• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sharing quantum nonlocality in the noisy scenario

    2024-01-25 07:11:12ShuYuanYang楊舒媛JinChuanHou侯晉川andKanHe賀衎
    Chinese Physics B 2024年1期

    Shu-Yuan Yang(楊舒媛), Jin-Chuan Hou(侯晉川), and Kan He(賀衎)

    College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    Keywords: Bell nonlocality,quantum measurement,quantum noise

    1.Introduction

    Quantum nonlocality is a kind of quantum resource distinct from entanglement and Einstein–Podolsky–Rosen(EPR) steering, and has broad applications in quantum information processing.[1–4]Nonlocal correlations offer a quantum advantage in communication complexity problems,[5]device-independent quantum cryptography,[6,7]randomness expansion,[8]and measurement-based quantum computation.[9,10]Quantum nonlocality can be demonstrated by violation of Bell inequalities (or Bell-type inequalities).[11–13]Furthermore, researchers have also developed various experimental techniques on quantum nonlocality.[14–17]

    In previous researches,scientists explored the limitations of nonlocality by asking whether a pair of entangled qubits could produce a long sequence of nonlocal correlations in Refs.[18–21].Silvaet al.first introduced this sequential scenario (see Fig.1) and demonstrated that at most two sequential observers (Bobs) could share nonlocality with a single Alice through weak measurements.[18]Since then, additional theoretical and experimental findings on nonlocality sharing have been obtained.[22–31]Brown and Colbeck found a measurement strategy such that there exists an unbounded number of independent Bobs who are able to violate the Clauser–Horne–Shimony–Holt (CHSH) inequality with a single Alice by sequentially measuring one half of a maximally entangled pure two-qubit stateρAB(1)=|φ+〉〈φ+| with.[27]Folettoet al.implemented experimentally the nonlocality-sharing strategy.[32]Zhang and Fei extended the aforementioned results to the case of arbitrary finite-dimensional systems.[33]In Refs.[34,35], problems on sharing network nonlocality were also discussed.However,the above discussions are always limited to the ideal scenario,where the initial states and measurements are noiseless.

    Recently the topics of noisy network nonlocality were focused on in Refs.[36,37].Mukherjee studied error tolerance of nontrilocal correlations in noisy triangle networks,[36]where different sources of imperfections were considered, such as errors in entanglement generation, communications over noisy quantum channels and noises in measurements.[38–40]Furthermore,the similar problem on persistency of the non-n-local correlations in noisy linear networks was analyzed in Ref.[37].The aforementioned researchers discovered that the influence of noises can result in the decay of nonlocality in quantum networks.So can it in the nonlocality-sharing scenario.In this paper,we analyze persistency of sharing nonlocality in the noisy scenario, where the initial states and measurements have errors in entanglement generation and white noises,respectively.

    The study presents the conditions for nonlocality sharing termination and infinite nonlocality sharing,respectively,and uses images to reflect the impact of noise on the maximum number of independent Bobs who can share the nonlocality of the noisy initial state with the single Alice.Furthermore, we investigate the noisy nonlocality sharing in high-dimensional bipartite systems.

    The paper is arranged as follows.In Section 2,we review some basic results on sharing nonlocality.In Section 3, we first focus on the case that the initial state is the two-qubit one.Here,noises from entanglement generation and measurements are introduced.Furthermore, we obtain two sufficient conditions of the persistency of sharing nonlocality noisily, and analyze the change patterns of the maximal number of Bobs who can share nonlocality with Alice under the influence of different noises.In Section 4, we devote to generalizing the persistency to arbitrary finite-dimensional systems.

    2.Preliminaries

    In this section, we review the results on the nonlocalitysharing scenario(see Fig.1).

    2.1.Detection of nonlocality

    The quantum nonlocality of a bipartite stateρABcan be proved by violating Clauser–Horne–Shimony–Holt (CHSH)Bell inequality[41]

    where〈AxBy〉=∑a,b(?1)a+bp(a,b|x,y) is the joint expectation value of the observations of Alice and Bob when their settings arexandy(x,y ∈{0,1}),and binary outcomes areaandb(a,b ∈{0,1}), respectively.AiandBiare observables withr(Ai)≤1 andr(Bi)≤1,i=0,1.Denote byr(A) the spectral radius of the matrixA.The distributions are given by the Born rule

    where ∑a(?1)aAa|x=Axand ∑b(?1)bBb|y=Byfor Alice’s measurement set{Aa|x}a,xand Bob’s one{Bb|y}b,y.

    2.2.The sequential nonlocality-sharing scenario

    LetHAandHBbe finite-dimensional complex Hilbert spaces andρAB(1)a bipartite state acting onHA ?HBwith dim(HA)=sand dim(HB)=t.Denote byImthem×midentity matrix.In Ref.[18], the sequential nonlocality-sharing scenario was proposed(see Fig.1).Here Alice and Bob(1)share an initial entangled bipartite stateρAB(1).Suppose Bob(1)performs the measurement according to binary inputY(1)=ywith binary outcomeB(1)=b, the postmeasurement state shared between Alice and Bob(2)can be described by the Lüders rule,[27]i.e.,

    whereBis the positive operator-valued measurement(POVM) corresponding to outcomebof Bob(1)’s measurement for inputy.Repeating this process,the stateρAB(k)shared by Alice and Bob(k)can be computed as

    whereBis the POVM corresponding to outcomesbof Bob(k?1)’s measurements for inputy.

