• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Core-level spectroscopy of the photodissociation process of BrCN molecule

    2024-01-25 07:11:12KunZhou周坤andHanWang王涵
    Chinese Physics B 2024年1期

    Kun Zhou(周坤) and Han Wang(王涵),?

    1School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    2Center for Transformative Science,ShanghaiTech University,Shanghai 201210,China

    Keywords: x-ray absorption spectroscopy,photodissociation,fewest-switches surface hopping

    1.Introduction

    Cyanogen halidesXCN (X= F, Cl, Br, I) are a class of molecules that have been extensively studied due to their relevance in atmospheric and combustion chemistry.[1,2]XCN molecules are important precursors for the formation of halogen oxides, which play a crucial role in the depletion of ozone in the stratosphere.[3]The photodissociation ofXCN is a key process in the atmospheric chemistry of halogens and nitrogen, as it can lead to the formation of halogen atoms,which can then react with other atmospheric species, leading to the formation of halogen oxides and other reactive intermediates.[4]Meanwhile, the CN radical is recognized as one of the most significant species in interstellar space,planetary atmospheres,and cometary coma.[5]

    XCN,the simplest linear triatomic molecule,has attracted significant attention for its photodissociation dynamics in the A continuum (210 nm–350 nm).[6–15]Two reaction channels have been established through early-stage experimental and theoretical studies[4,16]

    Previous studies have determined the major electronic states involved in the photodissociation.[17,18]The parallel transition to3Π0+is the major component of the A absorption band,related to theX?(2P1/2) channel.The perpendicular transitions to3Π1and1Π1are the minor components, related to theX(2P3/2)channel.[16,19]There is a conical intersection between the potential energy surfaces of3Π0+and1Π1.[7,20]In the ground state, theXCN molecule is linear, while it becomes bent in the excited states.The bending geometry in the excited repulsive states results in high rotational and low vibrational excitation of the CN fragments in bothXandX?channels.[6,21,22]

    The photodissociation ofXCN has been studied using various experimental and theoretical techniques, including laser-induced fluorescence (LIF), velocity map imaging(VMI),ultrafast x-ray spectroscopy andab initiocalculations.LIF is a sensitive technique that can be used to detect the products ofXCN photodissociation, such as halogen atoms and radicals.[23–25]VMI is a powerful technique that can provide detailed information about the velocity distribution and angular distribution of the photofragments.[26]Frankset al.used the brute force orientation method to study the dissociation of BrCN at 230 nm and ICN at 266 nm in a pulsed molecular beam,and found a perpendicular transition component in the absorption process.[27]Wittiget al.demonstrated the effects of the initial quantum state of the parent cyanogen halide molecules on the dynamics of the dissociation process and the vibrational and rotational energy distributions in the fragments, and clearly showed that the photodissociation at 266 nm and 300 K produces CN fragments whose spin is preferentially oriented relative to the rotational angular momentum.[28,29]Fisheret al.studied the photodissociation of ICN and BrCN in the A continuum, and determined the rotational and vibrational distribution of CN in its electronic ground state.[6]Gaoet al.made use of the ion velocity VMI system to study ion-pair dissociations of BrCN,and found an anisotropic distribution of the CN+momentum.[30]Yinet al.studied the photodissociation dynamics of BrCN from 225 nm to 260 nm by time-slice VMI setup,and their findings showed that the internal excitation of CN products in the Br* channel is colder than Br channel, in addition, the photodissociation dynamics at longer wavelengths is found to be different from those at shorter wavelengths in the Br channel.[4]Costenet al.used high-resolution transient frequency modulated absorption spectroscopy to study the nascent Doppler profiles of CN fragments from the A band photodissociation of room temperature ICN.[31]Gaoet al.investigated the dissociative electron attachment process with high-resolution anion VMI apparatus.[26]These studies provide insights into the detection and dynamics ofXCN photodissociation fragments,including the identification of halogen atoms and radicals,as well as the analysis of velocity and angular distributions.Furthermore,investigations into the influence of initial quantum states, rotational and vibrational distributions of CN fragments,and the study of anisotropic properties reveal internal excitations during the dissociation process.However,it remains unclear how the time-dependent changes in electronic states and internal excitations involved in theXCN photodissociation process affect the dynamics and properties of the dissociation products.

    X-ray absorption spectroscopy (XAS) is a powerful experimental technique that has been widely used to study the electronic structure and dynamics of molecules.XAS provides valuable information of the electronic and local geometric structure of certain atom, allowing for the investigation of chemical reactions and photodissociation processes.[32]XAS can be employed to investigate the electronic structural rearrangements occurring in various molecular systems during photoinduced bond-breaking reactions by probing the occupied orbitals of organic and organometallic systems.[33,34]Morzanet al.showed that the femtosecond time resolution and atomic specificity of soft-x-ray spectroscopy enable a detailed molecular movie of the ICN photofragmentation dynamics to be captured,including the production of vibrationally hot CN fragments along the I–C dissociation path during the ultrafast relaxation dynamics on the1Π1state.[8]Time-resolved x-ray absorption spectroscopy (TR-XAS) provides a powerful tool for probing the photodissociation ofXCN on a femtosecond timescale.This technique allows for the elucidation of the time-dependent evolution of the electronic structure ofXCN,thereby facilitating the creation of a dynamic molecular movie of the photodissociation process.Consequently, TRXAS holds substantial promise for enhancing our understanding of the photodissociation mechanisms inherent toXCN.

