

    This rule is the key rule of the algorithm ALBARQsince it eliminates helper modalities.The proof method is similar to the soundness proof of the right-handed Ackermann rule for propositional variables.Without loss of generality,we assume thatk1=k2=m=1.To prove Proposition 8,it suffices to prove the following right-handed Ackermann lemma for helpers:

    Lemma 1.Assume that β1is positive inand negative inandγ1is negative inand positive inthen for any τB-Kripke frameF=(W,R1,...,Rn),any binary relations H1,...,Hm,any valuation V on it,thefollowing are equivalent

    (1) M:=(F,H1,...,Hm,V)?β1(S/Hi)≤γ1(S/Hi)?

    (2)there is a binary relationsuch thatM′:=(F,H1,...,Hi-1,,Hi+1,...,Hm,V)

    Since helper modalities with subscriptido not occur inβ1(S/Hi)andγ1(S/Hi),we have M ?β1(S/Hi)≤γ1(S/Hi).□

    7 Success

    In this section,we prove that ALBARQsucceeds on all Sahlqvist formulas.The proof structure is similar to[7].

    Theorem 9.ALBARQsucceeds on all Sahlqvist formulas.

    Definition 9(Definiteε-Sahlqvist inequality,similar to Definition 7.2 in[7]).Given any order-typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isdefinite ε-Sahlqvistif there is no+∨,-∧occurring in the outer part on anε-critical branch.An inequalityφ ≤ψis definiteε-Sahlqvist if the trees+φand-ψare both definiteε-Sahlqvist.

    Lemma 2.Let {φi ≤ψi}i∈I=Preprocess(φψ)obtained by exhaustive application of the rules in Stage 1 on an input ε-Sahlqvist formula φψ.Then each φi ≤ψi is a definite ε-Sahlqvist inequality.

    Proof.Same as[7,Lemma 7.3].□

    Definition 10(Innerε-Sahlqvist signed generation tree,similar to Definition 7.4 in[7]).Given an order typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isinner ε-Sahlqvistif its outer partP2on anε-critical branch is always empty,i.e.itsε-critical branches have inner nodes only.

    Lemma 3.Given inequalitiesi0≤φi and ψi ≤?i1obtained from Stage 1 where+φi and-ψi are definite ε-Sahlqvist,by applying the rules in Substage 1 of Stage 2 exhaustively,the inequalities that we get are in one of the following forms:

    1.pure inequalities which does not have occurrences of propositional variables?

    2.inequalities of the formi≤α where+α is inner ε-Sahlqvist?

    3.inequalities of the form β ≤?iwhere-β is inner ε-Sahlqvist.

    Proof.Similar to [7,Lemma 7.5].For the sake of the proof of the next lemma we repeat the proof here.Indeed,the rules in the Substage 1 of Stage 2 deal with outer nodes in the signed generation trees +φiand -ψiexcept +∨,-∧.For each rule,without loss of generality assume we start with an inequality of the form i≤α,then by applying the approximation rules,splitting rules and the residuation rules for negation in Stage 2,the inequalities we get are either a pure inequality without propositional variables,or an inequality where the left-hand side (resp.right-hand side) is i (resp.?i),and the other side is a formulaα′which is a subformula ofα,such thatα′has one root connective less thanα.Indeed,ifα′is on the left-hand side(resp.right-hand side)then-α′(+α′)is definiteε-Sahlqvist.

    By applying the rules in the Substage 1 of Stage 2 exhaustively,we can eliminate all the outer connectives in the critical branches,so for non-pure inequalities,they become of form 2 or form 3.□

    The next two lemmas are crucial to the success of the whole algorithm,which also justify the definition of Sahlqvist formulas and inequalities:

    Lemma 4.In Lemma 3,all the occurrences of+◇H’s and-□H’s are in the form ofi≤◇Hjand □H?j≤?i,and in form 2 and 3,+α and-β only contain positive occurrences of □H’s and negative occurrences of ◇H’s.