    Fig.1.A bipartite entangled state ρAB(1) is initially shared between Alice and Bob(1).Bob(1) performs a POVM on his part.Denote by ρAB(2)the post-measurement state.Bob(2) also performs a POVM, and this process continues until Bob(n).One want to ask how many Bobs can share the nonlocality with Alice at most.

    whereσj(j= 1,2,3) are Pauli matrices,θ ∈(0,π/4] andηk ∈(0,1)for anyk=1,2,...,n.

    forθ ∈(0,π/4]andηk ∈(0,1),k=1,2,...,n.When bothsandtare odd,a set of POVMs can be given by

    forθ ∈(0,π/4]andηk ∈(0,1),k=1,2,...,n.

    3.Sharing nonlocality in noisy two-qubit systems

    In this section, we study persistency and termination on sharing nonlocality noisily with initial two-qubit states.

    Before that,we first introduce the noise generation.

    3.1.Noise generation

    The first kind of noises comes from entanglement generation of the initial state.In the experiment,a two-qubit entangled stateis generated by the action of the Hadamard gateHand CNOT gate onζ=|10〉〈10|.

    Letαandδdenote the noisy parameters characterizing theHgate and CNOT gate, respectively.Starting fromζ=|10〉〈10|,and the noisy Hadamard gate generates[38]

    Subjection ofζ'1to noisy CNOT gives

    Denote byT(ρ)=(wi,j)3×3the correlation matrix whose entries are given bywi,j= tr[ρ(σi ?σj)].ThenT(ˉρAB(1)) =diag(?αδ,αδ,δ).

    Secondly, the white noises are fixed on POVMs{A0|i,A1|i}i=0,1andof parties Alice and Bob(k),k=1,2,...,n.Letβ1∈[0,1] characterize the noisy measurement set{A0|0,A1|0}in the sense that it fails to detect with probability 1?β1,i.e.,β1parametrizes a faulty measurement device.Similarly,the noisy parameters for measurements{A0|1,A1|1},andare denoted byβ2,γkandμk,k=1,2,...,n, respectively, andβ2∈[0,1],γk ∈[0,1],μk ∈[0,1].If dim(HA)=sand dim(HB)=t,then noisy POVMs can be represented as

    We takes=t=2 when we consider the case of the initial state being a two-qubit state.Then the corresponding noisy observables are

    Combing Eqs.(5)–(8) with the form of noisy POVMs (see Eqs.(19)–(22)), when the initial sharing state is a two-qubit state we write the noisy measurement strategy as follows:

    3.2.Persistency of the noisy nonlocality-sharing scenario

    In order to analyze the persistency, we first calculate the expected CHSH valuewith the noisy initial state and noisy POVMs.The detail of the proofs for our theorems will be presented in the appendix.

    Theorem 1 For the noisy initial state ˉρAB(1)in Eq.(18),if Alice and Bobs perform noisy measurements in Eqs.(27)–(30)and Eqs.(31)–(32),respectively,then the expected CHSH value ofρAB(k)is given by

    whereθ ∈(0,π/4],δ,α,βi,ηk,γkandμk ∈[0,1]fori=1,2,k=1,2,...,n.

    In the following,we provide two sufficient conditions of persistency of sharing nonlocality noisily.

    Theorem 2 For the noisy initial state ˉρAB(1)in Eq.(18),assume Alice and Bobs perform noisy measurements in Eqs.(27)–(30)and Eqs.(31)–(32),respectively,then there existnBobs sharing the nonlocality of ˉρAB(1)with the single Alice if there existsε >0 such that

    where

    with

    Theorem 3 For the noisy initial state ˉρAB(1)in Eq.(18),assume Alice and Bobs perform noisy measurements in Eqs.(27)–(30) and Eqs.(31)–(32), respectively, ifγn(β1+β2)δ= 2, then there existnBobs who can share the nonlocality of the noisy initial state ˉρAB(1)with the single Alice for arbitrary given noisy parametersα,γk,μj ∈(0,1],k=1,2,...,n?1 andj=1,2,...,n.

    The set{α,δ,β1,β2,μk,γk}nk=1consists of all noisy parameters.The condition in Theorem 2 reveals how the persistency of sharing nonlocality in the noisy scenario depends on all noisy parameters.If, for somensuch that Eq.(34) holds for someε >0, but there is noε >0 so that Eq.(34) holds forn+1, then Alice can at most share the nonlocality withnBobs, and the sharing process stops atnth step.The persistency condition in Theorem 3 is more pragmatic and some what surprising.Note thatγn(β1+β2)δ=2 meansγn=β1=β2=δ=1,i.e.,their corresponding noises vanish.Theorem 3 reveals that, if the noises parametersβ1=β2=δ= 1 and the noise parameterγn=1 forn ≥1, then Alice can share nonlocality at least withnBobs whatever the noise parametersα,take any values in (0,1].Why the phenomenon in Theorem 3 happens? One can find from the proof of Theorem 3 that whenθis small enough, each index of persistencyηk=ηk(θ)always can lie in(0,1)for arbitrary nonzero noisy parametersα,.Recall the parameterθcomes from the Alice’s measurement.This means Alice’s appropriate measurement device can counteract the influence on persistency under noises from the Hadamard gate and Bobs’measurements.

    In the aforementioned theorems,it is always assumed that the initial state is a kind of special noisy maximal entangled states.Finally, we consider the nonlocality-sharing problem on the general case that the initial state is an arbitrary twoqubit state.For an arbitrary two-qubit stateρAB(1), assume that Alice and Bobs perform noisy measurements in Eqs.(27)–(30)and Eqs.(31)–(32),respectively,it follows that the CHSH value is

    whereθ ∈(0,π/4],δ,α,βi,ηk,γkandμk ∈[0,1]fori=1,2,k= 1,2,...,n.Similar to the proof of Theorem 3, we can claim that ifγn(β1+β2)p=2, then there existnBobs who can share the nonlocality of the initial stateρAB(1)with the single Alice for arbitrary given noisy parametersγk,μj ∈(0,1],k=1,2,...,n?1 andj=1,2,...,n.