    Theoretical calculations provide a complementary approach to experimental studies, offering valuable insights into the electronic structure, potential energy surfaces, reaction pathways,X/X* branching ratio and so on.[4,19]Morokumaet al.theoretically investigated the photodissociation dynamics of ICN based onab initiospin–orbit configuration interaction (SOCI) calculations, including potential energy curves, branching ratio, rotational and vibrational excitation,anisotropy parameter and absorption spectrum.[16,19,35]Bhattacharyyaet al.calculated the structural properties of FCN,ClCN, and their isomers using density functional theory.[36]Baiet al.employedab initiocalculation methods to investigate the low-lying excited states of ClCN.[37]Nathet al.used Fourier grid Hamiltonian (FGH) method based twodimensional mean field methodology to explore the photo dissociation dynamics of the linear triatomic molecule,cyanogen chloride(ClCN)in the polar medium.[38]

    In this work,we employ the fewest switches surface hopping theory(FSSH)to study the photodissociation process of BrCN.By analyzing the trajectories from the multi-reference FSSH calculations, we obtain the detailed photodissociation dynamics of BrCN.The x-ray absorption spectroscopy(XAS)of the excited state trajectories is simulated by employing state-averaged complete active-space self-consistent field theory (SA-CASSCF) and RASSI[39]methods.The simulated XAS clearly displays the signatures of conical intersection and the process of molecular fragmentation.

    2.Computational methods

    Nonadiabatic molecular dynamics simulations for the BrCN molecule were performed with Tully’s fewest switches surface hopping theory[40]as implemented in the SHARC[41,42]software package.The diagonal representation was utilized.This approach involved diagonalizing the electronic Hamiltonian matrix, which is constructed with 10 singlet and 10 triplet spin-free eigenstates in the surface hopping dynamic simulations and 80 singlet and 80 triplet spinfree eigenstates in potential energy surface(PES)simulations,along with spin–orbit interaction, to obtain the spin-mixed,fully adiabatic states with state-averaged complete activespace self-consistent field theory (SA-CASSCF).An active space of 12 electrons in 9 orbitals was used in the excited state calculation with OpenMolcas.[43]ANO-RCC-VDZP basis set was employed and spin–orbit coupling was treated in the atomic mean field (AMFI) approximation.The nuclear motion integration employed the velocity-Verlet algorithm with a time step of 0.1 fs.To account for decoherence, an energy-difference based correction was applied with a parameterα=0.1 Hartree.Since the parallel transition to3Π0+and perpendicular transitions to1Π1are the major components of A continuum, only two electronic initial states for surfacehopping dynamics were considered,specifically exploring the3Π0+and1Π1excited-state PES.For the dynamic simulations,the initial velocities and geometries were sampled from a Wigner distribution centered around the S0minimum geometry.The distribution had an effective temperature of 300 K.The XAS of the excited state trajectories was calculated using SA-CASSCF and RASSI methods, as explained in Ref.[44].30 singlet and 30 triplet states with core holes were included in the XAS calculation.One carbon 1s orbital in the RAS1 active space together with the 9 valence orbitals in the RAS2 space were used in the SA-CASSCF calculation.The XAS in the CK-edge region was obtained by averaging the spectral lineshape over the 125 FSSH trajectories starting from the3Π0+state and 60 trajectories starting from the1Π1state.The spin–orbit natural transition orbitals (SO-NTOs) were calculated with the RASSI module in OpenMolcas.The calculated discrete XAS spectra were convoluted with a Gaussian function with a broadening parameter(σ)of 0.7 eV.Detailed computational methods are explained in supporting information.

    3.Results and discussion

    3.1.Potential energy surface

    We keep the bond length between the C and N atoms in the CN fragment constant at 1.16 ?A, which enables us to describe the dynamics of the BrCN photodissociation process using a two-dimensional Jacobi coordination system (R,θ).In this coordination system,Rrepresents the distance between the Br atom and the center of mass of the CN fragment,whileθrepresents the angle betweenRand the CN bond.The range ofθis from 0°to 180°,whereθ=0°corresponds to a linear molecular structure of Br–CN,as shown in Fig.1(a).

    Photodissociation of BrCN extends the C–Br bond to form a CN· and a neutral Br (2P3/2) or Br?(2P1/2) atom.As shown in Fig.1(b), potential energy curves are calculated for the bond breaking process.During the C–Br bond breaking process,C–Br bond will extend immediately after the photon excitation.For the PES calculation,the CN fragment is fixed to be the ground state atomic structure of BrCN,and the C–Br bond is elongated from 1.19 ?A to 3.79 ?A along the original C–Br bond direction.The3Π0+and1Π1PESs cross when the C–Br distance is 2.57 ?A(R=3.20 ?A).

