• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical spectrum of ferrovalley materials:A case study of Janus H-VSSe

    2024-01-25 07:14:16ChaoBoLuo羅朝波WenChaoLiu劉文超andXiangYangPeng彭向陽
    Chinese Physics B 2024年1期
    關鍵詞:向陽

    Chao-Bo Luo(羅朝波), Wen-Chao Liu(劉文超), and Xiang-Yang Peng(彭向陽)

    Hunan Key Laboratory for Micro-Nano Energy Materials and Devices,School of Physics and Optoelectronics,Xiangtan University,Xiangtan 411105,China

    Keywords: valleytronics,first-principles calculations,GW approach and Bethe–Salpeter equation(GW-BSE),excitonic effects

    1.Introduction

    Valleytronics materials have inequivalent gapped valleys in the Brillouin zone, formed by pairs of extrema in the conduction and valence band edges at the samek-points.[1–3]The H phase monolayer transition metal dichalcogenides,e.g.,MoS2,WSe2,are found to be excellent valleytronic materials with direct band gaps located at the valleys in the energy range of visible light.[4–6]Since the space inversion symmetry is broken, valleytronic materials have opposite Berry curvatures at the inequivalent valleys,leading to various quantum phenomena, such as valley-dependent light selection rules and valley Hall effect.[1]The electrons in theKand–Kvalleys can only absorb light with opposite circular polarization.This valley dependent optical selection rule provides an approach to the realization of the valley polarization and can be applied in information encoding.Therefore, it is important to study the optical properties of valleytronic materials.

    In non-magnetic valleytronic materials, e.g., MoS2, the energy gaps of the inequivalent valleys have the same magnitude.The inequivalent valley gaps become different if the time reversal symmetry is broken by, e.g., adding a magnetic field,[7,8]doping magnetic atoms,[9,10]or forming a heterojunction with a magnetic substrate to realize valley polarization.[11–14]However, the resulting difference in the gaps is quite small by these means.In ferromagnetic valleytronic materials, e.g., VSe2,[15,16]the difference of the inequivalent gaps is much larger, leading to an intrinsic difference of charge occupancy in the valleys and hence resulting in the spontaneous valley polarization.The latter are called ferrovalley materials, which can be applied in non-volatile valleytronic devices.Due to the unequal gaps at the inequivalent valleys, the optical properties of ferrovalley materials should be distinct from the normal valleytronic materials, which are still to be addressed.

    Recently,more and more ferrovalley materials have been discovered, such as H-VSe2,[15,16]H-LaBr2,[17]H-GdI2,[18]H-FeCl2,[19,20]Nb3I8,[21]MN2H2[22]and VSi2N4[23,24]and their Janus structures,[9,25–31]in which not only the spatial inversion symmetry but also the time reversal symmetry is broken.Ferrovalley materials are promising materials for spintronic and valleytronic devices, but the optical properties of ferrovalley materials in terms of exciton effects have yet to be studied.In Janus ferrovalley materials, the symmetry is further lowered by breaking the mirror symmetry.Theoretical calculations show that Janus H-VSSe is a multiferroic material with ferroelasticity,ferromagnetism and ferrovalley.It has been shown to have dynamically and thermodynamically stable,and its valleytronic properties are well tunable.[25,28,32]In this work,we will take H-VSSe as an example of the ferrovalley materials to study its optical properties.The influences of ferromagnetism,valley polarization and spin–orbital coupling on the electronic structure and exciton spectrum will be investigated.

    There have been experimental and theoretical researches on the optical properties of valleytronic materials.In computational studies, in order to accurately calculate the band gap, it is necessary to go beyond the normal density functional theory (DFT), since it usually considerably underestimates the band gap.After the optical transition, the electron jumping to the conduction band will interact with the hole it leaves in the valence band, and the electron–hole binding energy will significantly affect the optical spectrum if the screening is not effective.In two dimensional materials,the screening is usually weak due to its finite size along the direction normal to the plane.In previous studies, the optical properties of valleytronic materials,e.g.,MoS2,WS2and WSe2,[4–6]have been calculated.In the case of monolayer MoS2, the calculated DFT bandgap is about 1.60 eV,[5]whereas the calculated GW bandgap gives a much larger value of 2.84 eV,[4]indicating the many-body correction is large.To address the band gap problem in DFT,the GW method based many body perturbation is used in this study.To account for the effects of electron–hole interaction on the optical spectrum, Bethe–Salpeter equations(BSE)are solved on top of the GW calculations.The first peak in the BSE dielectric function(absorption spectrum)is located at 1.88 eV,[4]in good agreement with the experimental photoluminescence spectroscopy.[33]The position of the first peak by BSE (1.88 eV) is much smaller than the band gap(2.84 eV),which suggests that the electron–hole interaction is strong and hence cannot be ignored in the study of the optical properties of valleytronic materials.Therefore,in the following study of monolayer H-VSSe,we use the GW plus BSE approach to describe the many body effect and use the electron–hole interaction to give more accurate and reliable predictions of the optical properties.