    3.3.Termination of sharing nonlocality in noisy scenarios

    As we see from Theorems 2 and 3, different kinds of noises result in different influences on the decay of nonlocality.In this section, we discuss the question how the noises influence the persistency of sharing nonlocality.We divide the discussion to two cases: state noises and measurement noises.It is assumed that the noisy parameters are always nonzero,the given noisy initial state ˉρAB(1)is presented in Eq.(18)and the noisy measurements are presented in Eqs.(27)–(32).

    3.3.1.Errors on entanglement generation

    Letδ=β1=β2=μk=γk=1 for allk=1,2,...,n,we investigate the influence of the noisy parameterαon the persistency.By Theorem 1,we have in this case that

    For anyε >0,define a sequence(ηi(θ,α,ε))irecursively asand

    whenever 0<ηk?1(θ,α,ε)<1,whereθ ∈(0,π/4]andα ∈[0,1].One can check that 0<ηm(θ,α,ε)<1 for allm ≤kif and only if there existkBobs who can share nonlocality with Alice, and the nonlocality-sharing behavior terminates once if there islsuch thatηl(θ,α,ε) equals to or lager than 1.As we know from Ref.[27], ifα=1 (this means all the corresponding noise vanishes),then for any given positive integerk, there existsθclosed to 0 enough such that one can choseηj(θ,α)∈(0,1) for allj=1,2,...,k.However, by Theorem 3, the similar can be done for any noise parameterα ∈(0,1].

    We plot the functional values ofηk(θ,α) as a function ofαin the image (see Fig.2(a)) fork=1,2,3,4 when we takeε=10?5.In Fig.2(b), the correspondingηk(θ,α)falls into the interval (0,1) when (θ,α) lies in the lower region of each curve fork= 1,2,3,4.Whenαmoves from 1 to 0 andθmoves from 0 to 1 respectively, the maximal numberof Bobs who can share the nonlocality with Alice will decrease and can be calculated by determining how manyηk(θ,α)s lie in the interval (0,1).From Fig.2(b),one can see clearly the value ofwhen (θ,α) lies in the given region [0.05,π/4]×(0,0.95].For instance, there are at most three Bobs sharing the nonlocality with Alice when(θ,α)=(0.1,0.9).

    Fig.2.(a)The yellow,blue,green and red surfaces represent the values of η1(θ,α),η2(θ,α),η3(θ,α)and η4(θ,α),respectively,as functions of parameters θ and α.The purple plane denotes the unit plane.Due to the limit of accuracy of the computer calculation, the images with k ≥5 cannot be plotted.(b) The blue, orange, green and red curves represent η1(θ,α)=1,η2(θ,α)=1,η3(θ,α)=1 and η4(θ,α)=1,respectively.

    Fig.3.The value of the vertical axis n= is the maximal number of Bobs who can share nonlocality with Alice.

    To see what happens when (θ,α) lies in the region(0,0.05)×(0.95,1),we exhibit the change pattern ofdependent on the noise parameterα ∈(0.95,1)whenθis fixed as 0.5,0.05,0.0005 and 0.00005 respectively(see Fig.3).It is surprising that whenθis given,the value ofkeeps invariant ifαmoves from 0.95 to 1.Also,in Fig.3,asθdecreases,theincreases,i.e.,the persistency becomes better.

    Moreover,when we observe the influence of the noise parametersδandβ1+β2in Eq.(33), it is not difficult to conclude that the change pattern ofonδand that onβ1+β2are the same.Therefore,we will merge the discussions of the above two cases to Case 2 in Subsection 3.3.2 hereinafter.

    3.3.2.Noises come from measurements

    Case 1.For anyn ≥1, cosider the case thatγ1=γ2=··· =γk=γandα=δ=β1=β2=μk= 1 for allk=1,2,...,n.By Theorem 1 we have

    Take a smallε >0 and define a sequence{ηi(θ,γ,ε)}ni=1by

    whenever 0<ηk?1(θ,γ,ε)<1 withη1(θ,γ,ε) = (1+forθ ∈(0,π/4]andγ ∈[0,1].Ifηk(θ,γ,ε)<1,k=1,2,...,n,for some givenε >0 and there exists noε >0 so that we still haveηn+1(θ,γ,ε)<1, then there are at mostnBobs sharing the nonlocality with Alice.Similarly, we plot the function values ofηk(θ,γ) again whenε=10?5in Fig.4(a),and show the ranges of 0<ηk(θ,γ)<1 in Fig.4(b)fork=1,2,3, i.e., when(θ,γ)lies in the right-hand sides of each curves,the corresponding 0<ηk(θ,γ)<1.

    Similarly, the maximal numberof Bobs who can share the nonlocality with Alice can be calculated by determining how manyηk(θ,γ)s lie in the interval(0,1).Also from Fig.4(b),the value ofcan be straightforward investigated when (θ,γ) lies in the given region [0.4,π/4]×(0,0.9].For instance,=2 when(θ,γ)=(0.4,0.9).

