• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron characteristics and dynamics in sub-millimeter pulsed atmospheric dielectric barrier discharge

    2024-01-25 07:28:38JunlinFang方駿林YarongZhang張亞容ChenziLu盧陳梓LiliGu顧莉莉ShaofengXu徐少鋒YingGuo郭穎andJianjunShi石建軍
    Chinese Physics B 2024年1期

    Junlin Fang(方駿林), Yarong Zhang(張亞容), Chenzi Lu(盧陳梓), Lili Gu(顧莉莉),Shaofeng Xu(徐少鋒), Ying Guo(郭穎),?, and Jianjun Shi(石建軍)

    1College of Science,Donghua University,Shanghai 201620,China

    2Yiwu Research Institute of Fudan University,Yiwu 322099,China

    Keywords: sub-millimeter pulsed discharge,plasma simulation,electron dynamics and sheath

    1.Introduction

    Atmospheric-pressure plasmas have attracted significant attention owing to their potential applications in biomedical sterilisation, environmental treatment, and material processing.[1–10]Among the discharge excitations with repetition frequencies from DC to microwaves, sub-microsecond pulsed voltage in the kilohertz range is preferred for its high discharge power consumption efficiency[11]and generation of reactive plasma species.[12]In atmospheric-pressure pulsed discharge, two discharge events are ignited in the rising and falling phases of the pulse voltage,[13]which are generated by overvoltage and develop in the form of fast ionising waves.[14]This ensures high discharge stability and reactivity in terms of electron density and electron energy in atmospheric pulsed discharges.[15]The energetic electrons produced during discharge are responsible for the excitation and dissociation of the working gases from the material processing of deposition and etching,[16]which suggests that the electron energy distribution function must be considered, even in atmosphericpressure reactive plasma.[17,18]Given that a reduced discharge gap distance can enhance the electric field and shrink the plasma bulk regime, a high concentration and proportion of energetic electrons can be achieved in sub-millimeter discharges.[17–19]

    In the present study, the discharge characteristics of a sub-millimeter pulsed atmospheric dielectric barrier discharge were investigated experimentally by using electrical and optical diagnostics.The discharge mechanism in terms of electron dynamics was investigated by numerical simulations,in which the discharge ignition and sheath characteristics in terms of the sheath voltage and thickness were presented to discuss the production of energetic electrons in the discharge.

    2.Experimental setup and numerical model

    The experimental setup and the schematic diagram of the simulation domain of the two-dimensional (2D) selfconsistent numerical model are shown in Fig.1.The reactor consists of two copper rod electrodes with diameter of 1.00 mm covered with quartz tubes, whose inner and outer diameters are 1.00 mm and 2.00 mm,respectively,and the gas gap distance is varied from 1.00 mm to 0.20 mm.One of the electrodes is powered by a pulse power supply capable of generating sub-microsecond high-voltage pulses with amplitude and repetition frequencies of up to 20 kV and 10 kHz,respectively.

    Waveforms of the applied voltage and discharge current were captured using a voltage probe(Tektronix P6015A)and a current probe(Pearson 2877)and collected using a 4-channel broadband digital oscilloscope(Tektronix DP04104).The discharge images and optical emission spectra were obtained using an ICCD camera (Andor iStar DH720) and spectrometer(Andor SR750).

    Fig.1.Experimental setup and two-dimensional schematic diagram of simulation domain.

    Table 1.Elementary reaction and rate coefficients.

    The thickness and relative permittivity of the dielectric layer were fixed at 0.50 mm and 10, respectively, and the length along the axis was fixed at 4.00 mm.Table 1 presents the elementary reactions and their reaction rates considered in the mode,[20–22]whereTeis the mean electron energy.Electrons(e),helium ions(He+),ionized helium molecules(He+2),excited helium atoms (He?), and excited helium molecules(He?2) can be determined by the particle continuity, as shown in equation.