    Fig.1.(a) The representation of the BrCN geometry in terms of Jacobi coordinates.(b) The potential energy surface (PES) of BrCN as Br–CN bond increases.

    To further study the relationship between PES andθ,the PES of BrCN as the function ofθf(wàn)or different values ofRis calculated and shown in Fig.2.Asθincreases,the energy of the ground state rises, indicating that the linear Br–C–N geometry is the most stable structure.For all states except the ground state,the lowest energy structure is nonlinear,indicating that during the photodissociation process of BrCN,the CN fragment undergoes rotational movement.This aligns with earlier experimental studies.[4,45]AtR= 2.4 ?A (Fig.2(a)),all the excited state PES favor bent structures, and there is no crossing between the ground state and excited states asθincreases.However, atR= 3.2 ?A (Fig.2(b)) and 3.6 ?A(Fig.2(c)), the excited state potential energy curves become flatter, and there are crossings between the ground state and excited states asθincreases.

    Fig.2.PES of BrCN as bending angle θ changes from 0° to 180°,when R=2.4 ?A(a),3.2 ?A(b)and 3.6 ?A(c),respectively.The ground state energy is set to 0 eV.

    3.2.FSSH calculations with SHARC

    The evolution of populations in fewest switches surface hopping (FSSH) simulations is investigated by considering states based on the diagonal representation in the SHARC program.This choice is considered natural for FSSH simulations.The evolution of the populations of state 1 to state 12 over the course of the simulation is shown in Fig.3.Figure 3(a) shows the analysis of 125 trajectories starting from3Π0+state,whereas Fig.3(b)displays the analysis of 110 trajectories starting from1Π1state.These results indicate that the photodissociation process of BrCN is in the femtosecond time scale.For the long-time region(50 fs–70 fs),the populations in each state are close,which can be explained by the potential energy surface(PES)in the long C–Br distance region.At the long C–Br distance region,the dissociation channels of BrCN converge into two degenerate states, corresponding to Br (2P3/2) and Br?(2P1/2).In this case, energy degeneracy occurs between different states, resulting in a close distribution of population among these states.

    Since the Br atom is much heavier than the CN fragment,the CN fragment moves rapidly backward right after the photoexcitation,while the bromine atom moves slowly in the opposite direction.During the C–Br bond extending process,depending on the initial Br–C–N angle and the initial velocity of the CN group,the CN group either moves backward straightly or tends to rotate while moving backward.Analyzing the temporal evolution of bond lengths and bond angles in the photodissociation process of BrCN provides insights into the variations in molecular internal structure and dynamics.Figure 4 shows the evolution ofRandθas a function of time during the photodissociation of BrCN with initial excitation states of3Π0+and1Π1.With the increase of time,the distance between Br and CN continues to increase,indicating the photodissociation of BrCN.In Figs.4(c)and 4(d),it can be observed that the angleθundergoes an increase with time,suggesting the rotational motion of the CN fragment during the process of photodissociation.Trajectories starting from3Π0+states exhibit a faster rate of increase in angle with time compared to trajectories starting from1Π1state,indicating that the CN fragment possesses a higher rotational excitation in3Π0+.

    Fig.3.Time evolution of the population of the first 12 states in the FSSH calculation, when the initial states are set to (a) 3Π0+ (state 7)and(b) 1Π1 (state 8),respectively.

    Fig.4.Plots of the change on Jacobi coordinates(R,θ)as a function of time in different initial exited states during the BrCN photodissociation:(a)and(c) 3Π0+ (state 7)and(b)and(d) 1Π1 (state 8).

    3.3.Simulated XAS of FSSH trajectories

    The XAS simulations of BrCN are performed with Open-Molcas.The Br–C bond dissociation is clearly observed in the XAS simulations as shown in Fig.5.For the trajectories starting from3Π0+state, the XAS exhibits a prominent high energy peak at~286.5 eV and a low energy peak at~285.5 eV in the early stages as a characteristic feature.After about 13 fs,the low energy peak disappears and the high energy peak shifts to higher energy.At the same time,one low-intensity peak appears below the previous two peaks and moves towards the lower energy region.Within 22 fs after photoexcitation, the XAS peaks exhibit pronounced frequency shifts,which correspond to the rotation of the CN fragment and the extension of the Br–C bond.At about 22 fs, the C–Br distance is close to the conical intersection region and the energy of both peaks becomes stable.Regarding the trajectories starting from the1Π1excited state,the character of XAS peaks is more complicated but the shift trending of the XAS peaks is similar to that of the3Π0+state.

    Fig.5.The simulation of carbon K-edge XAS following trajectories starting from (a) 3Π0+ state and (b) 1Π1 state, respectively.The dark blue region means that the absorption is low,while the bright yellow region represents maximal absorption intensity.The transient spectrum is broadened in time by a Gaussian function with a broadening parameter(σ)of 5 fs.