    Proof.As we can see from the proof of Lemma 3 and the second item of Definition 6 for Sahlqvist inequalities,during the decomposition of the outer part of the Sahlqvist signed generation trees,all occurrences of+◇H’s and-□H’s are in the outer part of the signed generation tree,hence are treated by the approximation rules.Before the application of the approximation rules,the inequalities are of the form i≤◇Hαor of the form □Hα ≤?i.By applying the approximation rules,they are in the form of i≤◇Hj and □H?j≤?i.For the rest of occurrences of ◇H’s and □H’s,they could only be in form 2 and 3,and ◇H’s occur only negatively and □H’s occur only positively.□

    Lemma 5.Assume we have inequalities of the form as described in Lemma 3 and 4,the right-handed Ackermann rule for helper modalities is applicable and therefore all helper modalities can be eliminated.

    Proof.It is easy to check that the shape of the system exactly satisfies the requirement of the application of the right-handed Ackermann rule for helper modalities.In addition,since in the result of the rule,some inequalities are deleted and the other inequalities have helper modalities replaced by the same kind of modalities(e.g.diamond by diamond,box by box,white connectives by white connectives,black connectives by black connectives),we still have pure inequalities and inequalities of the form 2 and 3 as described in Lemma 3,but now without helper modalities.□

    Lemma 6.Assume we have an inequalityi≤α or β ≤?iwhere+α and-β are inner ε-Sahlqvist,by applying the splitting rules and the residuation rules in Stage 2,we have inequalities of the following form:

    1.α ≤p,where ε(p)=1,α is pure?

    2.p ≤β,where ε(p)=?,β is pure?

    3.α ≤γ,where α is pure and+γ is ε?-uniform?

    4.γ ≤β,where β is pure and-γ is ε?-uniform.

    Proof.The proof is similar to[7,Lemma 7.6].Notice that for each input inequality,it is of the form i≤αorβ ≤?i,where+αand-βare innerε-Sahlqvist.By applying the splitting rules and the residuation rules,it is easy to check that the inequality will have one side pure,and the other side still innerε-Sahlqvist.By applying these rules exhaustively,one will either havepas the non-pure side (with thispon a critical branch),or have an innerε-Sahlqvist signed generation tree with no critical branch,i.e.,ε?-uniform.□

    Lemma 7.Assume we have inequalities of the form as described in Lemma 6,the Ackermann rules for propositional variables are applicable and therefore all propositional variables can be eliminated.

    Proof.Immediate observation from the requirements of the Ackermann rules.□

    Proof of Theorem 9Assume we have an Sahlqvist formulaas input.By Lemma 2,we get a set of definiteε-Sahlqvist inequalities.Then by Lemma 3,we get inequalities as described in Lemma 3 and 4.By Lemma 5,all helper modalities are eliminated.By Lemma 6,we get the inequalities as described.Finally by Lemma 7,the inequalities are in the right shape to apply the Ackermann rules for propositional variables,and thus we can eliminate all the propositional variables and the algorithm succeeds on the input.□

    8 Examples

    In this section we show how to run the algorithm ALBARQon some examples that we give in the introduction.By the Goldblatt-Thomason theorem [1,Theorem 3.19],a first-order definable class of Kripke frames is modally definable iff it is closed under taking bounded morphic images,generated subframes,disjoint unions and reflects ultrafilter extensions.Since|W|≤1 andR=W×Ware not closed under taking disjoint unions,they are not definable by ordinary modal formulas,so our results go beyond Sahlqvist theorem in ordinary modal logic.