    The number density of plasma species are obtained by solving the continuity equations[20–22]

    wheren,Γ, andSare the number density, flux, and sources of the plasma species, respectively,xandycorrespond to the axial and radial directions,respectively.The fluxes of ions and electrons are

    where i and e denote ion and electron,respectively,andμandDdenote the coefficients of mobility and diffusivity, respectively.The electrical fieldEcan be obtained by solving Poisson’s equation

    whereε0andedenote the vacuum permittivity and elementary charge,respectively.Electron mean energyεcan be calculated as follows:

    whereTis the temperature of a plasma species, andmis the mass of a plasma species.Ki,jandKL,i jare the reaction rate and the energy gain/loss rate attributed to the reaction between speciesiandj, respectively.Kmtis the momentum-transfer frequency corresponding to the elastic collision between electrons and background gas atoms.

    The boundary condition for electrons and ions is expressed as

    where the secondary electron emission coefficientγwas set to 0.02, and the energy of the secondary electrons from the electrodes was fixed at 1.00 eV.

    3.Results and discussion

    3.1.Discharge ignition

    Typical waveforms of the current density of the pulsed discharge measured in experiments and simulation with a gap distance of 1.00 mm are shown in Fig.2.

    Fig.2.Waveforms of current density measured in experiments and simulation.

    The pulse voltage has a pulse duration of 5.0 μs, with a rising and falling duration of 50 ns and a repetitive frequency and amplitude of 3.0 kHz and 1.60 kV in the experiments,respectively.

    As presented in Fig.2, two pulse discharge events occur, which correspond to the rising and falling phase discharges with discharge current densities of 0.14×104A/m2and 0.13×104A/m2in the experiment, respectively, and 0.10×104A/m2and 0.097×104A/m2in the simulation,respectively.

    Figures 3(a)and 3(b)show the normalized spatiotemporal distribution discharge from 0μs–6.0μs in the experiment and simulation, respectively.The exposure time in Fig.3(a) and the time interval between two consecutive images were set to 10 ns.At the time instant of 0.17 μs in the experiment, as shown in Fig.3(a),the pulse discharge gradually moved from the pulse electrode(0 mm)to the ground electrode(1 mm),and it reached the ground electrode at 0.32μs.At the time instant of 5.30μs, the pulse was discharged on the falling edge, and it reached the pulse electrode at 5.46 μs.At the time instant of 0.2 μs in the simulation of Fig.3(b), the pulse discharge gradually moved from the pulse electrode to the ground electrode; it reached the ground electrode at 0.3 μs.At the time instant of 5.1μs,the pulse was discharged on the falling edge;it reached the pulse electrode at 5.2 μs.In experiments and simulations,both the rising and falling edge discharges of the pulse discharge were completed within 0μs–6μs.

    Fig.3.The spatiotemporal evolution of pulse discharge: (a) experiments and(b)numerically simulated results.

    Figure 4(a)presents the relationship between the ignition time and discharge gap distance.The discharge image was captured by an ICCD camera with an exposure time and time interval between two consecutive images of 10 ns.The discharge ignition time was determined from the glow of the discharge image in the experiments and the increase in the discharge current density in the simulation.[23]As the discharge gap decreases from 1.00 mm to 0.20 mm,the ignition time is shortened from 190 ns to 150 ns in the experimental measurements and from 126 ns to 90 ns in the numerical simulation,which are consistent with the findings of other studies.[24,25]The discharge ignition time was shortened by approximately 40 ns,suggesting that the pulsed discharge could be enhanced with the same applied pulse voltage by reducing the gap distance.The discrepancy of discharge ignition time measured in experiments and determined in simulation can be attributed to the detection limit of ICCD camera on discharge optical emission intensity and the gas impurity is not considered in numerical model.

    Figure 4(b) shows the average electron energy and electric field across the discharge gap at the time of discharge ignition.As the discharge gap decreases from 1.00 mm to 0.20 mm, the average electric field increases from 0.71×106V/m to 2.05×106V/m, and the average electron energy increases from 4.50 eV to 7.07 eV.The average electron energy for the 0.20 mm gap was 1.57 times higher than that for a discharge gap of 1.00 mm, which can be attributed to the enhancement of the electric field.

    Fig.4.(a) Dependence of ignition time on discharge gap, (b) the average electron energy and electric field in plasma at the instants of discharge ignition.