    To study the electronic structure dynamics reflected by XAS,Fig.6 shows the XAS of the carbonK-edge of BrCN at different values ofRin the3Π0+state.Each peak is associated with its corresponding natural transition orbitals (NTO).The spin–orbit natural transition orbitals(SO-NTOs)for the XAS peaks are calculated with the RASSI module in OpenMolcas.For the ground state equilibrium structure of BrCN,the XAS of3Π0+state is composed ofπ?antibonding orbitals in the 285.25 eV–286.85 eV range andσ?antibonding orbitals at 285.25 eV,as shown in Fig.6(a).As the value ofRincreases,the absorption peak of XAS shifts, indicating that these orbitals are significantly influenced during the photodissociation process.Theσ?antibonding orbital has axial symmetry along the Br–C bond.When the Br–C bond is elongated,the energy of theσ?antibonding orbital changes, thereby significantly affecting the carbon 1s toσ?transition and leading to a pronounced redshift in the absorption peak.In contrast, theπ?antibonding orbital is mostly localized on the CN fragment,which is less affected by the elongation of the Br–C bond.As a result,the absorption peak only experiences a small blueshift.

    Fig.6.The XAS simulation of the carbon K-edge and corresponding natural transition orbitals (NTO) in the 3Π0+ state were conducted by varying the values of R for BrCN,while(a)R=2.41 ?A,(b)R=2.60 ?A,(c)R=2.80 ?A,(d)R=3.20 ?A,and(e)R=4.41 ?A,respectively.

    Figure 7 shows the XAS and corresponding NTO in the1Π1state.Compared to the XAS of the3Π0+state, an additional absorption peak at 280.15 eV is observed in XAS atR=2.41 ?A,this peak is attributed to a transition from the carbon 1s orbital toσbonding orbital,as shown in Fig.7(a).AtR=2.60 ?A (Fig.7(b)), XAS exhibits an absorption peak at 279.80 eV, corresponding to a transition from the carbon 1s orbital toπbonding orbital.Therefore, the stronger absorption of1Π1in the low-energy region within 0 fs–10 fs in XAS is attributed to the transition from the carbon 1s orbital to the bonding orbital.As the Br–C bond elongates, the absorption peak attributed to the transition from the carbon 1s orbital toσ?antibonding orbital exhibits a significant redshift, which is caused by the weakening of the Br–C bond.At the same time, the absorption peak associated with the transition from the carbon 1s orbital toπ?antibonding orbital undergoes a minor blueshift,which observation is consistent with that of the3Π0+state.

    Fig.7.The XAS simulation of the carbon K-edge and corresponding natural transition orbitals (NTO) in the 1Π1 state were conducted by varying the values of R for BrCN,while(a)R=2.41 ?A,(b)R=2.60 ?A,(c)R=2.80 ?A,(d)R=3.20 ?A,and(e)R=4.41 ?A,respectively.

    4.Conclusion

    A multi-reference fewest-switches surface hopping(FSSH)simulation is employed to investigate the photodissociation dynamics of cyanogen bromide in the A continuum.Maintaining the linear structure of the BrCN molecule, the3Π0+and1Π1PESs cross when the C–Br distance is 2.57 ?A.The linear structure of BrCN is the lowest energy structure in the ground state, while all excited states exhibit non-linear structures with the lowest energy,indicating that rotational excitation occurs in the CN fragment during the photodissociation.After being excited from1Σ0+to3Π0+or1Π1state,the distance between the Br and C in BrCN increases rapidly,and the CN fragment undergoes rotation.In trajectories starting from3Π0+,the rotational excitation of the CN fragment is higher than that starting from1Π1.Employing SA-CASSCF and RASSI within OpenMolcas,and excited state trajectories calculated with SHARC, we simulate the XAS of the BrCN photodissociation process.The XAS of carbonK-edge following1Σ0+to3Π0+and1Π1photoexcitation provides detailed dynamical information of the nuclear and electronic dynamics.Peak shifting in the XAS spectra reveals the increase of the Br–C bond length and the rotation of the CN fragment during the photodissociation process of BrCN.

    Our research demonstrates that the FSSH method has great potential in predicting the dynamics of bond breaking or photodissociation in small molecules, providing detailed information about the dynamic evolution.Due to the similar linear structure of halogen cyanide molecules,our method can be reasonably extended to the study of photodissociation processes of ICN,FCN,and ClCN.Our method can also be used to investigate other small molecules containing bromine.In the future,we plan to apply our method to investigate the photodissociation processes of other small molecules,such as the photodissociation of ammonia molecule under 200 nm ultraviolet light.By studying the photodissociation dynamics of BrCN,we can better predict the generation and distribution of bromine radicals,leading to improved strategies for mitigating atmospheric pollution and protecting the ozone layer.