    Example 3.We have input formula ◇Hp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:By first approximation,we have:

    Stage 2:By the approximation rule for ◇H,we have:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for ◇Hand □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequalities i≤◇Hk and □H?k′≤?j):

    By the right-handed Ackermann rule forp,we have:

    Stage 3:

    By standard translation,we have:

    By first-order logic,we have:

    By first-order logic,we have:

    which is:

    which is:

    Example 4.We have input formula □Bp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:

    By first approximation,we have:

    Stage 2:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequality □H?k≤?j):

    By the left-handed Ackermann rule forp,we have:

    The following are not really obtained by rules in ALBARQ,but they are soundly obtained:

    Stage 3:

    By standard translation we have:

    which is:

    9 Conclusion

    In the present paper,we develop the correspondence theory for modal logic with helpers and bosses,define the Sahlqvist formulas in this setting,give an algorithm ALBARQwhich transforms input Sahlqvist formulas into their first-order correspondents.

    There is one issue remains to be dealt with.In the algorithm ALBARQ,we have the right-handed Ackermann rule for the helper modalities.It seems plausible to also have the left-handed Ackermann rule for the helper modalities,which is more difficult since+□H’s and-◇H’s do not occur in the outer part of the signed generation tree,they cannot be in the form of i ≤◇Hj or □H?j≤?i,which makes it more difficult to compute the corresponding minimal/maximal relation.Therefore we leave it to future work.