    Fig.1.The side and top views of Janus H-VSSe.The red, green and yellow spheres represent the V,Se,and S atoms,respectively.

    2.Methods

    The first-principles calculations are carried out using the Viennaab initiosimulation package (VASP),[34,35]with generalized gradient approximation in the form of Perdew–Burke–Ernzerhof (PBE) functional.[36]The projector augmented wave (PAW) potentials are employed to describe the core–electron interaction.A total of 23 electrons in V (p, d and s orbitals), S (s and p orbitals) and Se (s and p orbitals)atoms are taken as valence electrons in the pseudopotentials.The electron wave functions are expanded by plane waves with an energy cutoff of 300 eV.Our tests show that the cut-off energies of 300 eV and 400 eV yield almost the same results.In order to minimize the influence of the periodic images,a vacuum layer larger than 15 ?A is added between the slabs.The effect of spin–orbit coupling is considered in the calculation.In the Brillouin zone,a series ofΓ-centeredk-grids have been evaluated up to 15×15×1.Hybrid functional calculations are further carried out using the Heyd–Scuseria–Ernzerhof exchange–correlation functional(HSE06),[37]based on which the partially self-consistent GW[38]calculations are performed including 192 orbitals(169 empty orbitals).In order to obtain quasiparticle energy bands,the Wannier90 package is used for interpolation fitting,[39]and the d orbitals of V atoms and the p orbitals of S and Se atoms are selected for initial projection,with a total of 22 electron orbitals.The Berry curvature of the valence bands of H-VSSe is obtained by the Wannier90 package.Finally, the Bethe–Salpeter equations are solved on top of GW,with the eight highest valence bands and eight lowest conduction bands taken as the basis of the excitonic state,and the optical absorption spectrum is obtained.

    3.Results and discussion

    3.1.Quasiparticle band structures of Janus H-VSSe

    In our calculations,the lattice constant of H-VSSe is optimized to be 3.26 ?A.As shown in Fig.2,we calculate the band structures of Janus H-VSSe by using PBE, hybrid functional HSE06,and GW0methods,taking spin polarization into consideration.Among them,PBE bands and their Wannier interpolated bands almost coincide with each other,indicating that the selected projected orbitals are suitable.Although overall the H-VSSe has an indirect band gap, the bands of the same spin have two identical direct band gaps located at theKand?Kpoints, which are 0.7769 eV, 1.0299 eV and 1.4315 eV by PBE, HSE06 and GW0methods, respectively.The latter two gaps are significantly larger than the PBE gap,indicating that the ordinary DFT calculation considerably underestimates the band gap of H-VSSe.The GW0band gap is about twice as much as the PBE gap and 40%larger than that by HSE06,and therefore the quasiparticle effect in the two dimensional H-VSSe is strong.Regardless of the calculation methods, all the energy bands have valleys near the Fermi level at theKand?Kpoints.The band edges of the valleys are of the same spin polarization,showing that H-VSSe is a magnetic valleytronic material.The calculated magnetic moment per primitive cell isμB.

    Fig.2.The band structure of H-VSSe with ferromagnetism but without SOC.Panels(a)–(c)are calculated by PBE,HSE06 and GW0,respectively.

    Fig.3.The band structure of H-VSSe with ferromagnetism and SOC.Panels(a)–(c)are calculated by PBE,HSE06 and GW0,respectively.

    Since transition metal elements have strong spin–orbit coupling (SOC), we further take it into consideration in the calculation and obtain band structures, as shown in Fig.3.Similar to the bands without SOC, the SOC bands are also gapped at theKand?Kpoints.Without SOC, the gaps at theKand?Kvalleys are degenerate(Fig.2).After the introduction of SOC,the valley gap degeneracy is lifted as shown in Fig.3.The valley gap atKis 0.736 eV (PBE), 0.883 eV(HSE06), and 1.318 eV (GW0), respectively.Whereas it is larger at?K, which correspondingly is 0.816 eV, 1.141 eV,and 1.510 eV,leading to a gap difference of 0.080 eV,0.258 eV and 0.192 eV, respectively.The mean value of the gaps atKand?Kwith SOC is close to the gap without SOC.The gap difference is a combined effect of spin polarization and SOC.The conduction and valence edge states at the±Kvalleys are found to be mainly contributed from the dz2and dx2?y2±idxystates of the V atom, respectively.Therefore, thezcomponent of the orbital magnetic momentμLof the conduction and valence edge states at the±Kvalleys is about 0 and±2μB,respectively.HereμBis the Bohr magneton.We have also calculated the mean value of spin of the valence band edge and found that〈?σx〉≈〈?σy〉≈0 and〈?σz〉≈1, where ?σis the Pauli operator.The SOC in the V atom will induce an energy shift which is proportional to〈?σz〉·μL.The conduction band edges in the valleys,in whichμL≈0,almost remain unshifted.SinceμLis about 2μBand?2μBat the valence band edge of theKand the?Kvalleys, the SOC induces opposite energy shift in the valence band edges of the±Kvalleys,giving rise to different energy gaps at the inequivalent valleys.The valley with a smaller gap is easier to be excited and the carrier occupancy is unequal at the two valleys, giving rise to valley polarization.The degree of valley polarization is also underestimated by PBE.

