• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epitaxial growth of ultrathin gallium films on Cd(0001)

    2024-01-25 07:14:58ZuoLi李佐MingxiaShi石明霞GangYao姚鋼MinlongTao陶敏龍andJunzhongWang王俊忠
    Chinese Physics B 2024年1期

    Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚鋼), Minlong Tao(陶敏龍), and Junzhong Wang(王俊忠),?

    1School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    2School of Science,Guizhou University of Engineering Science,Bijie 551700,China

    Keywords: gallium films,electronic growth,STM/STS,density functional theory

    1.Introduction

    In heteroepitaxial systems, growth of thin films on solid substrates offers the opportunity to create new structures(thinfilm phases)that do not exist in the bulk phases.[1]Serving as the metastable structures,these new phases may exhibit novel physical and chemical properties.In the process of epitaxial growth,elastic strain arising from the lattice mismatch greatly influences the growth mode of thin films.[2]When the lattice misfit is low,the elastic strain energy can be accommodated in the form of pseudomorphic growth,where the thin films adopt the same lateral periodicity as the substrate.[3–5]At higher lattice misfit, the strain energy is relieved by the formation of misfit dislocations at the film/substrate interface.

    The trivalent metal gallium, a liquid metal near room temperature, plays a crucial role in the electronic and optoelectronic devices.[6]In the past decades, the heteroepitaxial thin films of gallium grown on solid surfaces have attracted considerable interest.The Ga bilayer grown on GaN(0001)exhibits a pseudomorphic 1×1 structure and reveals superconductivity with the transition temperature of 5.4 K.[7,8]Furthermore, the quantum Griffiths singularity was observed in this Ga bilayer.[9]Recently, ultrathin gallium films, also known as gallenene, have received considerable interests due to the potential application in the emerging elemental 2D materials.[10–20]By means of solid-melt exfoliation,Kochatet al.fabricated the atomically thin gallium films,i.e.,gallenene sheets,on silicon substrates.[10]Taoet al.realized the epitaxial growth of gallenene monolayer on the Si(111)--Ga template.[11]Ultra-thin Ga islands,analogues of high pressure Ga(III),was found on the Si(111)surface.[14]In particular,gallenene sheets with thickness of one to three atomic layers were intercalated at the interface between epitaxial graphene and silicon carbide through confinement heteroepitaxy.[16]Interestingly,the Ga sheets can be regarded as‘half van der Waals’metal, because they are covalently bonded to the SiC below but present a non-bonded interface to the graphene overlayer.

    In this work,we utilize the hexagonal close-packed metal Cd(0001)thin films as substrates to grow 2D Ga sheets.Compared to the noble metals Au, Ag and Cu, the metal Cd possesses a smaller electronegativity and negative electron affinity.[21,22]Consequently,charge transfer effect between the Ga atoms and Cd(0001)films is expected to be very weak.It is found that the first atomic layer of Ga deposited on Cd(0001)surface forms the pseudomorphic 1×1 phase.Depending on the substrate temperature, Ga films consist of either fractal island when deposited at a low temperature (100 K), or compact islands after room-temperature annealing.Further increasing the Ga coverage leads to Ga multilayers with the pseudomorphic 1×1 lattice.Scanning tunneling spectroscopy(STS)measurements demonstrate that Ga monolayer exhibits metallic behavior.Density functional theory (DFT) calculations indicate that the hcp-hollow site of Cd(0001)is the most energetically favorable site of Ga atoms.

    2.Methods

    2.1.Sample preparation and characterizations

    The experiments were performed in a Unisoku low temperature STM system with the base pressure less than 2.0×10?10Torr.The clean Si(111)-7×7 surface was prepared by flashing the sample to~1500 K for several seconds.A smooth Cd(0001) thin film of 15 monolayers (ML) was obtained by depositing Cd atoms on the Si(111)-7×7 surface at room temperature.Ga atoms were thermally sublimated from a boron nitride crucible heated to 930 K.During the deposition of Ga atoms, the temperature of Cd(0001) substrate was kept at~100 K.An electrochemically etched tungsten tip after electron-beam heating was utilized for STM imaging.STS measurements were performed with the lock-in technique by applying a small modulation of 20 mV to the applied voltage at 373 Hz at 77 K.The STM images were analyzed using Gwyddion software.[23]

    2.2.Density functional theory calculations

    Optimization of geometric structures has been calculated using the generalized gradient approximation (GGA)of Perdew–Burke–Ernzerhof formula[24]and the normconserving Vanderbilt pseudopotentials[25]within the QUANTUM ESPRESSO package.[26]The slab model was constructed by consisting of Ga atomic layers,six Cd atomic layers, and a vacuum layer of 20 ?A was inserted to avoid the coupling between atomic layers along thecaxis.After the convergence test, the kinetic-energy cutoff and the chargedensity cutoff were chosen to be 60 Ry and 480 Ry, respectively.The charge densities were calculated on an unshifted mesh of 17×17×2 points in combination with a marzarivanderbilt smearing of 0.02 Ry.[27]The geometry optimization was performed until all components of all forces became less than 1×10?4Ry/Bohr.Based on the optimized structure,we carried out band structure calculations.