    Acknowledgments

    H.W.and K.Z.were supported by the start-up funding of ShanghaiTech University in China.This work was also supported by a user project at the Molecular Foundry (LBNL)and its computing resources administered by the High-Performance Computing Services Group at LBNL.Work at the Molecular Foundry was supported by the Office of Science and Office of Basic Energy Sciences of the U.S.Department of Energy (Grant No.DE-AC02-05CH11231).This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory(Grant No.DE-AC02-05CH11231).This work was also supported by the High-Performance Computing(HPC)Platform of ShanghaiTech University.We would like to thank Jingxiang Zou for the discussion of NTO analysis.

    国产亚洲欧美精品永久| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 成在线人永久免费视频| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 精品免费久久久久久久清纯 | 国产一级毛片在线| 久久国产精品人妻蜜桃| 亚洲欧美中文字幕日韩二区| 老司机靠b影院| 男女边摸边吃奶| 伊人久久大香线蕉亚洲五| 啦啦啦在线观看免费高清www| 国产精品二区激情视频| 性色av一级| 日本欧美视频一区| 男女高潮啪啪啪动态图| 国产在线视频一区二区| 美女国产高潮福利片在线看| 国产成人免费观看mmmm| 国产欧美日韩一区二区三区在线| 成人国产av品久久久| 国产欧美日韩一区二区三区在线| 午夜久久久在线观看| 久久亚洲精品不卡| 丝袜人妻中文字幕| 一级毛片我不卡| 国产av精品麻豆| 又黄又粗又硬又大视频| 亚洲国产精品成人久久小说| 宅男免费午夜| 欧美精品一区二区免费开放| 在线观看一区二区三区激情| 午夜福利乱码中文字幕| 可以免费在线观看a视频的电影网站| 女性生殖器流出的白浆| 老司机深夜福利视频在线观看 | www日本在线高清视频| 国语对白做爰xxxⅹ性视频网站| 亚洲av电影在线进入| 97人妻天天添夜夜摸| 国产成人影院久久av| 王馨瑶露胸无遮挡在线观看| 欧美在线一区亚洲| 欧美成人精品欧美一级黄| 久久午夜综合久久蜜桃| 欧美精品高潮呻吟av久久| 女人精品久久久久毛片| 韩国高清视频一区二区三区| 夫妻午夜视频| 欧美精品一区二区免费开放| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩高清在线视频 | 国产成人91sexporn| 美女高潮到喷水免费观看| 男人舔女人的私密视频| 免费av中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 女人高潮潮喷娇喘18禁视频| 99九九在线精品视频| 可以免费在线观看a视频的电影网站| 永久免费av网站大全| 1024香蕉在线观看| 超碰成人久久| 一本—道久久a久久精品蜜桃钙片| 日本a在线网址| av线在线观看网站| 久久 成人 亚洲| 香蕉国产在线看| 女人高潮潮喷娇喘18禁视频| 女人精品久久久久毛片| 精品一品国产午夜福利视频| 久热爱精品视频在线9| 国产成人啪精品午夜网站| 国产成人影院久久av| 九草在线视频观看| 国产无遮挡羞羞视频在线观看| 亚洲欧洲日产国产| 久久天躁狠狠躁夜夜2o2o | 十八禁网站网址无遮挡| 好男人视频免费观看在线| av片东京热男人的天堂| 另类亚洲欧美激情| 精品福利观看| 精品少妇内射三级| 国产极品粉嫩免费观看在线| 久久av网站| 三上悠亚av全集在线观看| 不卡av一区二区三区| 亚洲欧洲精品一区二区精品久久久| 日本av免费视频播放| 国产高清不卡午夜福利| 免费黄频网站在线观看国产| av不卡在线播放| 99热国产这里只有精品6| 欧美日韩综合久久久久久| 欧美精品高潮呻吟av久久| 亚洲精品日本国产第一区| 亚洲人成电影免费在线| 久久狼人影院| 老司机靠b影院| 一区二区三区四区激情视频| av片东京热男人的天堂| 亚洲国产欧美一区二区综合| 欧美在线黄色| 精品卡一卡二卡四卡免费| 人人妻人人澡人人看| 久久精品国产亚洲av高清一级| 久久av网站| 亚洲精品成人av观看孕妇| 久久影院123| 