    3.2.Berry curvature of Janus H-VSSe

    In order to study the valleytronic properties of H-VSSe,on the basis of the energy band calculations,we calculate the Berry curvature and investigate the effect of SOC on it.It is found that when only the spin polarization is considered in the absence of SOC,the Berry curvatures at theKand?Kvalleys are?11.28 ?A2and 11.28 ?A2, respectively, which are of the same magnitude and opposite sign.Since the Berry curvature is an equivalent magnetic field in the momentum space,it can act on the moving carriers, and the opposite Berry curvature can lead to the valley Hall effect.[40]In the presence of SOC,as shown in Fig.4(b), the Berry curvatures of H-VSSe at the two valleysK(?K)are?16.41 ?A2and 9.09 ?A2,respectively.The signs are still opposite but the magnitudes are not equal,which can lead to anomalous valley Hall effect.[15]Therefore,H-VSSe is a potential magnetic valley material with intrinsic valley polarization.

    Fig.4.The Berry curvature of Janus H-VSSe.Panel(a)with ferromagnetism and without SOC,panel(b)with ferromagnetism and SOC.

    3.3.Excitonic effects of Janus H-VSSe

    Optical excitation is an important means to excite the valley carriers.Usually, the 2D materials have relatively weak screening,and therefore the electron–hole interaction is strong, giving rise to large binding energy.In non-magnetic transition metal dichalcogenides such as MoS2, it has been found both experimentally and theoretically that there are two exciton peaks in the photoluminescent spectrum.One corresponds to the A exciton formed by an electron in the bottom of the valley conduction band and a hole left in the top of the valley valence band.The other is B exciton formed by an electron in the bottom of the valley conduction band and a hole left in the second highest valence band in the valley.[41,42]The band structure of H-VSSe shown in Fig.3 differs from that of MoS2significantly.It is interesting to know how the optical spectrum of H-VSSe would change due to its ferromagnetism.

    To study the optical properties of H-VSSe, we calculate its dielectric function based on the GW0calculation.At first,only the spin polarization is considered without SOC.The optical transition will create an electron in the conduction band and leave a hole in the valence band.If the electrons and holes are free(no interaction),the excitation energy has to overcome the band gap (1.432 eV).As shown in Fig.5, the first peak of the imaginary part of the GW-RPA dielectric function is located at 1.432 eV, which is the same as its corresponding quasiparticle bandgap.In reality, the electron–hole pair will be bound by Coulomb attraction to form a hydrogenic atom,i.e., exciton.In comparison with the free electron and hole state, the bounding electron–hole state has lower energy and therefore the excitation energy is lower than the band gap.The energy difference is the excitonic binding energy.In the GWBSE spectrum, the first peak is red-shifted to 0.911 eV after the electron–hole attraction being taken into account, which corresponds to a binding energy of 0.521 eV.This first peak is split into two peaks around its old position(0.911 eV)after the inclusion of SOC.In contrast to MoS2and other similar materials,where the A and B excitonic peaks are due to the spin splitting in the same valley,the first two peaks of H-VSSe(red line in Fig.5)are from the two inequivalent valleys with different gaps(Fig.3).The splitting of the two peaks is different from the gap difference of the two inequivalent valleys.

    Fig.5.The calculated imaginary parts of the complex dielectric function ε2(ω) of H-VSSe on the k-grid of 15×15×1.The black dotted,blue dashed and red solid lines are the spectra calculated by RPA without SOC,BSE without SOC and BSE with SOC on the top of the GW0,respectively.

    From Table 1,it can be seen that the valley with a larger band gap has larger excitonic binding energy.Based on the hydrogenic picture of excitons, the binding energyEbof the electron–hole pair in the 2D systems is proportional toμ/ε2, whereμandεare the effective mass and dielectric constant.[43,44]Thek·ptheory points out that the effective masses of the electron and hole quasiparticles almost linearly depend on the energy gap.[43,45]Therefore,effective mass,energy gap and excitonic binding energy are proportional to each other.We calculate the electron and hole effective mass of the valleys using thek-grid of 15×15×1.It is found that at theKvalley, the calculated effective masses of the electron and hole are 3.80meand 4.09me,respectively,wheremeis the rest mass of an electron.For the?Kvalley with a larger band gap and larger excitonic binding energy (see Table 1), the corresponding calculated effective mass is larger,which are 5.09meand 5.05me,respectively.Therefore,our calculations basically agree with the hydrogenic model andk·ptheory.