    3.2.Discharge characteristics and dynamics at the instants of discharge current peaks

    The discharge image intensity and optical emission spectrum(OES)at 706 nm measured experimentally at the time of the discharge current peaks are shown in Fig.5.

    Fig.5.(a) Measured image intensity and optical emission intensity at 706 nm, (b) simulated density of He+, He?, He?2 at the time of discharge current peaks.

    The discharge image and OES at 706 nm were obtained with an exposure time of 1 s.As the discharge gap decreases from 1.00 mm to 0.20 mm,the image intensity increases from 24.89 to 73.36,a factor of 2.95.

    The simulated helium ion density is used to compare the experimentally measured light emission intensity from the discharge,[26]which increases from 1.04×1018m?3to 2.63×1018m?3with the reduction of gap distance from 1.00 mm to 0.20 mm and is consistent with the dependence of discharge image intensity on discharge gap distance.He?density increases from 6.50×1018m?3to 10.90×1018m?3and He?2density increases from 3.9×1017m?3to 4.20×1017m?3with the reduction of gap distance from 1.00 mm to 0.20 mm.The intensity of the optical emission line at 706 nm indicates the presence of energetic electrons(above 2.9 eV)in the discharge.With the improved discharge intensity in terms of discharge image intensity and helium ion density, the optical emission intensity at 706 nm increases from 0.45 to 0.94 with the reduction of gap distance from 1.00 mm to 0.20 mm, as shown in Fig.5(a).This suggests that the density of the generated energetic electrons is enhanced with a reduced discharge gap distance in the sheath region.

    Figure 6 shows the temporal evolution of the electric field,electron temperature,eand the formation process of sheath.Figure 6(a)the spatial distribution of the electric field at intervals of 1 mm in the simulation.At 0.1μs,there is no discharge in the gap,and the electric field exhibits a linear growth trend from 6.1×105V/m to 7.7×105V/m.At 0.267 μs, the ionization wave propagates to the middle region of the gap.At this moment, in the area passed by the ionization wave, the electric field rapidly decreases.Simultaneously, the electric field between the head of the ionization wave and the ground electrode(0.50 mm)rapidly increases to 17.9×105V/m.At 0.294μs,the discharge approaches its maximum strength.

    The maximum electric field in the gap increases to 29.1×105V/m in the sheath region.Subsequently, as the reaction progresses, the maximum electric field in the sheath region gradually decreases from 29.1×105V/m to 12.8×105V/m.Figure 6(b) represents the spatiotemporal evolution of electron temperature.At 0.1μs,the spatial electron energy is uniformly distributed,with values ranging between 4 eV to 5 eV in the gap.At 0.267μs,the ionization wave propagates to the middle region of the gap.At this moment, in the area passed by the ionization wave, the electric energy rapidly decreases to 1.0 eV–2.0 eV.Simultaneously,the electric energy between the head of the ionization wave and ground electrode rapidly increases to 6.7 eV.At 0.294μs,the discharge approaches its maximum strength.The maximum electric energy in the gap increases to 8.3 eV in the sheath region.Subsequently,as the reaction progresses,the maximum electric energy in the sheath region gradually decreases from 8.3 eV at 0.294μs to 5.2 eV at 0.324μs.

    Figure 6(c) shows the spatiotemporal evolution of electron density.At 0.1μs,the spatial electron density ranges between 2×1014m?3–20×1014m?3in the gap.At 0.267 μs,the ionization wave propagates to the middle region of the gap.Simultaneously, at the head of the ionization wave, the electron density rapidly increases to 2.1×1017m?3.At 0.294μs,the discharge approaches its maximum strength.The maximum electric density in the gap increases to 1.08×1018m?3in the sheath boundary.Subsequently, as the reaction progresses, the maximum electric density gradually decreases from 1.19×1018m?3at 0.304 μs to 1.08×1018m?3at 0.324μs.

    Fig.6.(a) Temporal evolution of electric field in simulation, (b) temporal evolution of electron temperature,and(c)temporal evolution of electron spatial distribution.

    Figure 7 shows the spatial distribution of the gas potential,electron energy,electrons density,and helium ions at 0.294μs.There is a significant drop in the sheath region, and electrons are mainly concentrated in the area outside the sheath boundary.

