• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Essential proteins identification method based on four-order distances and subcellular localization information

    2024-01-25 07:14:58PengliLu盧鵬麗YuZhong鐘雨andPeishiYang楊培實(shí)
    Chinese Physics B 2024年1期

    Pengli Lu(盧鵬麗), Yu Zhong(鐘雨), and Peishi Yang(楊培實(shí))

    1School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China

    2School of Tianmen Vocational College,Tianmen 431700,China

    Keywords: protein–protein interaction(PPI)network,essential proteins,four-order distances,subcellular localization information

    1.Introduction

    Essential proteins are an integral part of cell life and play an important role in maintaining the fundamental functions of organisms, whose absence would lead to the death or sterility of the organism.[1]Therefore,accurate identification of essential proteins has an important place in biomedical research.Traditional essential proteins identification relies on biological experimental methods,such as single gene knockout,[2]RNA interference[3]and conditional gene knockout,[4]which have a high degree of accuracy but often require a great deal of time and a high amount of money.

    With the development of high throughput technologies,a huge amount of PPI network data has been mined, which makes it possible to use computational methods to identify essential proteins.Many methods based on the centrality of PPI network topology properties have also been proposed to identify essential proteins, such as degree centrality (DC),[5]betweenness centrality(BC),[6]eigenvector centrality(EC),[7]closeness centrality (CC),[8]subgraph centrality (SC),[9]local average center(LAC),[10]network centrality(NC),[11]and so on.However, there is a large amount of noisy data in the PPI network, which makes these centrality methods for identifying essential proteins less accurate.To overcome this problem, many researchers have tried to use biological information to enhance accuracy in identifying essential proteins.Currently, the main biological data used by researchers includes gene ontology(GO)terms,[12]subcellular localization information,[13]gene expression sequence,[14,15]and protein complexes information.[16]For example, Hsinget al.[12]developed a central protein classifier using GO terms to identify the central protein.The LDS method for identifying essential proteins was proposed by Liet al.,[17]which combines local fractal dimension and subcellular localization information.Liet al.and Tanget al.proposed the Pec[14]method and the Wdc[18]method using the topological properties of PPI network and gene expression data, respectively.Liet al.[16]proposed the UC method by considering the number of proteins that are present in the complexes.Luet al.[19]proposed the CENC method for essential proteins identification studies by using protein complex information and the node clustering coefficients.Although these methods have yielded good results, it is still challenging to better combine the topological properties of PPI network and biological information to improve the performance of identifying essential proteins.As an optimization algorithm, the random walks method is also widely used to identify essential proteins.For example, Leiet al.[20]proposed the RWEP algorithm, which uses the random walks method to integrate the topological properties of PPI networks and four biological information to identify essential proteins,and obtained an excellent experimental result.In addition,the random walks method has been applied to link prediction,[21]recommender systems,[22]ranking,[23]community detection,[24]and transmission dynamics.[25]

    Although these methods have good accuracy and have contributed to the development of the field of bioinformatics,however,they usually only consider the interaction properties between nodes and neighboring nodes in a PPI network,while ignoring the interactions between nodes at higher-order distances.To break these limitations,in this paper a new method called DSEP is proposed that combines the four-order distances and subcellular localization information of a PPI network to identify essential proteins.In DSEP,we first construct a topological information matrix based on the four-order distances of PPI network, we then construct a subcellular localization information matrix based on the four-order distances,and we finally use the random walks method to combine the topological information matrix of PPI network and the subcellular localization information matrix to identify essential proteins.To evaluate the properties of the DSEP algorithm, we used three PPI network data sets (i.e., BioGRID, YHQ, and YMBD).The experiment revealed that DSEP has an outstanding performance in identifying essential proteins compared to 11 comparison methods.

    2.Methods

    The PPI network can be expressed asG=(V(G),E(G)),whereV(G)={v1,v2,...,vn}denotes the set of vertices in the PPI network andE(G)={e1,e2,...,em}denotes the set of edges.The distance between verticesviandvjis denoted asdi,j.

    The DSEP algorithm for scoring proteins in PPI networks has the following three main steps,and the algorithm flowchart is shown in Fig.1.

    Fig.1.Flowchart of DSEP.

    Step 1 Calculate the four-order distances-based topological information matrix in a PPI network.

    Step 2 Calculate the information matrix of subcellular localization based on four-order distances in a PPI network.