    3.Results and discussion

    We utilized the smooth Cd(0001)films as the substrate to grow the ultrathin Ga films.Figure 1(a)show the morphology of the as-grown Cd(0001) films with a thickness of 15 ML.The smooth Cd(0001) films show flat terraces (~200 nm width).The height profile along the blue line in panel (a)reveals a step height of 2.8±0.1 ?A in Fig.1(b), which is consistent with the interlayer spacing of bulk Cd along the[0001] direction.[21]From the high-resolution STM image in Fig.1(c), the in-plane structure of Cd(0001) films exhibits a hexagonal lattice constant ofc0=3.0±0.1 ?A, also consistent with that(0001)plane of bulk Cd.Figure 1(d)shows the atomic model of Cd(0001) films, where four high-symmetric sites are marked as FCC (FCC-hollow), HCP (HCP-hollow),bridge,and top,respectively.

    Fig.1.(a) Large-scale STM image of the Cd(0001) thin film grown on Si(111)-7×7(U =3.0 V,It =20 pA).(b)Height profile along the blue line in panel(a),showing the step height of 2.8±0.1 ?A.(c)Highresolution STM image of the Cd(0001)thin film showing a hexagonal lattice(U=0.65 V,It=35 pA).(d)Atomic model of the Cd(0001)surface.light Orange balls represent Cd atoms.The high-symmetric sites are marked as FCC(FCC-hollow),HCP(HCP-hollow),bridge,and top.

    Fig.2.Low-temperature growth of Ga sheets on Cd(0001).(a)Ramified Ga islands formed on the Cd(0001)surface at 100 K(Θ =0.7 ML,U =2.0 V,It =20 pA).(b)Close-up view of a ramified Ga island and several small Ga islands (U =0.9 V, It =20 pA).Inset: the atomicresolution STM image of monolayer Ga island(U=0.35 V,It=20 pA).(c)Height profile along the blue line in(b)showing the apparent heights of a ramified Ga island and compact Ga islands.(d)Height distribution of the Ga islands appearring in the upper terrace of (a), showing two preferred heights(B and C peaks).

    Firstly, we studied the low-temperature growth of Ga sheets on Cd(0001).In the submonolayer regime, 0.7 ML of Ga atoms was deposited onto the Cd(0001)surface,which was kept at~100 K.It was observed that the Ga atoms aggregate into large ramified islands with flat tops, as shown Fig.2(a).Nearby the substrate steps there exist several stripe-like Ga islands.Based on the nucleation and aggregation theory, the formation of ramified islands with fractal-like shape can be attributed to the suppressed edge diffusion and corner crossing of adatoms around an island.[2]However,close inspection of the island shapes indicates that the islands exhibit a large branch width (~20 nm).Furthermore, the primary branch edges are rather smooth without sub-branches.It means that the deposition temperature of 100 K is not low enough to completely inhibit the edge diffusion and corner crossing of Ga adatoms.

    From the close-up view in Fig.2(b),it is observed that the ramified Ga islands consist of branches with different heights.The highest branches show a height of 8.7±0.1 ?A,while the lowest branches have a height of 2.9±0.1 ?A[Fig.2(c)], corresponding to three-layer and monolayer of Ga, respectively.From the height distribution shown in Fig.2(d), it can be found that the flat-top Ga islands have two preferred heights of 5.6±0.2 ?A(peak B)and 8.9±0.2 ?A(peak C),corresponding to two and three layers of Ga, respectively.Among these Ga islands,those of three-layer height are the most abundant.We notice that this growth mode is similar to the previous‘electronic growth’ mode observed in the Pb and Ag films grown on Si(111)or GaAs.[28–30]The mechanism of electronic growth is attributed to the competition between quantum size effect in the metal films and charge transfer occurring at the interface.[31]

    The inset of Fig.2(b)is a high-resolution STM image of the monolayer Ga island.It exhibits a hexagonal lattice with periodicity of 3.0±0.1 ?A, which is identical to the lattice of Cd(0001) surface.It means that the first Ga layer is pseudomorphic to the Cd(0001) substrate.The elastic strain energy arising from lattice misfit is accommodated by the pseudomorphic 1×1 structure.Moreover, we noticed that the second layer and third layer of ramified Ga islands also reveal the pseudomorphic 1×1 structure.