    During the discharge process, the electron energy distribution trend consistently follows that of the electric field distribution,with electrons primarily being generated at the head of the ionization wave.Energetic electrons are generated in the sheath region.As the ionization wave propagates, the sheath voltage gradually increases, leading to a compression of the sheath structure.This compression also causes changes in the number of energetic electrons within the sheath,ultimately affecting the overall intensity of the discharge.

    Fig.7.Spatial distribution of the gas potential, electron energy, electrons density,and helium ions at 0.294μs.

    The sheath region formed above the electrode surface plays an important role in electron dynamics during discharge.Figure 8 shows the discharge-gap distance-dependent sheath characteristics in terms of the sheath thickness and sheath voltage as calculated in the simulation.As shown in Fig.8,as the discharge gap is reduced from 1.00 mm to 0.30 mm,the sheath thickness decreases gradually from 95.04μm to 82.65μm and the sheath voltage increases from 154.00 V to 197.77 V.

    Fig.8.Sheath thickness and sheath voltage as functions of discharge gap distance at discharge current peaks.

    The reductions in both sheath thickness and sheath voltage suggest an enhancement of the electric field in the sheath region.With further reductions of the gap distance from 0.30 mm to 0.12 mm,the sheath thickness continues decreasing from 82.65 μm to 78.14 μm, suggesting that the discharge gap distance approaches the sheath thickness and the sheath voltage maintains a magnitude between 197.00 V and 199.00 V.When the discharge gap is reduced to 0.10 mm,the sheath voltage is reduced to 194.00 V, indicating that the enhancement of the electric field in the sheath region is limited because the discharge gap distance is close to the sheath thickness.

    The discharge reactivity is primarily determined by the concentration and proportion of energetic electrons in the discharge.In Fig.9, the number of energetic electrons is obtained by integrating the electron density with energies equal to or greater than 8.4 eV in the discharge domain, as shown in Fig.1(b).The ratio of energetic electrons to total electrons(R) in the discharge is also presented.With the reduction of the discharge gap distance from 1.00 mm to 0.10 mm,Rincreases from 0.01% to 3.84%, especially when the discharge gap distance is less than 0.20 mm.This can be attributed to the enhancement of the electric field in the sheath region with a reduction in the discharge gap distance,where energetic electrons are generated, as shown in Fig.5.This is also because of the elevated proportion of the sheath thickness to discharge gap distance as the thickness of the plasma bulk region is reduced by the reduction in the discharge gap distance, where the electron density is high and the electron energy is low.[27]

    Fig.9.The number and proportion of energetic electrons as functions of discharge gap distance at discharge current peaks.

    Conversely, when the discharge gap is reduced from 1.00 mm to 0.12 mm, the population of energetic electrons increases from 0.34×1010m?1to 1.08×1011m?1owing to the elevated proportion of energetic electrons and discharge intensity, as shown in Fig.5.It is interesting to note that the population of energetic electrons declines to 6.87×1010m?1at a discharge gap of 0.10 mm.As shown in Fig.9,when the discharge gap distance is less than 0.12 mm, the sheath voltage decreases,which suggests that the generation of energetic electrons declines, although the proportion of energetic electrons continues to increase.

    As shown in Fig.10, it was observed that the peak moments of OES at 777 nm and 336 nm at 170 ns appeared 10 ns–30 ns later than the one at 706 nm (150 ns) at a distance of 0.2 mm in the experiment.

    Fig.10.Spectral evolution of OES at 777 nm,336 nm,and 706 nm.

    Figure 11 shows the spatiotemporal evolution of Te,He+,He?, He?2at a distance of 0.2 mm in the simulation.At 0.124μs, the helium ions reach the maximum density(2.6×1018m?3),which then gradually decrease to 0.058×1018m?3(0.18μs).The electron temperature gradually decreases from its maximum value of 10.5 eV(0.124μs)to 1.6 eV(0.18μs).He?2increases from 0.36×1017m?3(0.124 μs) to 0.88×1017m?3(0.18 μs).He?increases from 1.22×1019m?3(0.124μs)to 1.3×1019m?3(0.13μs)and then decreases to 1.27×1019m?3(0.18μs).