    Table 1.Quasiparticle bandgaps, band gap difference, BSE peaks, BSE peak splitting and exciton binding energies of the two inequivalent valleys for different k-grids.

    From a technical point of view,optical transition simulation needs to use a sufficiently densek-point grid for integration over the irreducible Brillouin zone, therefore the convergence with respect tok-point sampling is very important.In order to reduce the calculation cost in GW-BSE calculations,we respectively use 400 eV and 300 eV as the plane wave cutoff energy.As shown in Table 1, it can be seen that for the non-SOC case with thek-grid of 15×15×1,the 300 eV and 400 eV cutoffs yield basically the same results,with the band gaps of 1.432 eV and 1.427 eV and the exciton peak positions of 0.911 eV and 0.911 eV,respectively.Therefore, the cutoff is set to be 300 eV in our calculations.For H-VSSe,we have consider a series ofk-grids of 6×6×1,9×9×1,12×12×1 and 15×15×1, and calculate the quasiparticle energy gaps and the positions of the excitonic peaks, as listed in Table 1.As the density of thek-grid increases, the band gap becomes smaller, the exciton peak gradually is blue-shifted.As a result, the calculated binding energy as the difference between the quasiparticle gap and the position of the first two excitonic peaks is also reduced simultaneously.The results in Table 1 show that good convergence has been achieved at thek-grid of 15×15×1.It can also be observed in Table 1 and Fig.6 that the difference of the gap atKand?Kis about 0.18 eV and the difference of the BSE peak positions is almost of the same value,both of which are almost invariant with respect to thekgrids.Table 1 also reveals that the?Kvalley has a larger band gap and a larger excitonic binding energy, suggesting that a larger gap leads to weaker screening.

    Fig.6.The calculated imaginary parts of complex dielectric function ε2(ω) of H-VSSe using different k-grids by BSE/GW method.The calculated spectra in panels (a)–(d) correspond to 6×6×1, 9×9×1,12×12×1 and 15×15×1 k-grids,respectively.The red and blue dash lines denote the absorption peaks due to the optical transitions at valley K and ?K without considering the electron–hole interaction.The numbers give the exciton binding energy.

    4.Conclusion

    We have investigated the optical properties of a ferrovalley material, Janus H-VSSe, by first-principles calculations.To accurately calculate the band gap,the GW0method based on many body perturbation is used.Both PBE and GW calculations show that H-VSSe is ferromagnetic.The GW gaps are found to be about two times larger than the PBE gaps,suggesting strong many body effects.The band gaps at the two inequivalent valleys degenerate in the absence of the SOC,and they become different with one gap increasing and the other one decreasing after the SOC is turned on.On the top of the GW calculation, the BSE is solved to obtain the optical spectrum including the electron–hole interaction.The binding energy of the lowest BSE peak in the excitonic spectrum corresponding to the optical gap, is much lower than that of the quasiparticle GW gap, which proves that the exciton effect is strong in H-VSSe.This BSE peak is split into two peaks by SOC.The splitting is about the same as the difference of the GW band gaps at the two inequivalent valleys in the presence of SOC.Our results show that the band structure of ferrovalley Janus H-VSSe is very different from that of MoS2.The two lowest BSE peaks in the optical spectrum of H-VSSe are from the two inequivalent valleys with different gaps,in contrast to the A and B exciton peaks of MoS2which are from the same valley.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No.11874315) and the Postgraduate Scientific Research Innovation Project of Hunan Province of China(Grant No.CX20220663).