    Annealing the low-temperature deposited Ga films(0.5 ML)to room temperature leads to formation of compact Ga islands, as shown in Fig.3(a).It is found that the compact islands are hundreds of nanometers in size, and the island edges are very smooth but not straight.The shape change from the small fractal-like island to large compact island can be attributed to the coalescence and reshaping of the small ramified islands in the process of island merging.Moreover,we notice a striking phenomenon that most of the compact Ga islands show the thickness of a single atomic layer, and only a few islands are two atomic layers thick.As shown in Fig.3(b), the compact Ga islands still maintain the pseudomorphic 1×1 structure as in the case of ramified islands.At the high coverage regime(1.1 ML),as shown in the STM images of Fig.3(c),the first-layer islands show a compact shape with smooth edges,the second-layer islands appear on top of the first layer.When the Ga coverage is increased to 2.5 ML,both the second-layer islands and third-layer islands appear simultaneously on top of the first layer,as shown in Fig.3(d).It was also observed that the third Ga layer still show the same pseudomorphic 1×1 lattice as the first and second Ga layers.

    Fig.3.Formation of compact Ga islands after room-temperature annealing.(a)STM image of the compact Ga islands formed on Cd(0001)surface(Θ =0.5 ML,U =2.0 V, It =20 pA).(b) Atomic-resolution STM image of the monolayer Ga island (U =0.35 V, It =20 pA).(c) Morphology of 1.1 ML of Ga sheets formed on Cd(0001),(U =1.5 V,It=20 pA).(d)Topographic image of 2.5 ML of Ga sheets grown on Cd(0001), (U =2.0 V,It =20 pA).Inset: the pseudomorphic 1×1 structure observed in the third layer of Ga(2.5 nm×2.5 nm,0.5 V,25 pA).

    These results mean that room-temperature annealing leads to the transition from electronic growth to conventional SK growth, implying that the observed electronic growth at a low temperature is metastable against the thermal annealing.We notice that such metastability of electronic growth was also observed in the Ag films grown on Si(111),where the plateau islands evolve into huge mounds and pyramids upon annealing to 450 K.[28]

    In Table 1, we summarize the reported lattice constants of monolayer Ga grown on different substrates.It can be found that the Ga films prefer to adopt the same periodicity as the substrates, i.e., pseudomorphic phase, when grown on GaN(0001) and Cd(0001), or intercalated between SiC and graphene.On the other hand,it can be found that the in-plane lattice constants of Ga sheets can be varied significantly from 2.72 ?A to 3.18 ?A.In addition, the adsorption height between 2D Ga monolayer and substrate surfaces is closed to the interlayer height of the GaN(0001), SiC(0001), and Cd(0001)substrates,respectively.Hence,the substrate structures play a crucial role for the epitaxial growth of Ga films.

    We perform DFT calculations for the adsorption energy of Ga monolayer on the Cd(0001) surface to get insight into the experimental results.The adsorption energyEadsis used to evaluate the strength of the adsorbate-substrate interaction.Herein,Eadsis defined as the mean adsorption energy per adatom,

    whereEGa/Cd(0001)andECd(0001)represent the total energy of the Cd(0001)surface after and before Ga adatoms adsorption;nis the number of adatom;andEGais the energy of an isolated Ga atom.According to the definition, the negative value of the adsorption energy represents exothermic, and vice versa.In order to determine the most stable adsorption sites of Ga atoms, relative location models, which are denoted by top,bridge, FCC-hollow, and HCP-hollow sites, have been established for computing the lowest adsorption energy of system.After all geometries have been optimized, the calculated results are shown in Table 2.All energies of four adsorption sites are negative,in particular,the hcp-hollow site is the most energetically favorable site for Ga atom on Cd(0001)because of the adsorption energy of about?0.4 eV.The calculated lattice constant of the 2D Ga layer (c=2.99 ?A) and the adsorption height(h=2.68 ?A)are in good agreement with the experimental results.Additionally,the calculated Ga–Ga bond length of 2D Ga(2.99 ?A)is closed to that ofγ-Ga crystal(2.90 ?A).[32]

    Table 1.Lattice constants of 2D Ga grown on different substrates.

    Table 2.Summary of the calculated Ga adsorption energies,lattice constants(c)of Ga monolayer and height of Ga adatom(h)for the different sites of the Cd(0001)surface.

    Fig.4.Differential conductance spectra acquired in Ga film.(a)Three differential tunneling conductance (dI/dV) spectra (U =0.5 V,It =170 pA) acquired at different positions of the monolayer Ga island:island short-edge(A),island center(B),and island long-edge(C),respectively.Inset: STM image of monolayer Ga island where STS spectra were acquired(U=1 V,It=20 pA).(b)The evolution of dI/dV spectra with layer thickness.Monolayer(U =0.5 V,It =170 pA),bilayer(U =0.8 V,It=150 pA),trilayer(U =0.5 V,It=370 pA).