    Step 3 Based on these two similarity matrices, the proteins are scored using the random walks method.

    In Ref.[26], the authors report that the number of paths with distancekbetween nodesviandvjin graphGis(Adenotes the adjacency matrix of graphG).Therefore,we proposed a method to calculate the finite-order distance matrix of the graphG(see step 8 of Algorithm 1).In solving the distance matrix of the network,the idea of Dijkstra’s algorithm is often used to solve the distance matrix,which has a time complexity of O(n3), while our proposed DSEP algorithm only needs to use the four-order distances.With our proposed method, the time complexity of solving the finite-order distances can be reduced to O(n2),which greatly reduces the time complexity of the DSEP algorithm.

    2.1.Topological information matrix based on four-order distances

    Most real networks are known to satisfy a power-law distribution.Based on this, Liet al.,[17]using the local fractal dimension, proposed the following formula to calculate the scores of nodes in the PPI network:

    whereBvi(r) denotes the sum of those nodes with distance from nodevibetween 0 tor.Dvidenotes the score of nodevi,andCdenotes a constant.

    Equation(1)can be expressed asDvi=m·lnBvi(r)/lnr.In this equation,each order of distance of nodevihas the same importance for nodevi, which is inconsistent with the actual situation.Therefore, we define the following formula to calculate the topological similarity of nodes in the PPI network:

    whereci(i=1,2,3,4) denotes the coefficient of thei-th order distance of nodevi,andri(i=1,2,3,4)denotes the total number of nodes of thei-th order distance of nodevi.In this paper, we have mainly considered the four-order distances ofvi.

    Based on the equation defined above,we construct a fourorder distances-based topological information matrix,defined as follows:

    whererdij(i) (di,j= 1,2,3,4) denotes the total number of nodes in the PPI network with distancejto nodevi.

    2.2.Information matrix for subcellular localization based on four-order distances

    Subcellular localization information plays an indispensable role in the study of gene function, which represents the specific location of proteins or gene expression products in the cell.We analyzed the involvement of proteins in 11 intracellular locations and defined a matrix of information on the subcellular localization of proteins as follows:

    Combining Eq.(4),we define the information matrix for subcellular localization based on four-order distances

    wheresrdij(i)(di,j=1,2,3,4)denotes the number of proteins in the PPI network which are distant from nodeviasjand are jointly involved in subcellular processes.

    2.3.DSEP algorithm

    We propose the DSEP algorithm based on the random walks method.We chose this approach because of its ability to integrate well the topological properties of the network.The traditional random walks method only considers the topological properties of the network.In 2021, Ahmedet al.[27]proposed the EPD-RW method by combining four biological properties of proteins and eight topology-based centrality methods using the random walks method.The random walks are iteratively formulated as follows:

    wherePdenotes the proteins’ topological similarity matrix,Bdenotes the biological property similarity matrix of the proteins,andeis an 1×n-dimensional(ndenotes the total amount of proteins)vector with value all 1/n,which denotes the probability vector of returning to the start node in a random walk.

    Equation (6) combines the biological and topological properties of proteins well but the probability of each restart is 1/n, which does not reflect the actual situation effectively.Therefore,we propose the following equation for the random walks method:

    whereL'is the matrix obtained by normalizing the matrixL(defined by Eq.(8)), which represents the transfer probability matrix in the random walks method, andT'is the matrix evolved from the matrixT(the exact process can be seen in Eqs.(9)and(10)),which represents the probability of returning to the starting position in the random walks method.

    In order not to destroy the distance information contained in the matrix,we normalizeLaccording to a new normalization method as follows:

    where MS-L denotes the maximum row sum of matrixL.

    We obtained the scoring matrixCof the proteins based on the PPI network topology using the row sum of matrixT.The definition is as follows:

    After that,we normalizedCusing the sigmoid function,so that the restart probability of each node is 0–0.5.