    好男人电影高清在线观看| 国产欧美日韩一区二区精品| 久久精品国产亚洲av天美| 国产av麻豆久久久久久久| 亚洲经典国产精华液单 | 日韩欧美免费精品| 最近在线观看免费完整版| 欧美黄色淫秽网站| 窝窝影院91人妻| av福利片在线观看| 免费电影在线观看免费观看| www.www免费av| 极品教师在线视频| 婷婷亚洲欧美| 国产伦精品一区二区三区视频9| 最近视频中文字幕2019在线8| 简卡轻食公司| 18+在线观看网站| 国产高清视频在线播放一区| 欧美一区二区国产精品久久精品| 99热6这里只有精品| 啦啦啦韩国在线观看视频| 熟女电影av网| 一进一出好大好爽视频| 国产亚洲av嫩草精品影院| www.熟女人妻精品国产| 亚洲中文字幕日韩| 九色成人免费人妻av| 免费观看的影片在线观看| 亚洲欧美精品综合久久99| 观看免费一级毛片| 看黄色毛片网站| 成人特级黄色片久久久久久久| 国产男靠女视频免费网站| 亚洲激情在线av| 草草在线视频免费看| 乱人视频在线观看| 久久性视频一级片| 国产v大片淫在线免费观看| 九色国产91popny在线| 91在线观看av| 黄色日韩在线| 亚洲av二区三区四区| 欧美又色又爽又黄视频| 色吧在线观看| 亚洲欧美日韩卡通动漫| 亚洲成a人片在线一区二区| 直男gayav资源| 老司机深夜福利视频在线观看| 亚洲中文字幕一区二区三区有码在线看| av在线观看视频网站免费| 久久99热这里只有精品18| 亚洲欧美日韩卡通动漫| 欧美国产日韩亚洲一区| 久久精品91蜜桃| 香蕉av资源在线| 一本久久中文字幕| 免费观看精品视频网站| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| 亚洲avbb在线观看| 亚洲中文字幕日韩| 九九热线精品视视频播放| 综合色av麻豆| 国产精品98久久久久久宅男小说| 最新中文字幕久久久久| a在线观看视频网站| 色尼玛亚洲综合影院| 看十八女毛片水多多多| 国产精品一及| 久久久国产成人免费| 久久久精品大字幕| 91字幕亚洲| 久久人人爽人人爽人人片va | 啦啦啦观看免费观看视频高清| 在线天堂最新版资源| 欧美午夜高清在线| 国产人妻一区二区三区在| 免费一级毛片在线播放高清视频| 午夜福利18| 观看美女的网站| 国产精品久久久久久久久免 | 九九热线精品视视频播放| 免费在线观看亚洲国产| 91狼人影院| 亚洲自拍偷在线| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 国产亚洲精品久久久久久毛片| 国产精品,欧美在线| 午夜老司机福利剧场| 国产久久久一区二区三区| 三级男女做爰猛烈吃奶摸视频| 免费av毛片视频| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 全区人妻精品视频| 亚洲内射少妇av| 久99久视频精品免费| 成人精品一区二区免费| 97人妻精品一区二区三区麻豆| 国产伦人伦偷精品视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一卡2卡三卡4卡5卡| 高清日韩中文字幕在线| 精品欧美国产一区二区三| 他把我摸到了高潮在线观看| 在线观看午夜福利视频| 日本一本二区三区精品| 永久网站在线| 90打野战视频偷拍视频| 欧美中文日本在线观看视频| 欧美不卡视频在线免费观看| 欧美精品国产亚洲| 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 国产精品,欧美在线| 简卡轻食公司| 婷婷亚洲欧美| 国产欧美日韩精品亚洲av| 国产人妻一区二区三区在| 中文资源天堂在线| 久久久成人免费电影| 日本一二三区视频观看| 91在线观看av| 亚洲,欧美精品.| 成人性生交大片免费视频hd| 天天一区二区日本电影三级| 亚洲精品色激情综合| 一级作爱视频免费观看| 内射极品少妇av片p| 国产精品av视频在线免费观看| 国产成人影院久久av| 国产欧美日韩精品一区二区| 午夜福利欧美成人| 亚洲人成电影免费在线| 精品福利观看| 精品久久久久久久久av| 人妻久久中文字幕网| 日本成人三级电影网站| a级毛片a级免费在线| 国产成人欧美在线观看| 动漫黄色视频在线观看| 一级毛片久久久久久久久女| 久久久久久久亚洲中文字幕 | 如何舔出高潮| 1000部很黄的大片| av视频在线观看入口| 中文在线观看免费www的网站| 免费在线观看影片大全网站| av在线天堂中文字幕| 欧美极品一区二区三区四区| 12—13女人毛片做爰片一| 