    We carry out the STS measurement on top of a monolayer Ga island(Fig.4(a))to derive the electronic properties of the Ga sheets.Three differential tunneling conductance (dI/dV)spectra are recorded at different sites of the island: island short-edge (A), island center (B), and island long-edge (C),respectively,as shown in Fig.4(a).All spectra include the two peaks at?0.21 eV and+0.2 eV around Fermi level(EF),reflecting spatial homogeneity of the electronic states.A V-type dip is always observed in the energetic range of?0.21 eV to 0.2 eV,similar to the STS spectra of the high pressure Ga(III)(001) surface.[14]The evolution of dI/dVspectra with layer thickness is shown in Fig.4(b).The STS of Ga monolayer is influenced by the Cd(0001) substrate, which appears the characteristic peak(black arrow)of substrate.[21]However,the STS of bilayer exists the Ga characteristic peak (red arrow)near Fermi level,indicating a weaker influence from substrate.As the Ga films become three layers,this peak moves towards the low energy(blue arrow).These results are consistent with DFT calculations.

    In order to gain insight into the electronic properties of Ga atomic layers on Cd(0001), the band structures are computed using DFT,as illustrated in Fig.5(a).According to the pseudomorphic relationship between the lattices of monolayer Ga and the Cd(0001) substrate, the high-symmetry pointsΓ,M,andKare chosen for describing the energy band properties of hexagonal lattice,resembling to that of Ga atomic layers on SiC(0001).[16]Obviously, the energy bands from monolayer to trilayer become steeper and steeper,indicating the delocalization enhancement of Ga electrons in the thicker film.The contribution of Ga atoms to band structure becomes dominating.This thickness-dependent behavior can be confirmed by the enlarged intensities of local density of states nearEF.Furthermore,to understand the charge transfer between Ga atomic layers and Cd(0001) surface, the charge density difference is calculated based on the geometry optimization.The charge density displacement(Δρ(r))induced by the adatom adsorption is analyzed:

    whereρa(bǔ)ds/suris the charge density of the adsorbate system,ρa(bǔ)dsis the charge density of the isolated adlayer, andρsuris the charge density of the clean surface.As shown in Fig.5(b),most of the charge accumulation appears in the interface region between Ga and Cd atomic layers, with a small amount dispersed between Ga adatoms due to the interfacial Coulomb repulsion for monolayer Ga.The charge accumulation of interface region decreases,as the number of Ga layers increases.In order to further illustrate charge distribution, planar average of the charge density displacement for Ga/Cd(0001) system alongzaxis is displayed in Fig.5(c).The largest change in the electron density distribution occurs in the interface between Ga adatoms and the Cd(0001) surface, resembling the results of the charge density difference.Thus, the charges of 0.033e, 0.031e, and 0.013eare transferred to Ga monolayer,bilayer,and trilayer,respectively.It is revealed that the interfacial charge transfers contribute to the electronic growth of Ga films.

    Fig.5.(a)The contribution of each atom in the band structure.The purple circle and green triangle indicate the contribution of Cd and Ga atoms,respectively.The size of the symbols represents the strength of the contribution.The Fermi level is set to be zero energy.(b)Side view of charge density differences with iso-surface value of 1.5×10?3 e/Bohr3 of Ga atomic layers on Cd(0001).Yellow and blue regions indicate charge accumulation and depletion,respectively.(c)Planar average of the charge density displacement for Ga/Cd(0001)system.

    4.Conclusion

    In summary,pseudomorphic growths have been observed in the monolayer, bilayer, and trilayer of Ga sheets on Cd(0001).Depending on the substrate temperature, Ga islands have a ramified shape at low temperature,and a compact shape after room-temperature annealing.Ga islands reveal a preferred three atomic layer at a low coverage,which implies that the formation of Ga islands follows the electronic growth.Moreover,the room-temperature annealing leads to the transition from electronic growth to conventional SK growth.DFT calculations demonstrate that all the interfacial Ga atoms occupy the energetically favorable hcp-hollow sites of the substrate.STS and DFT calculations demonstrate the metallic nature of Ga monolayer.The charge is transferred from the Cd(0001) surface to the Ga atomic layers, revealing that the interfacial charge transfers contribute to the electronic growth of Ga films.Our finding sheds important light on fabrication of ultrathin Ga films on metal substrates with novel physical properties.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874304 and 11574253).