    Fig.11.Spatiotemporal evolution of Te,He+ ,He?,and He?2.

    After the moment of strongest discharge, from 0.124 μs to 0.18 μs both the electron temperature and density of helium ions rapidly decrease which indicates the spectral delay in Fig.10 is not caused by energetic electrons.

    The density of He?is larger than that of He?2by two orders of magnitude.After 0.13μs,the density of He?starts to decreases in a similar trend to OES at 777 nm and 336 nm in Fig.10.It can be inferred that the variations in the emission spectrum are mainly influenced by the active particles (He?).The energetic electrons generated in the sheath region are the main raw material for producing active particles.

    4.Conclusions

    The discharge characteristics and mechanism of submillimeter pulsed dielectric barrier discharge were studied experimentally and theoretically using a two-dimensional selfconsistent fluid model.With a reduction in the discharge gap distance from 1.00 mm to 0.20 mm,the discharge ignition time is reduced and discharge intensity is enhanced in terms of discharge image intensity and optical emission spectrum intensity at 706 nm.The simulation results show that the number of energetic electrons in the discharge gradually increases as the discharge gap distance is reduced from 1.00 mm to 0.12 mm and declines with the discharge gap distance with further reductions to 0.10 mm.This is attributed to the enhancement of the electric field in the sheath region and contraction of plasma bulk regime in the discharge.Meanwhile, the proportion of energetic electrons to total electrons in the discharge increases further as the discharge gap distance is reduced from 1.00 mm to 0.10 mm with the enhancement of the electric field.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12175036 and 11875104).