    Howwill change in the region (0,0.4)×(0.9,1)?We describe the change pattern ofdependent on the noise parameterγ ∈(0.9,1)whenθis fixed at 0.4,0.32,0.27 and 0.1 respectively(see Fig.5).We see that whenθis given,increases ifγmoves from 0.9 to 1.On the other hand,in the four plots of Fig.5,the best persistency(here the better persistency is defined as the greater expectation ofin each figure)occurs whenθ=0.27.Moreover, in Fig.5(b), the unique blue dot such that=3 occurs since the corresponding (θ,γ)lies in the cusp range of the green curve in Fig.4(b).

    Finally it is similar to analyze the change pattern ofdepending on noisy parametersμks.We do not give the elaboration on the case to avoid repetition.

    Fig.4.(a)The yellow,blue and green surfaces represent the values of η1(θ,γ),η2(θ,γ)and η3(θ,γ),respectively,as functions of parameters θ and γ.The red plane denotes z=1.Due to the limit of accuracy of the computer calculation,the images with k ≥4 cannot be plotted.(b)The blue,orange,and green curves represent η1(θ,γ)=1,η2(θ,γ)=1 and η3(θ,γ)=1,respectively.

    Fig.5.The value of the vertical axis n= is the maximal number of Bobs who can share nonlocality with Alice.

    Case 2.0<β1+β2<2 andα=δ=γk=μk=1 for allk=1,2,...,n.In this case,we have

    and obtain the corresponding sequenceas

    where 0<ηk?1(θ,β1+β2,ε)<1 withη1(θ,β1+β2,ε)=forε >0,θ ∈(0,π/4] andβ1+β2∈[0,2].Letx=β1+β2.Ifηk(θ,x,ε)<1,k= 1,2,...,n,andηn+1(θ,x,ε)≥1, then there are at mostnBobs sharing the nonlocality with Alice.We also plot the function values ofηk(θ,x) again whenε=10?5in Fig.6(a), and show the ranges of 0<ηk(θ,x)<1 in Fig.6(b), i.e., (θ,x) lies in the right-hand sides of each curves fork=1,2,3.

    Fig.6.(a)The yellow, blue and green surfaces represent the values of η1(θ,x),η2(θ,x)and η3(θ,x),respectively,as functions of parameters θ and x.The red plane denotes z=1.Due to the limit of accuracy of the computer calculation,the images with k ≥4 cannot be plotted.(b)The blue, orange, and green curves represent the functions η1(θ,x) = 1,η2(θ,x)=1 and η3(θ,x)=1,respectively.

    Fig.7.The value of the vertical axis n= is the maximal number of Bobs who can share nonlocality with Alice dependent on the noisy parameter x=β1+β2.When θ is fixed,n increases if x moves to 1.

    Similarly, from Fig.6(b), the value ofcan be straightforward investigated when (θ,x) lies in the given region[0.4,π/4]×(0,1.8].For instance,=1 when(θ,x)=(0.4,1.5).In the region (0,0.4)×(1.8,2), we describe the change pattern ofdepending on the noise parameterx ∈(1.8,2) whenθis fixed as 0.4, 0.2, 0.1 and 0.05 respectively(see Fig.7).We see that whenθis given,increases ifxmoves from 1.8 to 2.On the other hand,in the four plots of Fig.7,the best persistency occurs whenθ=0.2.

    4.The high-dimensional systems

    In this section, we consider the persistency on sharing nonlocality noisily in the case of arbitrary finite-dimensional systems.The initial state with white noises is

    with the noisy parameterν ∈[0,1].

    We also affix white noises on measurements Eqs.(9)–(16).Then,when bothsandtare even,the noisy measurement strategies are defined as

    forθ ∈(0,π/4]andk=1,2,...,n.When bothsandtare odd,a set of noisy POVMs are chosen to be

    forθ ∈(0,π/4]andk=1,2,...,n.

    Theorem 4 For the noisy initial state ?ρAB(1)in Eq.(42),assume that the Alice and Bobs perform noisy measurements Eqs.(43), (44)or(47), (48)and Eqs.(45), (46)or(49), (50),respectively.Ifβ1≥β2, then the expected CHSH value ofρAB(k)satisfies the inequality

    whereθ ∈(0,π/4],ν,βi,γk,ηkandμk ∈[0,1] fori=1,2,k=1,2,...,n,andcjis the Schmidt coeffciient of|ψ〉forj=1,2,...,.A proof of Theorem 4 will be given in Appendix D.

    By Theorem 4, we get a sufficient condition of persistency of sharing nonlocality noisily in the case of the arbitraryfinite dimension.

    Theorem 5 For the noisy initial state ?ρAB(1)in Eq.(42),assume the Alice and Bobs perform noisy measurements as in Eqs.(43), (44)or(47), (48)and Eqs.(45), (46)or(49), (50),respectively,andβ1≥β2.Then there existnBobs sharing the nonlocality of the noisy initial state ?ρAB(1)with Alice if there existsε >0 such that

    where

    with

    for anyk=1,2,...,n,andciis the Schmidt coeffciient of|ψ〉,i=1,2,...,.

    Furthermore, we get another sufficient condition for the persistency of sharing nonlocality when part of the noises disappears,which extends the sufficient persistency condition for the two-qubit case to the arbitrary finite-dimension case.

    Theorem 6 For the noisy initial state ?ρAB(1)in Eq.(42),let the Alice and Bobs perform noisy measurements in Eqs.(43), (44)or(47), (48)and Eqs.(45), (46)or(49), (50),respectively.Ifγn(β1+β2)ν=2 for somen, then there exist at leastnindependent Bobs who can share the nonlocality of the noisy initial state ?ρAB(1)with the single Alice for arbitrary given noisy parametersγk,μj ∈(0,1],k=1,2,...,n ?1 andj=1,2,...,n.