    色综合婷婷激情| 亚洲全国av大片| 亚洲男人天堂网一区| 精品免费久久久久久久清纯| 欧美日韩福利视频一区二区| 两个人看的免费小视频| 欧美精品啪啪一区二区三区| 欧美精品啪啪一区二区三区| 久久精品91蜜桃| av中文乱码字幕在线| 免费av毛片视频| 国产精品av久久久久免费| 久久午夜亚洲精品久久| a在线观看视频网站| 在线av久久热| 最新美女视频免费是黄的| 欧美一级毛片孕妇| 色av中文字幕| 成人三级做爰电影| 91精品国产国语对白视频| 精品久久久精品久久久| 免费看十八禁软件| 高清毛片免费观看视频网站| 国产熟女午夜一区二区三区| 亚洲人成伊人成综合网2020| 欧美中文日本在线观看视频| 欧美色欧美亚洲另类二区 | 午夜福利高清视频| 涩涩av久久男人的天堂| 在线观看免费视频网站a站| 久久婷婷人人爽人人干人人爱 | 午夜久久久在线观看| 91老司机精品| 91精品国产国语对白视频| 国产成人欧美在线观看| 久久久久久亚洲精品国产蜜桃av| 电影成人av| 99精品久久久久人妻精品| xxx96com| 18禁观看日本| 嫩草影院精品99| 精品国产一区二区久久| 波多野结衣巨乳人妻| 久久久久久人人人人人| 黄色视频,在线免费观看| 久久久国产成人免费| 在线观看日韩欧美| 麻豆av在线久日| 亚洲美女黄片视频| 久久中文看片网| av超薄肉色丝袜交足视频| 免费在线观看亚洲国产| 中文字幕久久专区| 亚洲熟女毛片儿| 成人国产一区最新在线观看| 精品一品国产午夜福利视频| 亚洲av电影在线进入| av超薄肉色丝袜交足视频| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看日本一区| 在线十欧美十亚洲十日本专区| 黄色 视频免费看| 久热这里只有精品99| 久久久久久久午夜电影| 在线观看免费日韩欧美大片| 成人亚洲精品av一区二区| 亚洲国产欧美网| 丝袜在线中文字幕| 日韩欧美三级三区| 久久久久久大精品| 18禁美女被吸乳视频| 欧美日韩福利视频一区二区| 怎么达到女性高潮| 成年版毛片免费区| 婷婷精品国产亚洲av在线| 97人妻精品一区二区三区麻豆 | 老司机午夜十八禁免费视频| 精品午夜福利视频在线观看一区| av天堂久久9| 午夜日韩欧美国产| 亚洲欧美精品综合一区二区三区| 久久久久久免费高清国产稀缺| 亚洲美女黄片视频| www.999成人在线观看| av视频在线观看入口| 亚洲人成电影免费在线| 婷婷丁香在线五月| 欧美久久黑人一区二区| 国产亚洲精品久久久久久毛片| 欧美午夜高清在线| bbb黄色大片| 国产亚洲精品综合一区在线观看 | 一区二区三区高清视频在线| 国产精品av久久久久免费| 国产成人欧美在线观看| 一边摸一边做爽爽视频免费| 91成年电影在线观看| 操美女的视频在线观看| 久热爱精品视频在线9| 18禁国产床啪视频网站| 午夜老司机福利片| 激情在线观看视频在线高清| avwww免费| 18美女黄网站色大片免费观看| 国产人伦9x9x在线观看| 国产一级毛片七仙女欲春2 | 精品久久蜜臀av无| 亚洲三区欧美一区| 久久久久久久午夜电影| 精品久久久久久成人av| 成人av一区二区三区在线看| 久久久久久大精品| 女人被狂操c到高潮| 免费无遮挡裸体视频| 亚洲视频免费观看视频| 成年人黄色毛片网站| 成人欧美大片| 美女免费视频网站| 久久久久久大精品| 日韩欧美在线二视频| 欧美成人午夜精品| 黑丝袜美女国产一区| 十分钟在线观看高清视频www| 天天一区二区日本电影三级 | 国产激情欧美一区二区| 精品国产一区二区三区四区第35| 制服诱惑二区| 老司机深夜福利视频在线观看| 亚洲第一av免费看| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 欧美亚洲日本最大视频资源| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 国产成人影院久久av| 伊人久久大香线蕉亚洲五| 88av欧美| 欧美色视频一区免费| 脱女人内裤的视频| 久久婷婷成人综合色麻豆| 亚洲第一青青草原| 免费看十八禁软件| 免费久久久久久久精品成人欧美视频| 美国免费a级毛片| 自线自在国产av| 国产91精品成人一区二区三区| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 国产成人欧美在线观看| 99国产精品99久久久久| 亚洲精品国产区一区二| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 