    Algorithm 1 DSEP Input:1: The data of PPI network G=(V,E);2: The adjacency matrix A of the PPI network;3: Subcellular localization information;4: Parameters in Table 2;Stopping error ε =0.000001;Output:5: The sorting vector q of the PPI network;6: Calculate the matrices A2,A3,A4 through the matrix A;7: Initialize the four-order distances matrix D of the graph G to be a matrix with all values of n×n being zero;8: for each vi,vj ∈V(G)do if Ai,j =1 Di,j =1 elif A2i,j ≥1 Di,j =2 elif A3i,j ≥1 Di,j =3 elif A4i,j ≥1 Di,j =4 9: end for 10: Calculating the four-order distances-based topological information matrix T by Eq.(3);11: Calculating the information matrix of subcellular localization based on four-order distances L by Eqs.(4)and(5);12: Normalize the matrix L to obtain the matrix L' by Eq.(8);13: Reconstruct matrix T to get matrix T' by Eqs.(9)and(10);14: Initialize the vector q(t)=(1,1,...,1);15: while‖q(t+1)?q(t)‖≥ε do Compute q(t+1) by Eq.(7);16: end while 17: q=q(t+1);18: return q

    3.Results and discussion

    3.1.Experimental data

    To evaluate the performance of DSEP,we have performed a computational analysis of the PPI network of Saccharomyces cerevisiae, which is the most integral and reliably available single-cell network.We used data from three PPI networks,which are BioGRID,[28]YHQ,[29]and YMBD.The BioGRID data came from the BioGRID database,[28]the YHQ data was constructed by Yuet al.,[29]and the YMBD data comes from the Mark Gerstein Lab website.After removing duplicate edges and self-interaction from the data,the network data are shown in Table 1.The data for standard essential proteins are integrated from the following data sets: MIPS,[30]SGD,[31]DEG,[32]and SGDP.[33]Subcellular localization information data is downloaded from COMPARTMENTS database,[34]which contains 11 types of subcellular localization information.

    3.2.Parameter settings

    In this paper,all of our parameters are locally optimal solutions obtained in the various modules of Algorithm 1.For example, in the BioGRID data, we chose the parameters for the best performance case of identifying essential proteins,which was to obtain the specific values (proportions) of parametersc1,c2,c3,c4,here we set to 0–10 to traverse,respectively,and bring them into Eq.(3),find the row sums,and rank them in descending order.The parameters that we chose are shown in Table 2.

    Table 1.The information contained in the three PPI networks:BioGRID,YHQ,YMBD.

    Table 2.Parameters in Algorithm 1.

    3.3.Comparative analysis with other methods

    To validate the performance of our proposed DSEP algorithm, we comprehensively compared DSEP with 11 other algorithms that excelled in identifying essential proteins.The experiments showed that DSEP outperformed these compared methods.In the following comparison experiments,the compared methods are DC,[5]BC,[6]EC,[7]CC,[8]SC,[9]LAC,[10]NC,[11]UC,[16]Pec,[14]Wdc,[18]and CENC.[19]

    3.3.1.Histograms

    A histogram can visualize the performance difference of various methods in correctly identifying the number of essential proteins.First, we ranked the DSEP and 11 centrality methods in sorted descending order with their scores.After that,the top 100–600 selected proteins were used as the candidate essential protein set.Finally,the number of true essential proteins in the candidate essential protein set was derived by comparing the standard essential protein set.The results of the experiments are shown in Figs.2–4.

    Figure 2 shows the identification results of DSEP with 11 comparison methods on the BioGRID data set.DSEP identified 24, 39, 50, 46, 39, and 50 more essential proteins when compared to the best identification results of these 11 methods in the top 100–600,respectively.

    Figure 3 shows the identification results of DSEP with 11 comparison methods on the YHQ data set.DSEP identified 30,59,77,63,76,and 87 more essential proteins when compared to the best identification results of these 11 methods in the top 100–600,respectively.

    Figure 4 shows the identification results of DSEP with 11 comparison methods on the YMBD data set.DSEP identified 13,21,35,47,53,and 51 more essential proteins when compared to the best identification results of these 11 methods in the top 100–600,respectively.

    This analysis shows that DSEP was significantly better at accurately identifying the number of essential proteins in the top 100–600 of the BioGRID,YHQ,and YMBD data sets than the 11 comparison methods.

    Fig.3.Comparison of the number of essential proteins accurately identified by DSEP with 11 other methods on the YHQ data set.

    Fig.4.Comparison of the number of essential proteins accurately identified by DSEP with 11 other methods on the YMBD data set.

    3.3.2.Six evaluation indicators

    To further assess the performance of our algorithm, we have compared DSEP with 11 other methods in a comprehensive manner under six evaluation metrics.These six evaluation metrics are sensitivity (SN), specificity (SP), positive predictive value(PPV),negative predictive value(NPV),F-measure(F),and accuracy(ACC),[16]which are defined as follows:

    where TP indicates the amount of protein positively predicted as essential, TN indicates the amount of protein positively predicted as non-essential, FP indicates the amount of nonessential protein falsely predicted as essential, and FN indicates the amount of essential protein falsely predicted as nonessential.