    5.Discussion and conclusion

    The aim of the paper is to determine how many Bobs can share the nonlocality with Alice at most in a noisy environment.For a given measurement strategy, two kinds of noises are considered on the initial states and measurements respectively.We establish a CHSH type inequality and obtain two persistency conditions of sharing nonlocality noisily.We also analyze the influence of the noises to persistency, that is, the maximal number of Bobs who can share with Alice.It is significant to find other anti-noise measurement strategy, which can result in the better persistency.

    Note also that we consider only two different noise factors.From experimental perspectives,it would be more interesting to analyze errors that occur during physical implementation,such as the exponential decrease in coherence of quantum states.Apart from loss in coherence,nonlocality sharing becomes challenging due to photon loss, noise in photon detection,and many other factors.

    Appendix A:Proof of Theorem 1

    When the noisy measurement strategy Eqs.(27)–(32)are performed, then the CHSH value of Alice and Bob(k)can be computed as follows:

    By using the Lüders rule,we have

    where the third equation comes from

    fori=0,1.Then,using Eq.(A2),we have

    Similar to Eq.(A4),we get

    By recursion,we get

    It follows from Eqs.(A8)–(A11)and(A1)that

    Proof of Theorem 1 For the case ofT(ˉρAB(1)) =diag(?αδ,αδ,δ),from Eq.(A12)we have

    Using Eqs.(A13)–(A16)in Eq.(A12),we get

    Appendix B:Proof of Theorem 2

    From>2,k=1,2,...,n,it is equivalent to

    Define a function

    Obviously,f(θ,α,δ,β1,β2,μ1,...,μk,γ1,...,γk,η1,...,ηk?1)>0,then the inequality(B1)can be written as

    we have

    this implies that there existsε >0 such thatηk= (1+ε)f(θ,α,δ,β1,β2,μ1,...,μk,γ1,...,γk,η1,...,ηk?1).

    Denote byXkthe set{ε,α,δ,β1,β2,μi,γi}ki=1.Furthermore,we define a sequenceηk(θ,Xk)as follows:

    Ifηi(θ,Xi)<1 fori=1,2,...,k ?1,then

    Thus,ηk(θ,Xk)<1 when

    Set

    We can rewrite inequality (B4) as (1+ε)(2k ?cos(θ)ak)<bksin(θ)and get

    The solution of inequality(B7)satisfies

    where

    for anyk=1,2,...,n,i.e.,θk ∈(arctan[xk2(ε)],arctan[xk1(ε)]).Therefore,if

    Appendix C:Proof of Theorem 3

    From assumption,γn(β1+β2)δ=2,denote byYkthe set of given nonzero parameters{ε,α,μs,γt}k,k?1s=1,t=1,one has

    We can define a new sequence(pi(θ))iof the following form:

    Appendix D:Proof of Theorem 4

    In the following, we give a brief proof, which is similar to the proof of Theorem 1.When bothsandtare even,we use Eqs.(43),(44)and Eqs.(45),(46)as noisy measurements,we get

    where

    For the casek=1,we have

    It follows from the Lüders rule, Eqs.(A3)–(A5) in Ref.[33] and Eqs.(D2), (D3), (D7)–(D9) that Eq.(D1) is transformed into

    Then, we consider the case that bothsandtare odd,which is the most complex case.In this case,we use Eqs.(47),(48) and Eqs.(49), (50) as the noisy measurements for Alice and Bob(k),respectively.By calculation,we get

    where

    for someθ ∈(0,π/4]andk=1,2,...,n.Similar to the proof of Theorem 1,we can get

    Combining the form of noisy initial state ?ρAB(1)with Eqs.(D11)–(D22)andβ1≥β2,Eq.(D1)can be rewritten as

    For the case of even(odd)tand odd(even)s,it is analogous to prove inequality(51).

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos.12271394 and 12071336)and the Key Research and Development Program of Shanxi Province(Grant No.202102010101004).