亚洲美女黄色视频免费看| 九草在线视频观看| 精品国产一区二区三区四区第35| 久久久精品区二区三区| 国产在视频线精品| 伦理电影免费视频| 电影成人av| 国产成人精品在线电影| av欧美777| 好男人电影高清在线观看| 超碰97精品在线观看| 午夜激情av网站| 精品国产一区二区久久| 人体艺术视频欧美日本| 亚洲精品美女久久久久99蜜臀 | 19禁男女啪啪无遮挡网站| 久久精品熟女亚洲av麻豆精品| 丝瓜视频免费看黄片| 丰满饥渴人妻一区二区三| 久久久久久久精品精品| 男女边吃奶边做爰视频| 亚洲国产av新网站| 99香蕉大伊视频| 日韩人妻精品一区2区三区| 另类亚洲欧美激情| 亚洲三区欧美一区| 五月天丁香电影| 久久 成人 亚洲| 一本大道久久a久久精品| 久久99热这里只频精品6学生| 人人澡人人妻人| 午夜久久久在线观看| 亚洲av成人精品一二三区| 精品人妻熟女毛片av久久网站| 国产欧美日韩一区二区三区在线| 下体分泌物呈黄色| 久久国产亚洲av麻豆专区| 免费在线观看日本一区| 丝袜脚勾引网站| 丝袜喷水一区| 男女床上黄色一级片免费看| 免费高清在线观看日韩| 永久免费av网站大全| 菩萨蛮人人尽说江南好唐韦庄| 男女高潮啪啪啪动态图| 日本欧美国产在线视频| 在线 av 中文字幕| 999精品在线视频| 国产免费又黄又爽又色| 久久久精品免费免费高清| 脱女人内裤的视频| 亚洲情色 制服丝袜| 欧美日韩国产mv在线观看视频| 亚洲欧美一区二区三区国产| 纯流量卡能插随身wifi吗| 精品人妻在线不人妻| 久久精品aⅴ一区二区三区四区| 久久精品aⅴ一区二区三区四区| 亚洲精品一二三| 国产高清不卡午夜福利| 国产成人影院久久av| 99热网站在线观看| 91老司机精品| 夜夜骑夜夜射夜夜干| 欧美成人午夜精品| 韩国精品一区二区三区| 欧美精品高潮呻吟av久久| 大香蕉久久网| 国产精品 国内视频| 制服诱惑二区| 精品欧美一区二区三区在线| 中文字幕高清在线视频| 欧美日韩精品网址| 狠狠精品人妻久久久久久综合| 考比视频在线观看| cao死你这个sao货| av福利片在线| 最新在线观看一区二区三区 | 黄色a级毛片大全视频| 超碰成人久久| 国产精品99久久99久久久不卡| 在线亚洲精品国产二区图片欧美| 久久天堂一区二区三区四区| 国产成人影院久久av| 国产精品人妻久久久影院| 老司机深夜福利视频在线观看 | 国产淫语在线视频| 久久鲁丝午夜福利片| 大型av网站在线播放| 国产麻豆69| 人人澡人人妻人| 亚洲中文字幕日韩| 男女午夜视频在线观看| 午夜福利,免费看| 亚洲国产精品一区二区三区在线| 久久久久视频综合| 欧美日韩精品网址| 80岁老熟妇乱子伦牲交| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 又紧又爽又黄一区二区| 另类亚洲欧美激情| 日韩av在线免费看完整版不卡| 熟女少妇亚洲综合色aaa.| 好男人视频免费观看在线| 一级a爱视频在线免费观看| 国产在线一区二区三区精| 国产91精品成人一区二区三区 | 热99国产精品久久久久久7| 美女视频免费永久观看网站| 在线亚洲精品国产二区图片欧美| 嫩草影视91久久| 国产xxxxx性猛交| 午夜福利一区二区在线看| av国产久精品久网站免费入址| svipshipincom国产片| 国产精品一区二区免费欧美 | 美国免费a级毛片| 黄色 视频免费看| 美女中出高潮动态图| 午夜福利,免费看| 天天操日日干夜夜撸| 欧美日韩一级在线毛片| 亚洲国产欧美在线一区| 我要看黄色一级片免费的| 精品国产超薄肉色丝袜足j| 80岁老熟妇乱子伦牲交| 大型av网站在线播放| 又大又黄又爽视频免费| 国产成人av激情在线播放| 女性被躁到高潮视频| 久久精品久久久久久久性| 丁香六月天网| av视频免费观看在线观看| 亚洲人成77777在线视频| 免费女性裸体啪啪无遮挡网站| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| av天堂久久9| 夜夜骑夜夜射夜夜干| 婷婷色av中文字幕| 亚洲国产看品久久| 日韩,欧美,国产一区二区三区| 亚洲黑人精品在线| 国产成人一区二区三区免费视频网站 | 国产在线视频一区二区| 精品福利永久在线观看| 国产精品秋霞免费鲁丝片| 制服人妻中文乱码| 久久精品国产综合久久久| 麻豆乱淫一区二区| 巨乳人妻的诱惑在线观看| 99国产精品免费福利视频| 大话2 男鬼变身卡| 精品国产乱码久久久久久小说| 各种免费的搞黄视频| av国产精品久久久久影院| 亚洲午夜精品一区,二区,三区| 老熟女久久久| 亚洲成人国产一区在线观看 | 黄色毛片三级朝国网站| 精品福利观看| 十八禁高潮呻吟视频| 日韩视频在线欧美| 免费女性裸体啪啪无遮挡网站| 精品熟女少妇八av免费久了| 国产精品一区二区免费欧美 | 成年av动漫网址| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看| 一本—道久久a久久精品蜜桃钙片| 久久精品亚洲熟妇少妇任你| 午夜免费观看性视频| 成人手机av| 