    We ranked the scores of the individual proteins in descending order and selected the top 20%of the proteins as the candidate essential protein set and the other 80% of the proteins as the candidate non-essential protein set.From comparing the standard essential protein sets,we were able to obtain the amount of correctly identified essential proteins in the candidate essential protein sets.Among these six statistical metrics,the higher the value of the metric indicates the better the execution of the algorithm.The comparison results of DSEP algorithm with 11 methods in these six indicators are shown in Table 3,and the experiments show that our algorithm is better than these comparison methods.

    3.3.3.TheP–Rcurves

    TheX-axis of the precision–recall curve(P–Rcurve)represents the recall and theY-axis represents the precision.In theP–Rcurve,the area enclosed by the curve and the axes is represented by AUPR.When the algorithm’s AUPR value is higher, the algorithm has a better performance.Figures 5–7 show theP–Rcurves of our DSEP algorithm and other 11 comparison methods on three different data sets (i.e., BioGRID, YHQ, and YMBD), and it is shown from the AUPR values that our algorithm performs better.The formulas for the Precision and Recall are defined as follows:

    3.3.4.ROC curves

    The ROC curve is also a good way to evaluate an algorithm’s good or bad performance.The area enclosed by the ROC curve and the coordinate axes is called AUC,and similar to AUPR, the higher the AUC value, the better the algorithm performs in the ROC curve,as shown in Figs.8–10,our algorithm outperforms the other 11 methods in the ROC curve.

    Table 3.Comparison of the DSEP algorithm with the other 11 methods in the six statistical indicators on three different data sets.

    Fig.5.The P–R curve of the DSEP algorithm and other 11 methods in the BioGRID data set.

    Fig.6.The P–R curve of the DSEP algorithm and other 11 methods in the YHQ data set.

    Fig.7.The P–R curve of the DSEP algorithm and other 11 methods in the YMBD data set.

    Fig.8.ROC curves of the DSEP algorithm and other 11 methods in the BioGRID data set.

    Fig.9.ROC curves of the DSEP algorithm and other 11 methods in the YHQ data set.

    Fig.10.ROC curves of the DSEP algorithm and other 11 methods in the YMBD data set.

    4.Conclusion

    In this paper,we propose an essential proteins identification algorithm based on four-order distances and a method to calculate finite-order distance combined with some knowledge of graph theory, which can effectively reduce the time complexity of solving the distance between nodes.To verify the performance of DSEP,we did comparative experiments on BioGRID,YHQ,and YMBD data sets using various evaluation methods against the existing 11 methods.The results of the experiments show that DSEP has an excellent performance.

    Acknowledgments

    Project supported by the Gansu Province Industrial Support Plan (Grant No.2023CYZC-25), the Natural Science Foundation of Gansu Province (Grant No.23JRRA770), and the National Natural Science Foundation of China (Grant No.62162040).