    国产精品久久久久久精品电影小说 | 99九九线精品视频在线观看视频| 国产爱豆传媒在线观看| 中文天堂在线官网| 久久久久久九九精品二区国产| 亚洲一区二区三区欧美精品 | 精品一区二区三区视频在线| 男人和女人高潮做爰伦理| 一级av片app| 日韩视频在线欧美| 身体一侧抽搐| 国产黄a三级三级三级人| 亚洲精品影视一区二区三区av| 国产精品久久久久久精品古装| 成人午夜精彩视频在线观看| freevideosex欧美| 亚洲av一区综合| 51国产日韩欧美| 国产综合懂色| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区四区激情视频| 国产v大片淫在线免费观看| 日韩成人伦理影院| 国产亚洲5aaaaa淫片| 精品久久久久久久久av| 男人爽女人下面视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 网址你懂的国产日韩在线| 国产极品天堂在线| av在线天堂中文字幕| 国产美女午夜福利| 免费av观看视频| 日韩一本色道免费dvd| 国产国拍精品亚洲av在线观看| 国产亚洲av嫩草精品影院| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看| 久久99热这里只有精品18| 色播亚洲综合网| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 日本午夜av视频| 一级毛片久久久久久久久女| 在线亚洲精品国产二区图片欧美 | 国产在视频线精品| 天堂网av新在线| 亚洲国产高清在线一区二区三| www.色视频.com| 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 特级一级黄色大片| 最新中文字幕久久久久| 69av精品久久久久久| 香蕉精品网在线| 精品少妇黑人巨大在线播放| 亚洲熟女精品中文字幕| 深爱激情五月婷婷| 熟妇人妻不卡中文字幕| 全区人妻精品视频| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 在线观看一区二区三区激情| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| 久久99热6这里只有精品| 亚洲精品一二三| 男女边摸边吃奶| 大码成人一级视频| 少妇 在线观看| 久热这里只有精品99| 国产永久视频网站| 久久影院123| 欧美3d第一页| av福利片在线观看| 色哟哟·www| 国产精品一区www在线观看| 成人一区二区视频在线观看| 交换朋友夫妻互换小说| 男女边吃奶边做爰视频| 女人十人毛片免费观看3o分钟| 欧美国产精品一级二级三级 | 久久综合国产亚洲精品| 亚洲欧美日韩卡通动漫| 国产精品熟女久久久久浪| 干丝袜人妻中文字幕| 老女人水多毛片| 国产黄片美女视频| 精品人妻偷拍中文字幕| 在线观看一区二区三区| 哪个播放器可以免费观看大片| 交换朋友夫妻互换小说| 日日撸夜夜添| 大片免费播放器 马上看| 成年免费大片在线观看| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久免费av| 国产一区二区三区av在线| 高清av免费在线| 18禁在线无遮挡免费观看视频| 美女高潮的动态| 精品99又大又爽又粗少妇毛片| 男人添女人高潮全过程视频| 伊人久久精品亚洲午夜| 欧美日韩综合久久久久久| 久久99精品国语久久久| 国产欧美另类精品又又久久亚洲欧美| 久久97久久精品| 日本欧美国产在线视频| 国产精品国产三级国产专区5o| 18禁动态无遮挡网站| 久久久久久久久久久丰满| 亚洲久久久久久中文字幕| 久久久a久久爽久久v久久| 狠狠精品人妻久久久久久综合| 丝袜喷水一区| 熟女av电影| 国产精品不卡视频一区二区| 国产精品人妻久久久久久| 国产精品一区二区三区四区免费观看| 秋霞伦理黄片| 网址你懂的国产日韩在线| av网站免费在线观看视频| 亚洲天堂av无毛| 国产男人的电影天堂91| 免费不卡的大黄色大毛片视频在线观看| 我要看日韩黄色一级片| 国产亚洲av嫩草精品影院| 黄色视频在线播放观看不卡| 99热6这里只有精品| 久久精品国产鲁丝片午夜精品| 亚洲,欧美,日韩| 在线观看av片永久免费下载| 久久久久久九九精品二区国产| 亚洲国产精品专区欧美| 69人妻影院| 最后的刺客免费高清国语| 下体分泌物呈黄色| 91精品国产九色| 国产色爽女视频免费观看| 九九爱精品视频在线观看| 亚洲av男天堂| 激情 狠狠 欧美| 久久99热这里只频精品6学生| 水蜜桃什么品种好| 熟妇人妻不卡中文字幕| 国产综合懂色| av福利片在线观看| av播播在线观看一区| 视频区图区小说| 亚洲内射少妇av| 在线观看免费高清a一片| 国产人妻一区二区三区在| 新久久久久国产一级毛片| 天天躁夜夜躁狠狠久久av| 99热国产这里只有精品6| 在线观看国产h片| 热99国产精品久久久久久7| 青春草国产在线视频| 极品少妇高潮喷水抽搐| 欧美+日韩+精品| 久久女婷五月综合色啪小说 | 欧美日韩精品成人综合77777| 狂野欧美激情性xxxx在线观看| 最近的中文字幕免费完整| 亚洲国产成人一精品久久久| 在线播放无遮挡| 国内精品美女久久久久久| freevideosex欧美| av又黄又爽大尺度在线免费看| 69av精品久久久久久| 建设人人有责人人尽责人人享有的 | 国产成人午夜福利电影在线观看| 一个人看的www免费观看视频| 三级男女做爰猛烈吃奶摸视频| 欧美日本视频| 欧美高清成人免费视频www| 在线观看一区二区三区激情| 日韩国内少妇激情av| 亚洲在久久综合| 国内少妇人妻偷人精品xxx网站| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 黄色视频在线播放观看不卡| 香蕉精品网在线| 免费看不卡的av| 91久久精品电影网| 亚洲国产欧美人成| 好男人视频免费观看在线| 美女视频免费永久观看网站| 国产午夜精品一二区理论片| 国产免费福利视频在线观看| 精品一区二区免费观看| 国产成人免费无遮挡视频| 香蕉精品网在线| 国产成人一区二区在线| 国产成人精品久久久久久| 日韩大片免费观看网站| 大片免费播放器 马上看| 国产爽快片一区二区三区| 欧美高清成人免费视频www| 国产老妇女一区| 一区二区av电影网| av在线播放精品| 性色av一级| 97超碰精品成人国产| 国产精品久久久久久久电影| 久久国产乱子免费精品| 亚洲国产欧美人成| 国产成人aa在线观看| 