舔av片在线| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看的高清视频| 丰满人妻熟妇乱又伦精品不卡| 12—13女人毛片做爰片一| 我要搜黄色片| 成人美女网站在线观看视频| 搡老岳熟女国产| 在线观看午夜福利视频| 亚洲,欧美,日韩| 草草在线视频免费看| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 美女黄网站色视频| 男人狂女人下面高潮的视频| 永久网站在线| 啪啪无遮挡十八禁网站| 亚洲中文日韩欧美视频| 一进一出好大好爽视频| 性欧美人与动物交配| 熟女电影av网| 欧美成人性av电影在线观看| 真人做人爱边吃奶动态| 国产精品久久久久久精品电影| 麻豆成人午夜福利视频| 精品福利观看| 免费大片18禁| av专区在线播放| 精品人妻视频免费看| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 宅男免费午夜| 成熟少妇高潮喷水视频| 久久精品人妻少妇| 性色avwww在线观看| 国产亚洲精品综合一区在线观看| 国产精品av视频在线免费观看| 精品熟女少妇八av免费久了| av福利片在线观看| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| a级毛片a级免费在线| 亚洲国产精品久久男人天堂| 亚洲真实伦在线观看| 欧美黑人巨大hd| 国产在线男女| 黄片小视频在线播放| 一级黄片播放器| 网址你懂的国产日韩在线| 九色成人免费人妻av| 欧美日韩亚洲国产一区二区在线观看| 97碰自拍视频| 国产亚洲精品久久久com| 亚洲成av人片在线播放无| 国产伦精品一区二区三区视频9| 国产成人av教育| 亚洲av五月六月丁香网| 国产精品自产拍在线观看55亚洲| 最近最新中文字幕大全电影3| 国产精品影院久久| 毛片女人毛片| 黄色配什么色好看| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| 在线观看一区二区三区| 国内精品久久久久久久电影| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 精品国内亚洲2022精品成人| 香蕉av资源在线| 日本黄色片子视频| 一区二区三区高清视频在线| 嫩草影院入口| 成人精品一区二区免费| 一二三四社区在线视频社区8| 老司机午夜福利在线观看视频| 永久网站在线| www.www免费av| 国产免费男女视频| 久久久久久久午夜电影| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 亚洲一区高清亚洲精品| 亚洲专区中文字幕在线| 好男人在线观看高清免费视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 久久精品久久久久久噜噜老黄 | 日韩欧美在线乱码| 亚洲熟妇熟女久久| 久久人妻av系列| 久久国产乱子伦精品免费另类| 麻豆国产av国片精品| 欧美激情久久久久久爽电影| 深爱激情五月婷婷| 精品久久久久久久人妻蜜臀av| 九九久久精品国产亚洲av麻豆| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看| 狠狠狠狠99中文字幕| 午夜视频国产福利| www.999成人在线观看| 午夜福利成人在线免费观看| 久久国产乱子伦精品免费另类| 简卡轻食公司| 我的老师免费观看完整版| 亚洲五月天丁香| 禁无遮挡网站| 免费av不卡在线播放| 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| 男女床上黄色一级片免费看| 国产v大片淫在线免费观看| 久久精品人妻少妇| 国产真实乱freesex| 黄色日韩在线| 天天躁日日操中文字幕| 欧美精品啪啪一区二区三区| 18禁在线播放成人免费| 国产在线男女| 国产三级黄色录像| av专区在线播放| 亚洲,欧美精品.