    久久久精品欧美日韩精品| 国产精品av视频在线免费观看| 日本 欧美在线| 精华霜和精华液先用哪个| 我的老师免费观看完整版| 亚洲中文字幕日韩| 老熟妇乱子伦视频在线观看| 亚洲国产日韩欧美精品在线观看 | 精品电影一区二区在线| 在线观看免费视频日本深夜| 又紧又爽又黄一区二区| 动漫黄色视频在线观看| 黄片小视频在线播放| 日本a在线网址| 亚洲一码二码三码区别大吗| 国产av又大| 夜夜爽天天搞| 男女午夜视频在线观看| 日韩成人在线观看一区二区三区| 美女高潮喷水抽搐中文字幕| 国产一区二区激情短视频| 亚洲七黄色美女视频| 18禁美女被吸乳视频| 我要搜黄色片| 国产av又大| 久久伊人香网站| 国产午夜精品论理片| 亚洲一区二区三区色噜噜| 2021天堂中文幕一二区在线观| 国产视频一区二区在线看| 日韩免费av在线播放| 99re在线观看精品视频| 天堂√8在线中文| 一二三四社区在线视频社区8| 天堂√8在线中文| 18禁美女被吸乳视频| 99久久无色码亚洲精品果冻| 麻豆成人午夜福利视频| 国产日本99.免费观看| 国产av又大| 1024香蕉在线观看| av在线天堂中文字幕| 中国美女看黄片| 久久这里只有精品19| 午夜福利成人在线免费观看| 国产成人av激情在线播放| 精品久久久久久久人妻蜜臀av| 国产精品电影一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产精品亚洲美女久久久| 亚洲自偷自拍图片 自拍| 国产亚洲精品av在线| 2021天堂中文幕一二区在线观| 日本免费一区二区三区高清不卡| 一区二区三区激情视频| 18禁观看日本| 99国产极品粉嫩在线观看| 男女下面进入的视频免费午夜| 香蕉av资源在线| 免费在线观看完整版高清| 国产免费av片在线观看野外av| 久久这里只有精品中国| 欧美黄色片欧美黄色片| 久久精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 精品国产乱码久久久久久男人| 欧美成人性av电影在线观看| 亚洲精品久久国产高清桃花| 香蕉国产在线看| 精品一区二区三区四区五区乱码| 国产v大片淫在线免费观看| 91麻豆av在线| 黑人欧美特级aaaaaa片| 麻豆一二三区av精品| 日本熟妇午夜| 成人特级黄色片久久久久久久| 国产高清视频在线播放一区| 日韩欧美 国产精品| 国产三级在线视频| 视频区欧美日本亚洲| 热99re8久久精品国产| 男男h啪啪无遮挡| 又粗又爽又猛毛片免费看| 国产精品日韩av在线免费观看| 久久久精品国产亚洲av高清涩受| 波多野结衣巨乳人妻| 久久欧美精品欧美久久欧美| 欧美性猛交╳xxx乱大交人| 久久久久久亚洲精品国产蜜桃av| 一本大道久久a久久精品| 国产一区在线观看成人免费| 成人午夜高清在线视频| 99热这里只有精品一区 | 欧美日韩国产亚洲二区| 精品久久久久久,| 亚洲av熟女| 法律面前人人平等表现在哪些方面| 欧美不卡视频在线免费观看 | 免费在线观看日本一区| 悠悠久久av| 19禁男女啪啪无遮挡网站| 女警被强在线播放| 中文字幕av在线有码专区| 我的老师免费观看完整版| 国产蜜桃级精品一区二区三区| 免费观看人在逋| 女生性感内裤真人,穿戴方法视频| 国产男靠女视频免费网站| 午夜福利18| 宅男免费午夜| 九色成人免费人妻av| 亚洲中文av在线| 久久精品国产亚洲av高清一级| 亚洲一码二码三码区别大吗| 91国产中文字幕| 在线观看日韩欧美| 一进一出抽搐动态| 中文在线观看免费www的网站 | 一区福利在线观看| 亚洲av电影在线进入| cao死你这个sao货| 在线观看免费午夜福利视频| 99热这里只有精品一区 | 国产爱豆传媒在线观看 | 黑人巨大精品欧美一区二区mp4| 日韩欧美三级三区| 亚洲欧美日韩高清专用| 一区二区三区国产精品乱码| 亚洲成人精品中文字幕电影| 国产成人精品久久二区二区91| 丰满人妻熟妇乱又伦精品不卡| 不卡一级毛片| 久久久久久国产a免费观看| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 国产欧美日韩一区二区三| 麻豆国产av国片精品| 久久久久久久久中文| 午夜福利18| 亚洲五月天丁香| 99热这里只有是精品50| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看电影 | 日本成人三级电影网站| 哪里可以看免费的av片| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 18禁国产床啪视频网站| 国产真实乱freesex| 欧美日本视频| 亚洲成人精品中文字幕电影| 亚洲精华国产精华精| 看免费av毛片| 国产亚洲精品第一综合不卡| 大型av网站在线播放| 