99精品久久久久人妻精品| 亚洲精品国产色婷婷电影| 搞女人的毛片| 欧美+亚洲+日韩+国产| 久久中文看片网| av超薄肉色丝袜交足视频| 成熟少妇高潮喷水视频| 中文字幕精品免费在线观看视频| 亚洲精品在线观看二区| 久久久国产精品麻豆| 欧美中文日本在线观看视频| 国产午夜福利久久久久久| 久久精品人人爽人人爽视色| 在线播放国产精品三级| 好男人电影高清在线观看| 日本a在线网址| 级片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美不卡视频在线免费观看 | 国产精品久久久av美女十八| 久9热在线精品视频| 国产成+人综合+亚洲专区| 精品人妻在线不人妻| 一区二区三区精品91| 丝袜美足系列| 亚洲视频免费观看视频| 久久草成人影院| 中文亚洲av片在线观看爽| videosex国产| 国产精品一区二区在线不卡| 亚洲欧美日韩无卡精品| tocl精华| 老熟妇乱子伦视频在线观看| 国产精品九九99| 91麻豆av在线| 韩国精品一区二区三区| 一个人观看的视频www高清免费观看 | 国产激情欧美一区二区| 两个人免费观看高清视频| 麻豆国产av国片精品| 国产免费男女视频| 久久香蕉国产精品| 国产精品久久电影中文字幕| ponron亚洲| 久久久久久久精品吃奶| 精品国产乱子伦一区二区三区| 国产野战对白在线观看| 99香蕉大伊视频| 欧美国产精品va在线观看不卡| 99精品欧美一区二区三区四区| 国产97色在线日韩免费| 悠悠久久av| 日日干狠狠操夜夜爽| 精品国产乱子伦一区二区三区| 丁香欧美五月| 无人区码免费观看不卡| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 九色国产91popny在线| 女人高潮潮喷娇喘18禁视频| 欧美色视频一区免费| 色婷婷久久久亚洲欧美| 91成年电影在线观看| 国产片内射在线| 国产精品影院久久| 午夜精品在线福利| 少妇 在线观看| 欧美日本中文国产一区发布| 丰满人妻熟妇乱又伦精品不卡| 大型黄色视频在线免费观看| 欧美乱妇无乱码| 老司机深夜福利视频在线观看| 天堂动漫精品| 高清在线国产一区| 中文字幕人成人乱码亚洲影| 亚洲欧美激情综合另类| 在线观看www视频免费| 日本免费a在线| 精品一区二区三区av网在线观看| 国产免费av片在线观看野外av| x7x7x7水蜜桃| 悠悠久久av| 老鸭窝网址在线观看| 黄色毛片三级朝国网站| 国产成年人精品一区二区| 久久久久国产一级毛片高清牌| 动漫黄色视频在线观看| 久久天躁狠狠躁夜夜2o2o| netflix在线观看网站| 免费在线观看完整版高清| 久久久国产成人精品二区| 亚洲精品在线美女| 一级片免费观看大全| 久久久久久久久中文| 国产精品久久久久久精品电影 | 成人永久免费在线观看视频| av有码第一页| 国产高清videossex| 人人妻人人澡欧美一区二区 | 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 亚洲一区中文字幕在线| 免费观看人在逋| 久久青草综合色| 精品一品国产午夜福利视频| 在线av久久热| 午夜精品国产一区二区电影| 波多野结衣一区麻豆| 九色亚洲精品在线播放| 69av精品久久久久久| 国产成人精品久久二区二区免费| 天堂√8在线中文| √禁漫天堂资源中文www| 国产野战对白在线观看| 精品一区二区三区四区五区乱码| 每晚都被弄得嗷嗷叫到高潮| 色精品久久人妻99蜜桃| 欧美日韩精品网址| 日韩视频一区二区在线观看| 免费观看精品视频网站| 国产欧美日韩一区二区三| 中文字幕色久视频| 精品久久久久久,| 久99久视频精品免费| 少妇 在线观看| 一夜夜www| 看片在线看免费视频| 亚洲视频免费观看视频| 成人18禁在线播放| 在线观看免费视频网站a站| 国产97色在线日韩免费| 女人高潮潮喷娇喘18禁视频| 91麻豆av在线| 国产成人系列免费观看| 女人精品久久久久毛片| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 激情视频va一区二区三区| 久久久久久久精品吃奶| 欧美日韩瑟瑟在线播放| 黄频高清免费视频| 国产伦一二天堂av在线观看| 成在线人永久免费视频| 一区二区三区国产精品乱码| 久久久久久久午夜电影| 一级毛片女人18水好多| 国产成年人精品一区二区| 日韩欧美在线二视频| 在线视频色国产色| 国产极品粉嫩免费观看在线| 一区二区三区高清视频在线| 一级作爱视频免费观看| 久久久久久免费高清国产稀缺| 最近最新免费中文字幕在线| 九色亚洲精品在线播放| 一级片免费观看大全| 欧美性长视频在线观看| 性色av乱码一区二区三区2| 黑人欧美特级aaaaaa片| 国产一卡二卡三卡精品| 国产aⅴ精品一区二区三区波| 免费少妇av软件| 亚洲成a人片在线一区二区| 老司机靠b影院| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 丁香欧美五月| 午夜精品久久久久久毛片777| 国产亚洲精品一区二区www| 国产午夜精品久久久久久| 国产在线精品亚洲第一网站| 久久中文看片网| 国内久久婷婷六月综合欲色啪| 中文字幕人成人乱码亚洲影| 熟女少妇亚洲综合色aaa.