国产成人a∨麻豆精品| 久久久国产欧美日韩av| 精品久久久久久久毛片微露脸 | 亚洲一码二码三码区别大吗| 久久这里只有精品19| 精品久久久精品久久久| 亚洲成人免费av在线播放| 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| 一级黄片播放器| 80岁老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 精品第一国产精品| 999精品在线视频| 欧美日本中文国产一区发布| 婷婷色综合大香蕉| 日韩av免费高清视频| 99国产精品一区二区三区| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 婷婷色麻豆天堂久久| 色视频在线一区二区三区| 婷婷色av中文字幕| 国产又色又爽无遮挡免| 一级片免费观看大全| 婷婷丁香在线五月| 最近手机中文字幕大全| 97人妻天天添夜夜摸| 少妇粗大呻吟视频| 午夜福利,免费看| 老鸭窝网址在线观看| 欧美中文综合在线视频| 一二三四在线观看免费中文在| 久久久欧美国产精品| 亚洲人成电影观看| 午夜激情久久久久久久| 99国产精品一区二区三区| 丁香六月天网| 精品国产乱码久久久久久男人| 99久久精品国产亚洲精品| 久久99热这里只频精品6学生| 色婷婷久久久亚洲欧美| 亚洲欧美色中文字幕在线| 国产成人精品久久久久久| 午夜老司机福利片| netflix在线观看网站| 免费看av在线观看网站| 高清视频免费观看一区二区| 国产精品国产三级专区第一集| 免费av中文字幕在线| 中文乱码字字幕精品一区二区三区| 一区福利在线观看| 国产成人精品久久二区二区91| 国产精品三级大全| 久久国产精品影院| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| bbb黄色大片| 亚洲图色成人| 国产xxxxx性猛交| 另类亚洲欧美激情| 超色免费av| 久久久久久久精品精品| 中文字幕亚洲精品专区| 国产伦人伦偷精品视频| av福利片在线| 亚洲国产最新在线播放| 久久国产精品男人的天堂亚洲| 国产亚洲精品久久久久5区| 青草久久国产| 久久国产精品人妻蜜桃| 精品亚洲成国产av| 天天躁夜夜躁狠狠久久av| 久久午夜综合久久蜜桃| 亚洲国产精品成人久久小说| 一个人免费看片子| 久久人妻福利社区极品人妻图片 | 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 精品免费久久久久久久清纯 | 久9热在线精品视频| 国产激情久久老熟女| 国产视频一区二区在线看| 一区二区日韩欧美中文字幕| 亚洲七黄色美女视频| 一级片'在线观看视频| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲| 日本a在线网址| 桃花免费在线播放| 国产成人精品久久二区二区免费| 成年av动漫网址| 国产欧美亚洲国产| 亚洲美女黄色视频免费看| 国产片内射在线| 一区二区三区激情视频| 深夜精品福利| 欧美成狂野欧美在线观看| 看免费av毛片| 99热全是精品| 欧美黄色片欧美黄色片| 超色免费av| 日本av手机在线免费观看| 欧美日韩亚洲高清精品| 午夜福利免费观看在线| 视频区图区小说| 亚洲国产最新在线播放| 亚洲欧美色中文字幕在线| 狠狠婷婷综合久久久久久88av| 欧美黄色淫秽网站| 一本大道久久a久久精品| 亚洲国产精品999| 男人操女人黄网站| 又黄又粗又硬又大视频| 日韩电影二区| 大话2 男鬼变身卡| 多毛熟女@视频| 午夜两性在线视频| 深夜精品福利| 黄色片一级片一级黄色片| 夜夜骑夜夜射夜夜干| h视频一区二区三区| 亚洲一区二区三区欧美精品| 丁香六月欧美| av在线app专区| 中国美女看黄片| 高清不卡的av网站| 国产真人三级小视频在线观看| 1024视频免费在线观看| 国产精品一区二区免费欧美 | 一边摸一边抽搐一进一出视频| 人妻一区二区av| 99香蕉大伊视频| 老司机深夜福利视频在线观看 | 国产av一区二区精品久久| 国产黄频视频在线观看| 国产在视频线精品| 蜜桃在线观看..| 亚洲人成电影免费在线| 久久人人爽av亚洲精品天堂| 97在线人人人人妻| 国产黄色免费在线视频| netflix在线观看网站| 人妻 亚洲 视频| 免费在线观看黄色视频的| 欧美日韩国产mv在线观看视频| 国产主播在线观看一区二区 | 精品福利观看| 看免费成人av毛片| e午夜精品久久久久久久| 久久久久国产精品人妻一区二区| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx| 国产精品国产三级国产专区5o| 日韩熟女老妇一区二区性免费视频| 人人妻人人澡人人看| av电影中文网址| 亚洲,欧美精品.