    色综合婷婷激情| 亚洲在线自拍视频| 成年人黄色毛片网站| 日韩av在线大香蕉| 精品久久久久久久久av| 精品人妻1区二区| 悠悠久久av| 国产高清视频在线播放一区| 日本五十路高清| 久久精品夜夜夜夜夜久久蜜豆| 黄片wwwwww| 少妇丰满av| 亚洲综合色惰| 少妇的逼好多水| 综合色av麻豆| 亚洲欧美日韩卡通动漫| 午夜福利视频1000在线观看| 午夜爱爱视频在线播放| 男女那种视频在线观看| 国产精品亚洲一级av第二区| 免费av毛片视频| 亚洲国产精品成人综合色| 国产亚洲欧美98| 午夜视频国产福利| 日韩欧美国产一区二区入口| 亚洲精品国产成人久久av| 一本久久中文字幕| 国产aⅴ精品一区二区三区波| 日韩国内少妇激情av| 午夜福利在线在线| 露出奶头的视频| 简卡轻食公司| 啦啦啦韩国在线观看视频| 午夜福利在线观看免费完整高清在 | 干丝袜人妻中文字幕| 成人精品一区二区免费| 国内少妇人妻偷人精品xxx网站| 亚洲av免费在线观看| 桃红色精品国产亚洲av| 欧美一级a爱片免费观看看| 亚洲av五月六月丁香网| 精品一区二区免费观看| 国产精华一区二区三区| 国产精品电影一区二区三区| av在线观看视频网站免费| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 黄色欧美视频在线观看| 欧美日韩瑟瑟在线播放| 中文资源天堂在线| 久久天躁狠狠躁夜夜2o2o| 最近在线观看免费完整版| 舔av片在线| 成人国产一区最新在线观看| 国产精品不卡视频一区二区| 不卡视频在线观看欧美| 国产乱人视频| 少妇丰满av| 亚洲狠狠婷婷综合久久图片| 狠狠狠狠99中文字幕| 国内精品宾馆在线| 中文字幕免费在线视频6| 亚洲av成人精品一区久久| 日韩一区二区视频免费看| 国产毛片a区久久久久| 亚洲成人久久性| 亚洲成人精品中文字幕电影| 婷婷精品国产亚洲av在线| 麻豆成人午夜福利视频| 国产亚洲av嫩草精品影院| 日本欧美国产在线视频| 很黄的视频免费| 国内精品久久久久久久电影| 乱码一卡2卡4卡精品| 免费av观看视频| 伦精品一区二区三区| 欧美最新免费一区二区三区| 亚洲精品在线观看二区| 深夜精品福利| 成人午夜高清在线视频| 亚洲欧美日韩高清专用| 亚洲美女搞黄在线观看 | 亚洲国产精品久久男人天堂| 99热这里只有是精品50| 亚洲va日本ⅴa欧美va伊人久久| 伦理电影大哥的女人| 在线天堂最新版资源| 亚洲精品亚洲一区二区| 美女高潮喷水抽搐中文字幕| 亚洲最大成人手机在线| 免费av观看视频| 美女被艹到高潮喷水动态| 日本-黄色视频高清免费观看| 97超视频在线观看视频| x7x7x7水蜜桃| 国语自产精品视频在线第100页| 久久99热这里只有精品18| 亚洲欧美清纯卡通| 国产精品不卡视频一区二区| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 免费黄网站久久成人精品| 一级黄色大片毛片| 男女边吃奶边做爰视频| 国产高清有码在线观看视频| 亚洲一区二区三区色噜噜| 国产黄a三级三级三级人| bbb黄色大片| 99久久久亚洲精品蜜臀av| 久久久久久伊人网av| 亚洲内射少妇av| 琪琪午夜伦伦电影理论片6080| 国产高清有码在线观看视频| 久99久视频精品免费| 久久精品国产鲁丝片午夜精品 | 九九热线精品视视频播放| 国产精品三级大全| av视频在线观看入口| 很黄的视频免费| 精品日产1卡2卡| 亚洲成人久久爱视频| 国产v大片淫在线免费观看| 国产久久久一区二区三区| 精品国内亚洲2022精品成人| 国产精品98久久久久久宅男小说| 成人国产一区最新在线观看| 久久久久久国产a免费观看| 欧美黑人巨大hd| 97超级碰碰碰精品色视频在线观看| 精品久久久噜噜| 精品福利观看| 欧美日韩黄片免| 亚洲精品成人久久久久久| 国产欧美日韩精品亚洲av| 亚洲国产精品成人综合色| 国产日本99.免费观看| 天堂av国产一区二区熟女人妻| av中文乱码字幕在线| 狠狠狠狠99中文字幕| 乱码一卡2卡4卡精品| 久久久久久九九精品二区国产| 乱人视频在线观看| 国产大屁股一区二区在线视频| 亚洲一区二区三区色噜噜| 中文字幕熟女人妻在线| 久久精品国产鲁丝片午夜精品 | 51国产日韩欧美| 欧美日韩国产亚洲二区| 亚洲av免费在线观看| 精品无人区乱码1区二区| 亚洲va日本ⅴa欧美va伊人久久| 久久久成人免费电影| 在现免费观看毛片| 日韩精品中文字幕看吧| 丰满乱子伦码专区| 黄色丝袜av网址大全| 国产高潮美女av| 制服丝袜大香蕉在线| 成熟少妇高潮喷水视频| 亚洲中文字幕一区二区三区有码在线看| 成人特级av手机在线观看| 精品日产1卡2卡| 全区人妻精品视频| 欧美性感艳星| 成人综合一区亚洲| 黄片wwwwww| 日本欧美国产在线视频| 婷婷亚洲欧美| 国产精品爽爽va在线观看网站| 精品日产1卡2卡| 午夜福利在线观看免费完整高清在 | 亚洲一区二区三区色噜噜| 听说在线观看完整版免费高清| 99热这里只有精品一区| 亚洲一区二区三区色噜噜| 极品教师在线免费播放| 欧美国产日韩亚洲一区| 久久热精品热| 