| 午夜福利18| 国产精品秋霞免费鲁丝片| 丝袜在线中文字幕| av福利片在线| 成人国产一区最新在线观看| 精品国产一区二区久久| 99国产极品粉嫩在线观看| 国产麻豆成人av免费视频| 成人av一区二区三区在线看| 操出白浆在线播放| 日本免费一区二区三区高清不卡 | 亚洲精品一区av在线观看| 99久久国产精品久久久| 亚洲av成人不卡在线观看播放网| 国产麻豆69| 纯流量卡能插随身wifi吗| 国产色视频综合| 国产亚洲精品久久久久久毛片| 午夜福利在线观看吧| 免费无遮挡裸体视频| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 制服丝袜大香蕉在线| 香蕉久久夜色| 久久精品国产亚洲av高清一级| 欧美绝顶高潮抽搐喷水| 国产成人精品久久二区二区91| 欧美绝顶高潮抽搐喷水| 满18在线观看网站| 免费无遮挡裸体视频| 日韩av在线大香蕉| 在线观看66精品国产| 午夜福利在线观看吧| 一二三四在线观看免费中文在| 夜夜爽天天搞| 精品少妇一区二区三区视频日本电影| 免费看十八禁软件| 亚洲中文字幕一区二区三区有码在线看 | 91九色精品人成在线观看| 国产精品爽爽va在线观看网站 | 免费无遮挡裸体视频| 日韩av在线大香蕉| 侵犯人妻中文字幕一二三四区| 久久精品91无色码中文字幕| 亚洲熟女毛片儿| 大香蕉久久成人网| 麻豆久久精品国产亚洲av| tocl精华| 伊人久久大香线蕉亚洲五| 国产精品秋霞免费鲁丝片| 国产精品影院久久| 中文字幕色久视频| 久久精品aⅴ一区二区三区四区| 午夜成年电影在线免费观看| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 女性生殖器流出的白浆| 欧美日本视频| 精品免费久久久久久久清纯| 777久久人妻少妇嫩草av网站| av网站免费在线观看视频| 欧美精品亚洲一区二区| 午夜福利视频1000在线观看 | 首页视频小说图片口味搜索| 国产xxxxx性猛交| 国产精品久久电影中文字幕| 亚洲成人国产一区在线观看| 欧美最黄视频在线播放免费| 90打野战视频偷拍视频| 无限看片的www在线观看| 一夜夜www| 曰老女人黄片| 十八禁人妻一区二区| 激情视频va一区二区三区| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 99久久国产精品久久久| 亚洲精品一区av在线观看| 亚洲人成伊人成综合网2020| 亚洲第一av免费看| 级片在线观看| 亚洲精品粉嫩美女一区| av电影中文网址| 午夜亚洲福利在线播放| 国产精品免费视频内射| 成年人黄色毛片网站| 女人被躁到高潮嗷嗷叫费观| x7x7x7水蜜桃| 精品国产一区二区三区四区第35| 亚洲天堂国产精品一区在线| 久久精品影院6| 亚洲中文日韩欧美视频| 91av网站免费观看| 一二三四在线观看免费中文在| 桃红色精品国产亚洲av| 999久久久国产精品视频| 老司机午夜十八禁免费视频| 亚洲国产看品久久| av天堂久久9| 老汉色av国产亚洲站长工具| 咕卡用的链子| 夜夜爽天天搞| 身体一侧抽搐| 欧美色欧美亚洲另类二区 | 国产精品一区二区免费欧美| 19禁男女啪啪无遮挡网站| 9191精品国产免费久久| 日韩av在线大香蕉| 久久久久久免费高清国产稀缺| 欧美日韩一级在线毛片| 亚洲国产毛片av蜜桃av| 熟女少妇亚洲综合色aaa.