一级爰片在线观看| 国产精品一区二区在线观看99| 日本色播在线视频| 中国国产av一级| 一级黄片播放器| 精品一区二区三卡| 色网站视频免费| 久久精品久久久久久噜噜老黄| 青青草视频在线视频观看| 欧美少妇被猛烈插入视频| 久久6这里有精品| 熟妇人妻不卡中文字幕| 国产欧美亚洲国产| 精品久久久久久久久亚洲| 国产高清有码在线观看视频| 嘟嘟电影网在线观看| 久久精品国产亚洲av涩爱| 国产 一区精品| 一二三四中文在线观看免费高清| 五月天丁香电影| 亚洲三级黄色毛片| 九九在线视频观看精品| 亚洲精品乱久久久久久| 禁无遮挡网站| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| 日韩不卡一区二区三区视频在线| 午夜老司机福利剧场| 国产色爽女视频免费观看| 亚洲精品aⅴ在线观看| 少妇的逼好多水| 在线 av 中文字幕| 亚洲在线观看片| 亚洲国产高清在线一区二区三| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 男女边摸边吃奶| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频 | 伊人久久精品亚洲午夜| 久久国产乱子免费精品| 国产精品女同一区二区软件| 中文乱码字字幕精品一区二区三区| 亚洲在线观看片| 国产av码专区亚洲av| eeuss影院久久| 欧美zozozo另类| 免费看日本二区| 日韩在线高清观看一区二区三区| 免费看a级黄色片| 中国国产av一级| 国产精品久久久久久久久免| 亚洲最大成人中文| 一级毛片 在线播放| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 国产亚洲5aaaaa淫片| 校园人妻丝袜中文字幕| 伊人久久国产一区二区| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 在线亚洲精品国产二区图片欧美 | 日韩一本色道免费dvd| 五月玫瑰六月丁香| 在线 av 中文字幕| 亚洲精品一二三| 精品久久久久久久久亚洲| 毛片一级片免费看久久久久| 一级爰片在线观看| 久久久午夜欧美精品| 色视频在线一区二区三区| 别揉我奶头 嗯啊视频| 精品人妻偷拍中文字幕| 久久综合国产亚洲精品| 午夜精品国产一区二区电影 | 菩萨蛮人人尽说江南好唐韦庄| 老司机影院成人| 久久精品国产亚洲av涩爱| 精品国产三级普通话版| 久久久久九九精品影院| 日韩欧美一区视频在线观看 | 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 欧美亚洲 丝袜 人妻 在线| 偷拍熟女少妇极品色| 18禁动态无遮挡网站| 制服丝袜香蕉在线| 综合色av麻豆| 91精品国产九色| 成人免费观看视频高清| 日韩不卡一区二区三区视频在线| 欧美日韩国产mv在线观看视频 | 最近最新中文字幕大全电影3| 成人毛片60女人毛片免费| 国产亚洲最大av| 如何舔出高潮| 亚洲欧美精品自产自拍| 舔av片在线| 九九爱精品视频在线观看| 亚洲av日韩在线播放| 偷拍熟女少妇极品色| 久久久久久久久久久丰满| 亚洲欧美精品自产自拍| 一级二级三级毛片免费看| 国产乱人偷精品视频| 久久久亚洲精品成人影院| 综合色丁香网| 久久久久久久久久久丰满| 日韩人妻高清精品专区| 97在线视频观看| 一区二区三区免费毛片| 成人二区视频| 亚洲av欧美aⅴ国产| 亚洲婷婷狠狠爱综合网| 在线观看人妻少妇| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 国产一区亚洲一区在线观看| 一级av片app| 三级国产精品欧美在线观看| 综合色丁香网| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 免费观看性生交大片5| 观看免费一级毛片| freevideosex欧美| 男男h啪啪无遮挡| 成人一区二区视频在线观看| 国产真实伦视频高清在线观看| 婷婷色综合www| 亚洲无线观看免费| 最近最新中文字幕免费大全7| 99热6这里只有精品| 亚洲av二区三区四区| 色哟哟·www| 中文字幕制服av| 精品人妻偷拍中文字幕| 一区二区三区四区激情视频| 精品久久久久久久人妻蜜臀av| 日韩av免费高清视频| 天堂网av新在线| 99久久中文字幕三级久久日本| av黄色大香蕉| 免费电影在线观看免费观看| 免费黄频网站在线观看国产| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 各种免费的搞黄视频| 国产色爽女视频免费观看| 最近最新中文字幕免费大全7| 乱码一卡2卡4卡精品| 久久久久精品久久久久真实原创| 蜜桃久久精品国产亚洲av| 最新中文字幕久久久久| 国产乱人偷精品视频| 少妇人妻久久综合中文| 亚洲人成网站高清观看| 啦啦啦在线观看免费高清www| 午夜精品一区二区三区免费看| 777米奇影视久久| 久久久久久久亚洲中文字幕| 国产成人精品婷婷| 亚洲人成网站在线观看播放| 国产精品精品国产色婷婷| 18+在线观看网站| 丰满乱子伦码专区| 人妻一区二区av| 色视频在线一区二区三区| 一个人看视频在线观看www免费| 偷拍熟女少妇极品色| 国产精品99久久久久久久久| 91久久精品国产一区二区成人| 成人免费观看视频高清| 六月丁香七月| 国产av码专区亚洲av| 日本一二三区视频观看| 成人毛片a级毛片在线播放| av女优亚洲男人天堂| 亚洲av欧美aⅴ国产| 最近2019中文字幕mv第一页| 街头女战士在线观看网站| 免费看av在线观看网站| 亚洲欧美成人综合另类久久久| 内地一区二区视频在线| 国产成人免费观看mmmm| 国产探花在线观看一区二区| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 青青草视频在线视频观看| 日本熟妇午夜| 欧美激情在线99| 女人久久www免费人成看片| 美女内射精品一级片tv| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 欧美xxⅹ黑人| 欧美xxxx性猛交bbbb| 欧美亚洲 丝袜 人妻 在线| 又爽又黄无遮挡网站| 日韩伦理黄色片| 欧美成人午夜免费资源| 丰满人妻一区二区三区视频av| 在线观看一区二区三区激情| 一级毛片电影观看| 不卡视频在线观看欧美| 亚洲国产最新在线播放| 国产精品一区二区性色av| 国产精品99久久99久久久不卡 | 国产精品熟女久久久久浪| 