91大片在线观看| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 欧美三级亚洲精品| 视频区欧美日本亚洲| 精品日产1卡2卡| 黑人巨大精品欧美一区二区mp4| 亚洲精品美女久久av网站| 免费在线观看成人毛片| 亚洲一区中文字幕在线| 美女黄网站色视频| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 精品国产美女av久久久久小说| 操出白浆在线播放| 欧美绝顶高潮抽搐喷水| 99久久精品热视频| 日韩中文字幕欧美一区二区| 日本成人三级电影网站| 国产精品日韩av在线免费观看| 中出人妻视频一区二区| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女| 国产一区二区在线观看日韩 | 国产男靠女视频免费网站| 国产精品久久久久久人妻精品电影| 正在播放国产对白刺激| 大型黄色视频在线免费观看| 国产成人精品无人区| www.精华液| 久久久久国产精品人妻aⅴ院| 久久久国产成人精品二区| 99热这里只有是精品50| 精品不卡国产一区二区三区| 久久婷婷成人综合色麻豆| 午夜免费观看网址| 亚洲av第一区精品v没综合| 1024手机看黄色片| 免费在线观看日本一区| ponron亚洲| 久久久久久大精品| 日本 欧美在线| 午夜福利成人在线免费观看| 久久国产精品人妻蜜桃| 欧美性长视频在线观看| 男女午夜视频在线观看| 国产精品九九99| 亚洲国产精品成人综合色| 久久性视频一级片| 国产单亲对白刺激| 中文字幕av在线有码专区| 99久久久亚洲精品蜜臀av| 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| 香蕉国产在线看| 日本三级黄在线观看| 又黄又爽又免费观看的视频| 又粗又爽又猛毛片免费看| 亚洲18禁久久av| 国产亚洲av嫩草精品影院| 级片在线观看| 亚洲午夜精品一区,二区,三区| 精华霜和精华液先用哪个| 90打野战视频偷拍视频| 午夜精品久久久久久毛片777| 欧美大码av| 国产精品99久久99久久久不卡| 19禁男女啪啪无遮挡网站| 色av中文字幕| 一进一出抽搐gif免费好疼| 一夜夜www| 午夜精品一区二区三区免费看| av中文乱码字幕在线| 亚洲一码二码三码区别大吗| 久久久久精品国产欧美久久久| 国产熟女xx| av福利片在线| 午夜精品一区二区三区免费看| 亚洲精品在线美女| 国产高清视频在线观看网站| 国产亚洲av嫩草精品影院| www.熟女人妻精品国产| 久久人妻av系列| 欧美性长视频在线观看| 天天躁夜夜躁狠狠躁躁| 1024香蕉在线观看| 91国产中文字幕| 少妇的丰满在线观看| 亚洲中文日韩欧美视频| 国产精品久久久久久久电影 | 精品久久久久久久久久久久久| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| 亚洲激情在线av| 18美女黄网站色大片免费观看| 欧美久久黑人一区二区| 日韩成人在线观看一区二区三区| 99在线视频只有这里精品首页| 亚洲国产精品合色在线| 九九热线精品视视频播放| 久久久久精品国产欧美久久久| 人人妻人人澡欧美一区二区| 国产av又大| 老司机在亚洲福利影院| 黄色视频,在线免费观看| 精品第一国产精品| 午夜福利欧美成人| 一进一出抽搐动态| 亚洲中文字幕日韩| av视频在线观看入口| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 此物有八面人人有两片| 国产精华一区二区三区| 欧美不卡视频在线免费观看 | 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲| 淫妇啪啪啪对白视频| 日韩 欧美 亚洲 中文字幕| 无人区码免费观看不卡| 中文字幕最新亚洲高清| 99国产极品粉嫩在线观看| 成年人黄色毛片网站| 亚洲av五月六月丁香网| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 草草在线视频免费看| 国产视频内射| 欧美一区二区精品小视频在线| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 亚洲18禁久久av| 久久久久性生活片| 国产精品乱码一区二三区的特点| 亚洲av日韩精品久久久久久密| 国产又黄又爽又无遮挡在线| 美女免费视频网站| 久久久精品国产亚洲av高清涩受| 色哟哟哟哟哟哟| 精品久久久久久久末码| 欧美精品啪啪一区二区三区| 九九热线精品视视频播放| 夜夜躁狠狠躁天天躁| 男女做爰动态图高潮gif福利片| 狂野欧美激情性xxxx| 久久精品人妻少妇| 最近在线观看免费完整版| 亚洲一区中文字幕在线| 制服丝袜大香蕉在线| 久久 成人 亚洲| 天堂动漫精品| 中文字幕最新亚洲高清| 少妇被粗大的猛进出69影院| 