| 国产91精品成人一区二区三区| 怎么达到女性高潮| 丝袜美腿诱惑在线| 一二三四在线观看免费中文在| 香蕉国产在线看| 亚洲 国产 在线| 少妇的丰满在线观看| 一区二区日韩欧美中文字幕| 午夜免费鲁丝| 午夜福利免费观看在线| 美女国产高潮福利片在线看| 午夜免费激情av| 老熟妇仑乱视频hdxx| 国产97色在线日韩免费| 丰满的人妻完整版| 国内久久婷婷六月综合欲色啪| 97人妻精品一区二区三区麻豆 | 精品国产美女av久久久久小说| 欧洲精品卡2卡3卡4卡5卡区| 一二三四社区在线视频社区8| 91精品国产国语对白视频| 欧美日韩乱码在线| 又紧又爽又黄一区二区| 日本一区二区免费在线视频| 啦啦啦免费观看视频1| av天堂久久9| av有码第一页| 天天一区二区日本电影三级 | 此物有八面人人有两片| 国产亚洲欧美精品永久| www.999成人在线观看| 精品国产国语对白av| 国产成人精品无人区| 日本黄色视频三级网站网址| aaaaa片日本免费| 在线观看免费视频网站a站| 我的亚洲天堂| 中文字幕另类日韩欧美亚洲嫩草| 欧美成人午夜精品| 亚洲人成伊人成综合网2020| 国产主播在线观看一区二区| 成人欧美大片| 99国产精品一区二区蜜桃av| 麻豆久久精品国产亚洲av| 桃色一区二区三区在线观看| 久久婷婷人人爽人人干人人爱 | 亚洲欧美一区二区三区黑人| 久久香蕉精品热| 久久这里只有精品19| 美女午夜性视频免费| 久久热在线av| 丝袜美腿诱惑在线| 亚洲成人免费电影在线观看| 精品一区二区三区四区五区乱码| 婷婷六月久久综合丁香| 99精品在免费线老司机午夜| 两个人视频免费观看高清| 亚洲中文字幕日韩| 97超级碰碰碰精品色视频在线观看| 久久精品aⅴ一区二区三区四区| 精品国内亚洲2022精品成人| 国内毛片毛片毛片毛片毛片| 亚洲熟女毛片儿| 日本撒尿小便嘘嘘汇集6| 一区二区日韩欧美中文字幕| 看片在线看免费视频| 国产成人精品久久二区二区91| 国产一级毛片七仙女欲春2 | 日韩精品中文字幕看吧| 男人操女人黄网站| 久久国产精品男人的天堂亚洲| 人人澡人人妻人| 国产精品av久久久久免费| 女同久久另类99精品国产91| x7x7x7水蜜桃| 午夜免费观看网址| 久久精品国产综合久久久| 最近最新免费中文字幕在线| 亚洲av成人不卡在线观看播放网| 亚洲第一电影网av| or卡值多少钱| 欧美成人午夜精品| 夜夜夜夜夜久久久久| av在线播放免费不卡| 亚洲色图综合在线观看| 亚洲黑人精品在线| 一进一出抽搐gif免费好疼| 亚洲av电影不卡..在线观看| 99在线人妻在线中文字幕| 女性被躁到高潮视频| 国产欧美日韩一区二区精品| 精品国产一区二区三区四区第35| 可以在线观看毛片的网站| 久久久久久久精品吃奶| 日韩免费av在线播放| 法律面前人人平等表现在哪些方面| 国产精品九九99| 老熟妇乱子伦视频在线观看| 国产麻豆成人av免费视频| 国产av一区二区精品久久| 99国产精品99久久久久| 欧美成人一区二区免费高清观看 | 国产精品 欧美亚洲| 午夜福利免费观看在线| 国产精品亚洲一级av第二区| 国产97色在线日韩免费| 中文字幕人妻丝袜一区二区| 又黄又爽又免费观看的视频| 可以在线观看的亚洲视频| 亚洲片人在线观看| 午夜日韩欧美国产| 一本久久中文字幕| 成人三级黄色视频| 免费在线观看日本一区| 国产成人精品无人区| 男人舔女人的私密视频| 在线播放国产精品三级| 久久中文字幕一级| 久久婷婷成人综合色麻豆| 欧美日韩亚洲国产一区二区在线观看| 国产三级黄色录像| 亚洲专区国产一区二区| 国产区一区二久久| 亚洲成av片中文字幕在线观看| 欧美日韩瑟瑟在线播放| 国产国语露脸激情在线看| 久久天堂一区二区三区四区| 熟妇人妻久久中文字幕3abv| 午夜精品久久久久久毛片777| 欧美黑人精品巨大| 精品国产国语对白av| 成人手机av| 国产又色又爽无遮挡免费看| 看黄色毛片网站| 亚洲精品久久国产高清桃花| 日韩成人在线观看一区二区三区| 99精品在免费线老司机午夜| 最近最新免费中文字幕在线| 女人高潮潮喷娇喘18禁视频| 夜夜躁狠狠躁天天躁| 亚洲aⅴ乱码一区二区在线播放 | 麻豆久久精品国产亚洲av| 校园春色视频在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲精品在线美女| 国产激情久久老熟女| 国产精品爽爽va在线观看网站 | 国产亚洲精品第一综合不卡| 高潮久久久久久久久久久不卡| 免费搜索国产男女视频| 99国产极品粉嫩在线观看| 精品久久久久久久久久免费视频| 搡老妇女老女人老熟妇| 亚洲 国产 在线| 精品第一国产精品| 欧美在线一区亚洲| 99国产极品粉嫩在线观看| 50天的宝宝边吃奶边哭怎么回事| 搡老妇女老女人老熟妇| www.自偷自拍.com| 亚洲在线自拍视频| 国产精品 国内视频| 午夜福利18| 免费一级毛片在线播放高清视频 | 99国产极品粉嫩在线观看| 亚洲欧美日韩高清在线视频| a级毛片在线看网站| 亚洲美女黄片视频| 久久 成人 亚洲| 一本久久中文字幕| 国产不卡一卡二| 精品久久久精品久久久|