    猜你喜歡
    向陽
    向陽而生
    哈哈畫報(2022年6期)2022-07-09 09:46:12
    “舌”從口出
    絢爛的“光”
    三月頭 驚蟄到
    臘月里來聊“臘”字
    向陽而生
    電閃雷鳴
    說“南”道“北”
    閱讀(低年級)(2021年2期)2021-04-08 02:16:27
    字海拾“貝”
    国产精品福利在线免费观看| 午夜老司机福利剧场| 99久久精品热视频| 国产黄色免费在线视频| 午夜视频国产福利| 久久99热6这里只有精品| 久久 成人 亚洲| .国产精品久久| 伊人久久国产一区二区| 男人和女人高潮做爰伦理| 一级毛片电影观看| 国产精品久久久久久久电影| 乱人伦中国视频| 亚洲精品日本国产第一区| 一级毛片久久久久久久久女| av.在线天堂| 亚洲成人av在线免费| 国产伦在线观看视频一区| 中文在线观看免费www的网站| 观看免费一级毛片| 蜜桃在线观看..| 亚洲av二区三区四区| 亚洲久久久国产精品| 国产有黄有色有爽视频| 国产真实伦视频高清在线观看| 日韩大片免费观看网站| 国产精品欧美亚洲77777| 国产亚洲91精品色在线| 婷婷色麻豆天堂久久| www.av在线官网国产| 91成人精品电影| 国语对白做爰xxxⅹ性视频网站| 一本大道久久a久久精品| 天堂俺去俺来也www色官网| 少妇精品久久久久久久| 国产淫语在线视频| 亚洲国产精品999| 国产av精品麻豆| av在线观看视频网站免费| 亚洲第一区二区三区不卡| 高清在线视频一区二区三区| 国产爽快片一区二区三区| 国产爽快片一区二区三区| videos熟女内射| 在线观看人妻少妇| 97在线人人人人妻| 人妻系列 视频| 欧美日韩av久久| 国产免费一区二区三区四区乱码| 国产成人91sexporn| 亚洲真实伦在线观看| 国产精品一区二区三区四区免费观看| 国产精品蜜桃在线观看| 国产69精品久久久久777片| 妹子高潮喷水视频| 国产日韩欧美视频二区| 51国产日韩欧美| 国产精品一区www在线观看| 亚洲色图综合在线观看| 国产av国产精品国产| 2018国产大陆天天弄谢| 偷拍熟女少妇极品色| 一级毛片久久久久久久久女| 啦啦啦在线观看免费高清www| 久久久午夜欧美精品| 国产熟女午夜一区二区三区 | 欧美成人精品欧美一级黄| 亚洲国产精品国产精品| 18+在线观看网站| 人人妻人人爽人人添夜夜欢视频 | 亚洲av二区三区四区| 欧美激情国产日韩精品一区| 亚洲精品一二三| 人妻 亚洲 视频| 亚洲在久久综合| 成人免费观看视频高清| 国产av精品麻豆| 男的添女的下面高潮视频| 国产黄色免费在线视频| 少妇丰满av| 亚洲欧美成人综合另类久久久| 免费播放大片免费观看视频在线观看| 亚洲精品日韩av片在线观看| 观看av在线不卡| 777米奇影视久久| 一边亲一边摸免费视频| 亚洲精品色激情综合| 亚洲欧美成人综合另类久久久| 国产精品福利在线免费观看| 交换朋友夫妻互换小说| 男女啪啪激烈高潮av片| 日本av免费视频播放| 亚洲综合色惰| 少妇人妻 视频| 亚洲精品色激情综合| 色哟哟·www| 亚洲精品国产色婷婷电影| 中文字幕av电影在线播放| 亚洲高清免费不卡视频| 少妇 在线观看| 亚洲国产毛片av蜜桃av| 亚洲久久久国产精品| 国产欧美日韩一区二区三区在线 | 精品少妇内射三级| 大片免费播放器 马上看| 少妇熟女欧美另类| 精品视频人人做人人爽| 免费大片黄手机在线观看| 日本与韩国留学比较| 九色成人免费人妻av| 久久综合国产亚洲精品| 一边亲一边摸免费视频| av免费在线看不卡| 97在线视频观看| 噜噜噜噜噜久久久久久91| 国产亚洲午夜精品一区二区久久| 国产成人精品婷婷| 一边亲一边摸免费视频| 少妇人妻久久综合中文| 国产伦精品一区二区三区视频9| 精品久久久久久久久亚洲| 日日撸夜夜添| 91在线精品国自产拍蜜月| 亚洲va在线va天堂va国产| 亚洲综合精品二区| 中文乱码字字幕精品一区二区三区| 曰老女人黄片| 午夜精品国产一区二区电影| 男女无遮挡免费网站观看| 十八禁网站网址无遮挡 | 搡女人真爽免费视频火全软件| 中国三级夫妇交换| av一本久久久久| 国产成人免费无遮挡视频| 午夜激情福利司机影院| 欧美成人午夜免费资源| 亚洲av不卡在线观看| 国产精品麻豆人妻色哟哟久久| 国产又色又爽无遮挡免| 午夜免费观看性视频| 一级爰片在线观看| 国产淫语在线视频| 日韩电影二区| 亚洲性久久影院| 免费av不卡在线播放| 国产熟女欧美一区二区| freevideosex欧美| 色吧在线观看| 免费观看无遮挡的男女| 