久久久国产成人精品二区| 97碰自拍视频| 国产真实乱freesex| 久久精品91蜜桃| 中国美女看黄片| 757午夜福利合集在线观看| 国产精品精品国产色婷婷| 亚洲精品av麻豆狂野| 国产高清视频在线观看网站| 国产人伦9x9x在线观看| av欧美777| 欧美一级毛片孕妇| 精品人妻1区二区| 欧美日韩一级在线毛片| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 成年版毛片免费区| 国产精品一及| 精品无人区乱码1区二区| 亚洲国产日韩欧美精品在线观看 | 国产三级黄色录像| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 岛国视频午夜一区免费看| 热99re8久久精品国产| 欧美绝顶高潮抽搐喷水| 国产免费av片在线观看野外av| 成人手机av| 亚洲成av人片在线播放无| 国产三级在线视频| 亚洲五月天丁香| 男女那种视频在线观看| 大型黄色视频在线免费观看| 老鸭窝网址在线观看| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 久久久久久久午夜电影| 成年免费大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 国产精品野战在线观看| 精华霜和精华液先用哪个| 国产成人精品久久二区二区91| 天堂影院成人在线观看| 91字幕亚洲| 国产精品久久久久久人妻精品电影| 亚洲av成人精品一区久久| 美女免费视频网站| 一进一出抽搐动态| 国产精品免费视频内射| 一个人观看的视频www高清免费观看 | 欧美黑人精品巨大| 色综合欧美亚洲国产小说| 一级a爱片免费观看的视频| 久久精品国产99精品国产亚洲性色| 人人妻人人澡欧美一区二区| 桃色一区二区三区在线观看| 午夜影院日韩av| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品第一综合不卡| 欧美丝袜亚洲另类 | 日韩三级视频一区二区三区| 国产探花在线观看一区二区| 一二三四社区在线视频社区8| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人性av电影在线观看| 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 两个人看的免费小视频| 亚洲真实伦在线观看| 日韩大码丰满熟妇| 中文字幕高清在线视频| 亚洲精品一区av在线观看| а√天堂www在线а√下载| 正在播放国产对白刺激| 久久婷婷成人综合色麻豆| 亚洲av熟女| 国产aⅴ精品一区二区三区波| 成人av一区二区三区在线看| 免费搜索国产男女视频| 丁香六月欧美| 色在线成人网| 午夜福利在线观看吧| 99精品在免费线老司机午夜| 美女免费视频网站| 这个男人来自地球电影免费观看| 久久久久免费精品人妻一区二区| www.999成人在线观看| 成人三级做爰电影| 国产精品综合久久久久久久免费| 亚洲七黄色美女视频| 淫妇啪啪啪对白视频| 国产蜜桃级精品一区二区三区| 亚洲人成伊人成综合网2020| 全区人妻精品视频| 亚洲九九香蕉| 怎么达到女性高潮| av欧美777| 99久久精品国产亚洲精品| 国产高清视频在线播放一区| 午夜激情福利司机影院| 午夜免费成人在线视频| 国产区一区二久久| av国产免费在线观看| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月| 成人18禁在线播放| 免费在线观看完整版高清| 精品国内亚洲2022精品成人| 亚洲av电影在线进入| 特级一级黄色大片| 99久久无色码亚洲精品果冻| 亚洲成人免费电影在线观看| 国产熟女午夜一区二区三区| 日韩欧美国产一区二区入口| 久久草成人影院| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 十八禁网站免费在线| 亚洲免费av在线视频| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站 | 一级作爱视频免费观看| 亚洲 欧美 日韩 在线 免费| 国产伦人伦偷精品视频| 亚洲专区字幕在线| 叶爱在线成人免费视频播放| 人人妻人人看人人澡| 久久精品综合一区二区三区| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 18禁国产床啪视频网站| 99热这里只有精品一区 | 午夜福利成人在线免费观看| 波多野结衣高清无吗| 国产麻豆成人av免费视频| 18禁观看日本| 美女 人体艺术 gogo| 精品一区二区三区视频在线观看免费| 桃红色精品国产亚洲av| 久久精品91蜜桃| 久久久久九九精品影院| 婷婷精品国产亚洲av| 十八禁网站免费在线| 