亚洲国产高清在线一区二区三| 亚洲精品日本国产第一区| 天天躁夜夜躁狠狠久久av| av女优亚洲男人天堂| 国产黄色免费在线视频| 亚洲成人一二三区av| 免费播放大片免费观看视频在线观看| 久久久a久久爽久久v久久| 日韩av免费高清视频| kizo精华| 色播亚洲综合网| 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 亚洲成人精品中文字幕电影| 久久精品国产a三级三级三级| 丰满人妻一区二区三区视频av| 观看免费一级毛片| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| a级毛色黄片| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| 又爽又黄a免费视频| 精品人妻视频免费看| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 欧美亚洲 丝袜 人妻 在线| 男人舔奶头视频| 免费大片18禁| 国产高清三级在线| 日本黄大片高清| 97在线视频观看| 国产成人aa在线观看| 午夜日本视频在线| 免费观看av网站的网址| 成人国产av品久久久| 亚洲三级黄色毛片| 男人舔奶头视频| 老司机影院成人| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 国产精品一区二区三区四区免费观看| 99久久人妻综合| 国产极品天堂在线| 在线观看免费高清a一片| 九草在线视频观看| 欧美zozozo另类| 国产一区二区三区综合在线观看 | 男女边摸边吃奶| 一级二级三级毛片免费看| 国内揄拍国产精品人妻在线| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 国产爱豆传媒在线观看| 好男人在线观看高清免费视频| 一级毛片黄色毛片免费观看视频| 精品久久久精品久久久| 国产欧美亚洲国产| 国产黄片视频在线免费观看| 日韩成人伦理影院| 亚洲一区二区三区欧美精品 | 超碰av人人做人人爽久久| 夜夜爽夜夜爽视频| 日日撸夜夜添| 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 国产在视频线精品| 中文字幕亚洲精品专区| 国产女主播在线喷水免费视频网站| 一二三四中文在线观看免费高清| 国产亚洲午夜精品一区二区久久 | 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 色婷婷久久久亚洲欧美| 欧美xxⅹ黑人| 成年人午夜在线观看视频| 边亲边吃奶的免费视频| 中文乱码字字幕精品一区二区三区| 天堂中文最新版在线下载 | 国产亚洲一区二区精品| 国产高潮美女av| 一区二区三区免费毛片| 亚洲色图av天堂| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区| 男女无遮挡免费网站观看| 汤姆久久久久久久影院中文字幕| 少妇 在线观看| 男人舔奶头视频| 一本一本综合久久| 纵有疾风起免费观看全集完整版| 国语对白做爰xxxⅹ性视频网站| av福利片在线观看| 久久97久久精品| 久久久久久久久久成人| 在线观看国产h片| 赤兔流量卡办理| 一级二级三级毛片免费看| 不卡视频在线观看欧美| 亚洲色图综合在线观看| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 免费av不卡在线播放| 能在线免费看毛片的网站| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 久久久a久久爽久久v久久| 97超视频在线观看视频| 国产免费又黄又爽又色| 高清av免费在线| 国产精品人妻久久久久久| 一级二级三级毛片免费看| 伊人久久精品亚洲午夜| 久久韩国三级中文字幕| 白带黄色成豆腐渣| 王馨瑶露胸无遮挡在线观看| 欧美最新免费一区二区三区| 欧美成人a在线观看| 国产av码专区亚洲av| 少妇猛男粗大的猛烈进出视频 | 熟女人妻精品中文字幕| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 欧美精品一区二区大全| 丝袜脚勾引网站| 国产亚洲5aaaaa淫片| 男人狂女人下面高潮的视频| 日本午夜av视频| 在线亚洲精品国产二区图片欧美 | 校园人妻丝袜中文字幕| 中国美白少妇内射xxxbb| 日本av手机在线免费观看| 少妇高潮的动态图| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 大香蕉97超碰在线| 肉色欧美久久久久久久蜜桃 | 免费看光身美女| 美女xxoo啪啪120秒动态图| 人妻制服诱惑在线中文字幕| 亚洲精品影视一区二区三区av| 亚洲第一区二区三区不卡| 国产免费视频播放在线视频| 亚洲精品一二三| 91久久精品国产一区二区三区| 国产伦精品一区二区三区四那| 亚洲欧美一区二区三区黑人 | 欧美老熟妇乱子伦牲交| 亚洲av一区综合| 国产一区二区三区综合在线观看 | 人妻制服诱惑在线中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 在线播放无遮挡| 激情五月婷婷亚洲| kizo精华| 啦啦啦中文免费视频观看日本| 亚洲av二区三区四区| 高清欧美精品videossex| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站 | 一区二区三区精品91| 麻豆成人午夜福利视频| 中文欧美无线码| 又爽又黄a免费视频| 亚洲国产欧美人成| 成人高潮视频无遮挡免费网站| 18禁在线无遮挡免费观看视频| 亚洲电影在线观看av| 色婷婷久久久亚洲欧美| 一级毛片黄色毛片免费观看视频| 神马国产精品三级电影在线观看| 在线观看国产h片| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 国产综合懂色| 又粗又硬又长又爽又黄的视频| 国产精品国产av在线观看| 18禁在线播放成人免费| kizo精华| 全区人妻精品视频| 亚洲av免费高清在线观看| 日韩av在线免费看完整版不卡| 国产亚洲一区二区精品| 草草在线视频免费看| 国产成人精品一,二区| 久久久精品欧美日韩精品| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 免费av不卡在线播放| 精品一区二区免费观看| 尤物成人国产欧美一区二区三区| 一级片'在线观看视频|