| 免费在线观看黄色视频的| 热99国产精品久久久久久7| 欧美黑人欧美精品刺激| 国产一区亚洲一区在线观看| 久久精品成人免费网站| 这个男人来自地球电影免费观看| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲| 七月丁香在线播放| 老汉色∧v一级毛片| 男女边摸边吃奶| 色视频在线一区二区三区| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 国产精品久久久人人做人人爽| 极品人妻少妇av视频| 大片免费播放器 马上看| 欧美激情极品国产一区二区三区| av国产精品久久久久影院| 欧美人与善性xxx| 精品一区二区三区av网在线观看 | 麻豆av在线久日| 久久午夜综合久久蜜桃| 成人午夜精彩视频在线观看| 日韩中文字幕视频在线看片| 成人国产一区最新在线观看 | 国产老妇伦熟女老妇高清| 国产精品二区激情视频| 大码成人一级视频| 欧美成人精品欧美一级黄| 国产女主播在线喷水免费视频网站| 少妇猛男粗大的猛烈进出视频| 成年人黄色毛片网站| 最近手机中文字幕大全| 一二三四社区在线视频社区8| 精品欧美一区二区三区在线| 欧美日韩亚洲高清精品| 久久免费观看电影| 午夜日韩欧美国产| 亚洲,欧美,日韩| 欧美另类一区| 亚洲专区中文字幕在线| 丝袜人妻中文字幕| 在线 av 中文字幕| 国产亚洲欧美在线一区二区| 久久久精品94久久精品| 国产日韩欧美在线精品| 女人精品久久久久毛片| 午夜免费成人在线视频| 亚洲美女黄色视频免费看| 亚洲国产精品成人久久小说| 亚洲人成77777在线视频| 久久久久久久久免费视频了| 久久国产精品男人的天堂亚洲| av福利片在线| 亚洲成人免费电影在线观看 | 久久久久久久精品精品| 亚洲国产精品999| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 少妇人妻久久综合中文| 亚洲国产欧美日韩在线播放| 亚洲国产欧美一区二区综合| 99九九在线精品视频| 91精品三级在线观看| 欧美国产精品一级二级三级| 波多野结衣av一区二区av| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产区一区二| 中国美女看黄片| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 又粗又硬又长又爽又黄的视频| 亚洲伊人色综图| 久9热在线精品视频| 久久人人爽人人片av| 欧美精品一区二区大全| av不卡在线播放| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 99国产精品免费福利视频| 欧美另类一区| 国产免费又黄又爽又色| 亚洲av男天堂| 亚洲av成人不卡在线观看播放网 | 超色免费av| 一二三四在线观看免费中文在| 国产有黄有色有爽视频| netflix在线观看网站| 国产亚洲欧美在线一区二区| 欧美久久黑人一区二区| 99国产精品免费福利视频| 久久综合国产亚洲精品| 美女中出高潮动态图| 极品人妻少妇av视频| 免费看av在线观看网站| 久久性视频一级片| 秋霞在线观看毛片| 欧美xxⅹ黑人| 亚洲中文日韩欧美视频| 十八禁网站网址无遮挡| www.熟女人妻精品国产| 丁香六月天网| 亚洲国产av影院在线观看| 美女视频免费永久观看网站| 两性夫妻黄色片| 天堂俺去俺来也www色官网| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 亚洲人成电影观看| 性色av一级| 日本午夜av视频| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频 | 久久精品亚洲熟妇少妇任你| 成人免费观看视频高清| 精品一区二区三区av网在线观看 | 日韩,欧美,国产一区二区三区| 男女边吃奶边做爰视频| 精品人妻1区二区| 婷婷色综合大香蕉| 精品国产超薄肉色丝袜足j| 天天操日日干夜夜撸| 国产免费一区二区三区四区乱码| 99re6热这里在线精品视频| 免费av中文字幕在线| 在线观看一区二区三区激情| 69精品国产乱码久久久| 亚洲欧美激情在线| 性色av乱码一区二区三区2| 丁香六月欧美| 亚洲国产精品999| 国产精品三级大全| 91成人精品电影| 首页视频小说图片口味搜索 | 亚洲国产欧美一区二区综合| 一本大道久久a久久精品| 看十八女毛片水多多多| 黄色怎么调成土黄色| 免费在线观看完整版高清| 多毛熟女@视频| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 久久狼人影院| 精品一区在线观看国产| 久久亚洲国产成人精品v| 亚洲欧美日韩高清在线视频 | 91精品伊人久久大香线蕉| 大香蕉久久网| xxxhd国产人妻xxx| 精品人妻熟女毛片av久久网站| 看免费av毛片| 一二三四社区在线视频社区8| 校园人妻丝袜中文字幕| 深夜精品福利| 国产精品亚洲av一区麻豆| 少妇粗大呻吟视频| 国产成人av教育| 成年av动漫网址| 成人国产av品久久久| 亚洲国产精品999| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区 | 久久99一区二区三区| 久久国产精品影院| 后天国语完整版免费观看| 亚洲专区中文字幕在线|