久久人妻av系列| 中文字幕人成人乱码亚洲影| 久久这里只有精品19| 亚洲熟女毛片儿| 午夜福利在线观看吧| 国产精品一区二区三区四区免费观看 | 久久久久国产精品人妻aⅴ院| 亚洲人成77777在线视频| 国内久久婷婷六月综合欲色啪| 日韩欧美 国产精品| 十八禁人妻一区二区| 精品少妇一区二区三区视频日本电影| 免费人成视频x8x8入口观看| 久久久精品大字幕| 天堂动漫精品| 怎么达到女性高潮| 在线观看一区二区三区| 免费看日本二区| 欧美又色又爽又黄视频| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 国产精品久久久久久久电影 | 国产爱豆传媒在线观看 | 日韩欧美 国产精品| 国产亚洲av嫩草精品影院| 三级男女做爰猛烈吃奶摸视频| 中文字幕人妻丝袜一区二区| 免费观看精品视频网站| 琪琪午夜伦伦电影理论片6080| 91在线观看av| 国产精品免费一区二区三区在线| 欧美久久黑人一区二区| 99热只有精品国产| 国产精品一区二区免费欧美| 国产精品一及| 欧美大码av| 丰满的人妻完整版| 成人亚洲精品av一区二区| 在线视频色国产色| 久久草成人影院| 精华霜和精华液先用哪个| 色综合欧美亚洲国产小说| 国产真人三级小视频在线观看| 色av中文字幕| 午夜福利欧美成人| 熟女少妇亚洲综合色aaa.| av在线播放免费不卡| 91麻豆av在线| 亚洲欧美日韩无卡精品| www国产在线视频色| 巨乳人妻的诱惑在线观看| 欧美一级毛片孕妇| 国产高清激情床上av| 国产在线精品亚洲第一网站| www.999成人在线观看| 中文字幕高清在线视频| 搡老妇女老女人老熟妇| 欧美精品亚洲一区二区| 两性夫妻黄色片| 男人舔奶头视频| 久久草成人影院| 99久久精品热视频| 男女那种视频在线观看| 亚洲精品美女久久av网站| 国产激情欧美一区二区| 久久久久久大精品| 一本大道久久a久久精品| 一个人观看的视频www高清免费观看 | 最近在线观看免费完整版| 午夜福利高清视频| 老司机午夜十八禁免费视频| 国产一区二区在线观看日韩 | 久久久国产欧美日韩av| 午夜成年电影在线免费观看| 男女床上黄色一级片免费看| 啦啦啦观看免费观看视频高清| 国产一区二区激情短视频| 看黄色毛片网站| 18禁美女被吸乳视频| 变态另类成人亚洲欧美熟女| 欧美成狂野欧美在线观看| 国产精品综合久久久久久久免费| av福利片在线| 日韩欧美国产一区二区入口| 亚洲一区高清亚洲精品| 亚洲精品久久成人aⅴ小说| 制服人妻中文乱码| 哪里可以看免费的av片| 免费在线观看日本一区| 成在线人永久免费视频| 婷婷精品国产亚洲av| 精品国产乱码久久久久久男人| 国产精品国产高清国产av| 成人手机av| av中文乱码字幕在线| 亚洲av电影不卡..在线观看| 国产精品,欧美在线| 国产激情偷乱视频一区二区| 久久香蕉国产精品| 亚洲国产日韩欧美精品在线观看 | 日韩成人在线观看一区二区三区| 99久久综合精品五月天人人| 久久久精品大字幕| 一级a爱片免费观看的视频| 色av中文字幕| 两个人免费观看高清视频| 国产高清videossex| 亚洲av美国av| 午夜日韩欧美国产| 国产精品久久久久久人妻精品电影| 欧美日韩黄片免| 最新在线观看一区二区三区| 国产不卡一卡二| 国产片内射在线| 丰满人妻一区二区三区视频av | 国产不卡一卡二| 男女那种视频在线观看| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 成人三级做爰电影| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 少妇裸体淫交视频免费看高清 | 丁香欧美五月| 最新美女视频免费是黄的| 精品久久久久久久毛片微露脸| 色老头精品视频在线观看| 91国产中文字幕| 国产野战对白在线观看| 亚洲天堂国产精品一区在线| 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| 一个人免费在线观看的高清视频| 亚洲一区二区三区不卡视频| 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲免费av在线视频| 国产精品一及| netflix在线观看网站| 免费看十八禁软件| 午夜福利在线在线| 在线观看免费午夜福利视频| 欧美成人午夜精品| 99热6这里只有精品| av欧美777| 国产精品一区二区免费欧美| 90打野战视频偷拍视频| 不卡av一区二区三区| 日本 欧美在线| 999精品在线视频| 桃色一区二区三区在线观看| 日韩欧美一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 黄色视频,在线免费观看| 午夜激情av网站| 精品欧美国产一区二区三| 国产av在哪里看| 欧美一级毛片孕妇|