极品教师在线视频| 免费看光身美女| 国产精品无大码| 黄色怎么调成土黄色| 色视频www国产| 亚洲性久久影院| 亚洲精品自拍成人| 国国产精品蜜臀av免费| 日韩亚洲欧美综合| 一个人免费看片子| 日本-黄色视频高清免费观看| 97超视频在线观看视频| 春色校园在线视频观看| 亚洲精品视频女| 亚洲国产精品一区二区三区在线| 交换朋友夫妻互换小说| 欧美日韩在线观看h| 亚洲精品乱久久久久久| 精品久久久久久久久av| 欧美日韩视频高清一区二区三区二| 一本大道久久a久久精品| 欧美xxxx性猛交bbbb| 日本黄色片子视频| av在线app专区| 国产毛片在线视频| 成人免费观看视频高清| 边亲边吃奶的免费视频| 国产精品福利在线免费观看| 国产精品国产三级国产av玫瑰| 啦啦啦在线观看免费高清www| a级毛片免费高清观看在线播放| 黄色怎么调成土黄色| 久久韩国三级中文字幕| 国产精品一区www在线观看| 一级av片app| 国产精品麻豆人妻色哟哟久久| 欧美高清成人免费视频www| 久久久久久久久久成人| 亚洲电影在线观看av| av在线观看视频网站免费| 有码 亚洲区| 老司机影院成人| 久久久a久久爽久久v久久| av天堂中文字幕网| 亚洲伊人久久精品综合| 免费观看无遮挡的男女| 国产欧美日韩一区二区三区在线 | 欧美xxxx性猛交bbbb| av黄色大香蕉| 日韩一区二区视频免费看| 九草在线视频观看| 日本免费在线观看一区| 如日韩欧美国产精品一区二区三区 | 人妻制服诱惑在线中文字幕| 精品视频人人做人人爽| 欧美三级亚洲精品| 亚洲av福利一区| 精品一区二区三区视频在线| 中文在线观看免费www的网站| 黄色一级大片看看| 男的添女的下面高潮视频| 久久人人爽人人爽人人片va| 热99国产精品久久久久久7| 熟妇人妻不卡中文字幕| 在线播放无遮挡| 中文天堂在线官网| 夫妻午夜视频| 老司机亚洲免费影院| 久久久久久人妻| 在线天堂最新版资源| 国产欧美另类精品又又久久亚洲欧美| 视频中文字幕在线观看| 国产美女午夜福利| 在线观看免费视频网站a站| 精品人妻偷拍中文字幕| 91久久精品国产一区二区三区| 狂野欧美激情性bbbbbb| 欧美日韩亚洲高清精品| 国产日韩欧美在线精品| 午夜福利,免费看| 国产精品久久久久久久电影| 亚洲精品久久久久久婷婷小说| 国产亚洲最大av| 我要看黄色一级片免费的| 久久精品国产亚洲av天美| 国产一区二区三区综合在线观看 | 亚洲精品成人av观看孕妇| 99re6热这里在线精品视频| 深夜a级毛片| 免费观看性生交大片5| 亚洲国产精品成人久久小说| 国产高清三级在线| 边亲边吃奶的免费视频| 69精品国产乱码久久久| √禁漫天堂资源中文www| 最近手机中文字幕大全| av线在线观看网站| 看免费成人av毛片| 亚洲欧洲国产日韩| 久久99热这里只频精品6学生| 人妻系列 视频| 国产精品不卡视频一区二区| 亚洲激情五月婷婷啪啪| 欧美精品国产亚洲| 嫩草影院新地址| 纯流量卡能插随身wifi吗| av天堂中文字幕网| 女人精品久久久久毛片| 五月天丁香电影| 日本欧美视频一区| 在线观看av片永久免费下载| 久久影院123| 一级av片app| 亚洲,欧美,日韩| 伊人亚洲综合成人网| 伦理电影免费视频| 在线 av 中文字幕| 免费人成在线观看视频色| 亚洲欧美精品自产自拍| 精品久久久久久久久av| 日韩 亚洲 欧美在线| 成人综合一区亚洲| 高清视频免费观看一区二区| 我的老师免费观看完整版| 18禁裸乳无遮挡动漫免费视频| 亚洲成人手机| 亚洲精品第二区| a级片在线免费高清观看视频| 日本免费在线观看一区| 少妇人妻 视频| 观看美女的网站| 精品亚洲成国产av| 国产精品一区二区性色av| 亚洲内射少妇av| 老司机影院成人| 国产欧美日韩精品一区二区| 欧美最新免费一区二区三区| 亚洲激情五月婷婷啪啪| 一本—道久久a久久精品蜜桃钙片| 99九九线精品视频在线观看视频| 亚洲精品国产av成人精品| 如何舔出高潮| www.av在线官网国产| 久久精品久久久久久噜噜老黄| 美女内射精品一级片tv| 国产亚洲av片在线观看秒播厂| 九九在线视频观看精品| 日韩不卡一区二区三区视频在线| 精品卡一卡二卡四卡免费| 欧美丝袜亚洲另类| 日韩在线高清观看一区二区三区| 人体艺术视频欧美日本| 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 久久久精品94久久精品| 一区二区三区四区激情视频| 如何舔出高潮| 人人妻人人爽人人添夜夜欢视频 | 成年人免费黄色播放视频 | 日韩中文字幕视频在线看片| 亚洲内射少妇av| 国产精品久久久久成人av| 