| 亚洲久久久久久中文字幕| 久久人人精品亚洲av| 精品熟女少妇八av免费久了| 国产高潮美女av| 久久午夜福利片| 91在线观看av| 久久久精品欧美日韩精品| 看免费av毛片| 国产91精品成人一区二区三区| 日韩亚洲欧美综合| 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 色av中文字幕| 国产精品综合久久久久久久免费| 日本一二三区视频观看| 全区人妻精品视频| 男人的好看免费观看在线视频| 757午夜福利合集在线观看| 亚洲狠狠婷婷综合久久图片| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va | 最新中文字幕久久久久| 校园春色视频在线观看| avwww免费| 夜夜夜夜夜久久久久| 好男人电影高清在线观看| 男人和女人高潮做爰伦理| 亚洲av二区三区四区| 亚洲七黄色美女视频| 色5月婷婷丁香| 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 日本精品一区二区三区蜜桃| 精品久久久久久久久久免费视频| 色吧在线观看| 日本一本二区三区精品| 五月玫瑰六月丁香| 亚洲三级黄色毛片| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 国产精品一区二区三区四区久久| 淫妇啪啪啪对白视频| www.色视频.com| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 久久草成人影院| 午夜福利在线在线| 国产亚洲欧美98| 久久久久亚洲av毛片大全| 精品一区二区三区视频在线| 国产精品一区二区性色av| 18美女黄网站色大片免费观看| 老熟妇乱子伦视频在线观看| 亚洲精华国产精华精| 国内精品一区二区在线观看| 亚洲黑人精品在线| 亚洲色图av天堂| 最近中文字幕高清免费大全6 | 久久国产精品影院| 99riav亚洲国产免费| 国产精品1区2区在线观看.| 一夜夜www| 亚洲一区二区三区不卡视频| 免费大片18禁| 成人高潮视频无遮挡免费网站| 性色av乱码一区二区三区2| 亚洲午夜理论影院| 丰满乱子伦码专区| 搡老熟女国产l中国老女人| 嫩草影院精品99| 国产在线男女| 欧美性猛交╳xxx乱大交人| 9191精品国产免费久久| 舔av片在线| 亚洲成av人片在线播放无| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区久久| 可以在线观看毛片的网站| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 免费在线观看日本一区| 成人特级av手机在线观看| 成人欧美大片| 九九热线精品视视频播放| 午夜日韩欧美国产| 欧美性感艳星| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 国语自产精品视频在线第100页| 一个人观看的视频www高清免费观看| 在线十欧美十亚洲十日本专区| 69人妻影院| 日韩国内少妇激情av| 制服丝袜大香蕉在线| 色5月婷婷丁香| 午夜亚洲福利在线播放| 看十八女毛片水多多多| 午夜免费激情av| 久久香蕉精品热| 18禁裸乳无遮挡免费网站照片| 日本成人三级电影网站| 男人和女人高潮做爰伦理| 12—13女人毛片做爰片一| 成人性生交大片免费视频hd| av天堂在线播放| 亚洲一区高清亚洲精品| av欧美777| 国产精品永久免费网站| 美女黄网站色视频| av专区在线播放| 久久久久久大精品| 国产伦在线观看视频一区| 观看美女的网站| 国内精品一区二区在线观看| 国模一区二区三区四区视频| 动漫黄色视频在线观看| 国产成人aa在线观看| 亚洲精品在线观看二区| 亚洲欧美精品综合久久99| 日本 av在线| 直男gayav资源| 亚洲,欧美精品.| 免费观看精品视频网站| 亚洲性夜色夜夜综合| 国产免费男女视频| 精品久久久久久久末码| av在线蜜桃| 日韩 亚洲 欧美在线| 亚洲精品一区av在线观看| 桃色一区二区三区在线观看| 日韩中字成人| 黄色丝袜av网址大全| 黄片小视频在线播放| 欧美最黄视频在线播放免费| 18禁在线播放成人免费| 国产乱人伦免费视频| 高清毛片免费观看视频网站| 国产免费一级a男人的天堂| 久99久视频精品免费| av中文乱码字幕在线| 如何舔出高潮| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| 久久久久久国产a免费观看| 韩国av一区二区三区四区| 日本免费a在线| 黄色一级大片看看| 性色avwww在线观看| 我的老师免费观看完整版| 在线免费观看不下载黄p国产 | 99国产精品一区二区蜜桃av| 在线a可以看的网站| 国产精品嫩草影院av在线观看 | 五月伊人婷婷丁香| 高清在线国产一区| 天堂√8在线中文| 国产在线男女| 成人午夜高清在线视频| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 亚洲国产精品久久男人天堂| 国产av不卡久久| 欧美日本视频| 最近最新免费中文字幕在线| 12—13女人毛片做爰片一| 欧美色欧美亚洲另类二区| 少妇被粗大猛烈的视频| 亚洲人成网站高清观看| 听说在线观看完整版免费高清| 久久精品国产亚洲av涩爱 | 午夜福利免费观看在线| 人妻制服诱惑在线中文字幕| 一进一出抽搐动态| 精品久久久久久,| 欧美另类亚洲清纯唯美| www.999成人在线观看| 99久久99久久久精品蜜桃| 一区二区三区四区激情视频 | 欧美xxxx性猛交bbbb| 国产三级在线视频| 久久精品国产99精品国产亚洲性色| 在线观看一区二区三区| 高潮久久久久久久久久久不卡| or卡值多少钱| 国产精品98久久久久久宅男小说| 国产真实乱freesex| 色视频www国产| 我的老师免费观看完整版| 非洲黑人性xxxx精品又粗又长| 亚洲精品成人久久久久久| 又爽又黄无遮挡网站| 草草在线视频免费看| 怎么达到女性高潮| 免费观看人在逋| 国产老妇女一区| 国产成人aa在线观看| av国产免费在线观看| 九色国产91popny在线| 亚洲av电影在线进入| 黄色一级大片看看| 国产淫片久久久久久久久 | 在现免费观看毛片| 精品人妻1区二区| 校园春色视频在线观看| 国产av不卡久久| 一个人看视频在线观看www免费| 最后的刺客免费高清国语| 久久精品人妻少妇| 日韩欧美在线二视频| 变态另类丝袜制服| 黄色配什么色好看| 精品一区二区三区视频在线| 婷婷色综合大香蕉| 国产在线精品亚洲第一网站| 日韩欧美免费精品| 久久精品91蜜桃| 国产亚洲欧美98| 91麻豆精品激情在线观看国产| 少妇的逼水好多| 亚洲av熟女| 我的老师免费观看完整版| 国产精品伦人一区二区| 日韩欧美三级三区| 欧美+日韩+精品| 禁无遮挡网站| 国产真实伦视频高清在线观看 | 全区人妻精品视频| 桃色一区二区三区在线观看| 久久中文看片网| 午夜日韩欧美国产| 在线观看午夜福利视频| av天堂在线播放| av黄色大香蕉| 听说在线观看完整版免费高清| 久久国产精品影院| 97超级碰碰碰精品色视频在线观看| 久久久成人免费电影| 看黄色毛片网站| 国产精品久久视频播放| 午夜福利在线在线| 国产aⅴ精品一区二区三区波| 我要看日韩黄色一级片| 一级黄色大片毛片| x7x7x7水蜜桃| 99久久精品热视频| 国产亚洲精品av在线| 99riav亚洲国产免费| 国产av在哪里看| 日韩欧美在线二视频| 亚洲精品粉嫩美女一区| 黄色一级大片看看| 国产麻豆成人av免费视频| 男女做爰动态图高潮gif福利片| 啦啦啦韩国在线观看视频| 99国产精品一区二区蜜桃av| 欧美日韩黄片免| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 亚洲在线自拍视频| 岛国在线免费视频观看| 日韩免费av在线播放| 色av中文字幕| 色综合站精品国产| 国产老妇女一区| 久久99热6这里只有精品| 日韩欧美三级三区| 在线十欧美十亚洲十日本专区| av女优亚洲男人天堂| 精品久久久久久久久亚洲 | 午夜福利在线在线| 久久人妻av系列| 男女之事视频高清在线观看| 国产高潮美女av| 日韩欧美在线二视频| 亚洲最大成人av| 女同久久另类99精品国产91| 国产日本99.免费观看| 香蕉av资源在线| 熟妇人妻久久中文字幕3abv| 一本一本综合久久| 五月伊人婷婷丁香| 天堂av国产一区二区熟女人妻| 欧美日韩中文字幕国产精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 99热这里只有是精品在线观看 | 免费av观看视频| 老鸭窝网址在线观看| 国产av在哪里看| 淫妇啪啪啪对白视频| 亚洲aⅴ乱码一区二区在线播放| ponron亚洲| 又爽又黄a免费视频| 免费观看人在逋| 一进一出抽搐gif免费好疼| 国产精品永久免费网站| 免费看美女性在线毛片视频| 欧美日韩黄片免| 免费黄网站久久成人精品 | 又紧又爽又黄一区二区| 欧美3d第一页| 精品久久久久久久久av| 欧美日韩综合久久久久久 | 很黄的视频免费| 国产91精品成人一区二区三区| 日韩国内少妇激情av| 一进一出抽搐动态| 精品乱码久久久久久99久播| 两性午夜刺激爽爽歪歪视频在线观看| 99在线视频只有这里精品首页| 久久精品久久久久久噜噜老黄 | 美女免费视频网站| 欧美潮喷喷水| 十八禁人妻一区二区| 91av网一区二区| 成人精品一区二区免费| 日本一二三区视频观看| 男女下面进入的视频免费午夜| 在线播放无遮挡| 亚洲最大成人手机在线| 搡女人真爽免费视频火全软件 | 性欧美人与动物交配| 国产精品三级大全| 欧美日韩综合久久久久久 | 怎么达到女性高潮| 午夜福利在线观看吧| 午夜福利在线在线| 免费在线观看日本一区| 日韩欧美精品免费久久 |