亚洲精品456在线播放app| 午夜福利,免费看| 日本免费在线观看一区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产色婷婷电影| 春色校园在线视频观看| 久久精品国产a三级三级三级| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 2022亚洲国产成人精品| 久久人人爽人人爽人人片va| 免费av中文字幕在线| 高清欧美精品videossex| 国产爽快片一区二区三区| av在线老鸭窝| 三级经典国产精品| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 国产免费一区二区三区四区乱码| 妹子高潮喷水视频| tube8黄色片| 中文资源天堂在线| 最近中文字幕2019免费版| 亚洲欧美精品专区久久| 大片电影免费在线观看免费| 午夜福利视频精品| 青春草国产在线视频| 国产伦精品一区二区三区四那| 免费观看在线日韩| 只有这里有精品99| 99久久中文字幕三级久久日本| 在线观看美女被高潮喷水网站| 王馨瑶露胸无遮挡在线观看| 午夜激情福利司机影院| 乱码一卡2卡4卡精品| 国产成人午夜福利电影在线观看| av福利片在线观看| 日产精品乱码卡一卡2卡三| 国产精品人妻久久久影院| 卡戴珊不雅视频在线播放| 黑人巨大精品欧美一区二区蜜桃 | 亚洲高清免费不卡视频| 精品亚洲乱码少妇综合久久| 国产精品.久久久| 精品一区二区免费观看| 2021少妇久久久久久久久久久| 尾随美女入室| 日日撸夜夜添| 下体分泌物呈黄色| 99re6热这里在线精品视频| 99久久中文字幕三级久久日本| 日韩免费高清中文字幕av| 男人添女人高潮全过程视频| 男人舔奶头视频| 天美传媒精品一区二区| 久久人人爽人人片av| 亚洲无线观看免费| 精品熟女少妇av免费看| 久久久精品94久久精品| 国产无遮挡羞羞视频在线观看| 国产成人精品福利久久| 亚洲自偷自拍三级| 内地一区二区视频在线| 最新的欧美精品一区二区| 高清欧美精品videossex| 赤兔流量卡办理| 久久精品国产自在天天线| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 少妇人妻久久综合中文| 建设人人有责人人尽责人人享有的| 日本免费在线观看一区| 日本爱情动作片www.在线观看| 欧美精品高潮呻吟av久久| 精华霜和精华液先用哪个| 一本大道久久a久久精品| 国产免费又黄又爽又色| 欧美精品人与动牲交sv欧美| 男女国产视频网站| 亚洲国产色片| 成人综合一区亚洲| 欧美精品一区二区大全| 午夜激情久久久久久久| 男人爽女人下面视频在线观看| 成年女人在线观看亚洲视频| 一区二区三区精品91| av国产久精品久网站免费入址| 久久久国产欧美日韩av| 日日啪夜夜撸| 美女内射精品一级片tv| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 丰满人妻一区二区三区视频av| 欧美日韩国产mv在线观看视频| av线在线观看网站| av福利片在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久毛片免费看一区二区三区| 在线观看免费日韩欧美大片 | 精品久久久久久久久av| 下体分泌物呈黄色| 久热这里只有精品99| 亚洲精品视频女| 精品一区在线观看国产| 日韩 亚洲 欧美在线| 两个人免费观看高清视频 | 精品久久久精品久久久| 亚洲av在线观看美女高潮| 色网站视频免费| 日本wwww免费看| 国产免费一区二区三区四区乱码| 老熟女久久久| 久久久久久久久久人人人人人人| 黑人高潮一二区| 久久久久国产精品人妻一区二区| 国产精品99久久久久久久久| 少妇丰满av| 精品久久久精品久久久| 国产免费又黄又爽又色| 一区二区三区精品91| 国产在视频线精品| 国产探花极品一区二区| 啦啦啦在线观看免费高清www| 青春草国产在线视频| 国产欧美亚洲国产| 黑人高潮一二区| 在线观看www视频免费| 久久久久国产网址| 亚洲精品色激情综合| 免费看av在线观看网站| 肉色欧美久久久久久久蜜桃| 视频中文字幕在线观看| 一级毛片aaaaaa免费看小| 国产熟女午夜一区二区三区 | 中文字幕精品免费在线观看视频 | 18禁在线无遮挡免费观看视频| av专区在线播放| 日本色播在线视频| 成年人午夜在线观看视频| 久久久精品免费免费高清| 久久久久久久久久人人人人人人| 亚洲一区二区三区欧美精品| 亚洲精品一二三| 免费观看性生交大片5| 精品人妻一区二区三区麻豆| 寂寞人妻少妇视频99o| 一本色道久久久久久精品综合| 国内精品宾馆在线| 久久久精品免费免费高清| 永久免费av网站大全| 青春草亚洲视频在线观看| 亚洲成人一二三区av| 大陆偷拍与自拍| 九色成人免费人妻av| 在线观看www视频免费| 免费观看在线日韩| 噜噜噜噜噜久久久久久91| 国产视频内射| 久久久国产精品麻豆| 国产男人的电影天堂91| 国产深夜福利视频在线观看| 丝瓜视频免费看黄片| 十八禁网站网址无遮挡 | 一级黄片播放器| 日韩,欧美,国产一区二区三区| 国产国拍精品亚洲av在线观看| 高清毛片免费看| 最黄视频免费看| 青春草国产在线视频| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| 制服丝袜香蕉在线| av国产久精品久网站免费入址| 国产精品国产av在线观看| 中国三级夫妇交换| 啦啦啦啦在线视频资源| 免费观看在线日韩| 人人澡人人妻人| 精品一品国产午夜福利视频| 国产精品成人在线| 插阴视频在线观看视频| 久久这里有精品视频免费| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 精品少妇黑人巨大在线播放| 午夜激情久久久久久久| 久久久久久久国产电影| 伊人亚洲综合成人网| 精品少妇内射三级| 在线播放无遮挡| 亚洲国产精品专区欧美| 亚洲精品中文字幕在线视频 | 深夜a级毛片| 亚洲成人一二三区av| 亚洲一区二区三区欧美精品| 日韩欧美精品免费久久| 欧美人与善性xxx| xxx大片免费视频| 如何舔出高潮| 欧美xxⅹ黑人| 嫩草影院新地址| 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 久久久久网色| 国产精品一区二区三区四区免费观看| 日韩av免费高清视频| 欧美 日韩 精品 国产| 插逼视频在线观看| 国语对白做爰xxxⅹ性视频网站| 久久久久国产网址| 青春草亚洲视频在线观看| 久久久精品免费免费高清| 亚洲欧洲国产日韩| 丝袜在线中文字幕| 天堂中文最新版在线下载| 天堂8中文在线网| 精品一区二区三卡| 国产一区二区在线观看av| 久久久久精品性色| 国产成人精品福利久久| 一级片'在线观看视频| 老熟女久久久| 亚洲天堂av无毛| 亚洲精品中文字幕在线视频 | 精品国产乱码久久久久久小说| 另类精品久久| 久久99精品国语久久久| 一级黄片播放器| 黄片无遮挡物在线观看| 久久99热6这里只有精品| av福利片在线| 熟妇人妻不卡中文字幕| 亚洲伊人久久精品综合| 免费黄网站久久成人精品| 亚洲综合色惰| 久久精品熟女亚洲av麻豆精品| 99热网站在线观看| 男人添女人高潮全过程视频| 日韩av免费高清视频| a级一级毛片免费在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一av免费看| 97超视频在线观看视频| 香蕉精品网在线| av播播在线观看一区| 久久久久久久大尺度免费视频| 亚洲av男天堂| 99久久精品一区二区三区| 伦理电影免费视频| 亚洲性久久影院| 少妇猛男粗大的猛烈进出视频| 免费观看在线日韩| 国产片特级美女逼逼视频| 亚洲欧美精品专区久久| 老熟女久久久| 精品久久久久久久久亚洲| av在线老鸭窝| 欧美另类一区| 久久鲁丝午夜福利片| av天堂中文字幕网| 亚洲欧美清纯卡通| 美女大奶头黄色视频| 色视频www国产| 少妇丰满av| 精品亚洲成国产av| 一级a做视频免费观看| 日韩,欧美,国产一区二区三区| 插阴视频在线观看视频| 国产黄片美女视频| 好男人视频免费观看在线| av.在线天堂| 丝袜脚勾引网站| 亚洲天堂av无毛| 晚上一个人看的免费电影| 国产精品福利在线免费观看| 乱系列少妇在线播放| av黄色大香蕉| 一区二区三区精品91| 晚上一个人看的免费电影| 菩萨蛮人人尽说江南好唐韦庄| 日本黄色片子视频| 日韩一本色道免费dvd| 一级av片app| 纵有疾风起免费观看全集完整版| 黄色毛片三级朝国网站 | 噜噜噜噜噜久久久久久91| 国产探花极品一区二区| 亚洲欧美清纯卡通| 国产黄片美女视频| 99久久精品国产国产毛片| 亚洲真实伦在线观看| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www | 国产女主播在线喷水免费视频网站| 一级av片app| 亚洲国产欧美在线一区| 国产精品99久久久久久久久| 婷婷色综合www| av播播在线观看一区| 一个人免费看片子| 一级毛片电影观看| 亚洲经典国产精华液单| 熟女人妻精品中文字幕| 国内揄拍国产精品人妻在线|