在线观看午夜福利视频| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 国产麻豆成人av免费视频| 久久久久免费精品人妻一区二区| 男女啪啪激烈高潮av片| 91在线精品国自产拍蜜月| av黄色大香蕉| 欧美不卡视频在线免费观看| 日韩欧美精品v在线| 国产亚洲91精品色在线| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 亚洲欧美日韩东京热| 在线观看av片永久免费下载| 久久精品影院6| 天天躁日日操中文字幕| 国产视频内射| 国产伦一二天堂av在线观看| 久久欧美精品欧美久久欧美| 成人特级av手机在线观看| 可以在线观看的亚洲视频| 99久久精品一区二区三区| 精品一区二区三区视频在线观看免费| 免费av毛片视频| 午夜老司机福利剧场| 直男gayav资源| 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 免费搜索国产男女视频| 亚洲人与动物交配视频| 校园春色视频在线观看| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 黄色日韩在线| 一夜夜www| 99热这里只有是精品50| 1000部很黄的大片| 国产成人影院久久av| 中文资源天堂在线| 久久久久久久久久黄片| 亚洲图色成人| 男女啪啪激烈高潮av片| 噜噜噜噜噜久久久久久91| 午夜免费激情av| 国国产精品蜜臀av免费| 中国美女看黄片| 18禁黄网站禁片午夜丰满| 国产激情偷乱视频一区二区| 免费在线观看影片大全网站| 女生性感内裤真人,穿戴方法视频| 99精品久久久久人妻精品| 成人精品一区二区免费| 亚洲精品在线观看二区| 超碰av人人做人人爽久久| 亚洲精品456在线播放app | 深夜精品福利| 午夜精品久久久久久毛片777| 国产色婷婷99| 老熟妇仑乱视频hdxx| 欧美一区二区国产精品久久精品| 国产淫片久久久久久久久| 99久久精品一区二区三区| 又粗又爽又猛毛片免费看| 亚洲七黄色美女视频| 亚洲av中文字字幕乱码综合| 国产精品久久久久久精品电影| aaaaa片日本免费| 夜夜看夜夜爽夜夜摸| 国产黄色小视频在线观看| 免费在线观看日本一区| 久久这里只有精品中国| 免费看日本二区| 日本免费一区二区三区高清不卡| 亚洲av免费高清在线观看| 成人国产综合亚洲| 嫩草影院新地址| 淫妇啪啪啪对白视频| 最近视频中文字幕2019在线8| 婷婷丁香在线五月| 国产三级在线视频| 一级黄片播放器| 欧美三级亚洲精品| 欧美成人一区二区免费高清观看| 国产伦在线观看视频一区| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品 | 99久久成人亚洲精品观看| 最好的美女福利视频网| 日本欧美国产在线视频| 亚洲成人免费电影在线观看| 天天躁日日操中文字幕| 成人国产综合亚洲| 成人午夜高清在线视频| 国产精品人妻久久久久久| 热99在线观看视频| 亚洲av不卡在线观看| 亚洲成人久久性| 亚洲五月天丁香| 国产亚洲精品av在线| 亚洲自偷自拍三级| 999久久久精品免费观看国产| 国产黄色小视频在线观看| 午夜视频国产福利| 国产高清视频在线观看网站| 又爽又黄a免费视频| 精品久久久久久久久亚洲 | 亚洲美女视频黄频| 女人被狂操c到高潮| 一进一出抽搐gif免费好疼| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 欧美性感艳星| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| av专区在线播放| 亚洲av美国av| 九色国产91popny在线| 成人国产麻豆网| 国产69精品久久久久777片| 91久久精品电影网| 成年人黄色毛片网站| 国产高清不卡午夜福利| 欧美xxxx黑人xx丫x性爽| 欧美绝顶高潮抽搐喷水| 国产伦人伦偷精品视频| 尾随美女入室| 我要看日韩黄色一级片| 在线观看舔阴道视频| 国产一区二区激情短视频| 日韩欧美在线二视频| av国产免费在线观看| aaaaa片日本免费| 日本免费一区二区三区高清不卡| 国产精品一区www在线观看 | 极品教师在线视频| 精华霜和精华液先用哪个| 国产日本99.免费观看| 日本免费一区二区三区高清不卡| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 午夜免费激情av| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 91狼人影院| 国产一区二区三区在线臀色熟女| 午夜免费男女啪啪视频观看 | 中文字幕精品亚洲无线码一区| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 久久久久国产精品人妻aⅴ院| 99九九线精品视频在线观看视频| 国产伦一二天堂av在线观看| 免费看美女性在线毛片视频| 国产免费男女视频| 亚洲av第一区精品v没综合| 亚洲国产日韩欧美精品在线观看| 嫩草影院精品99| 国产激情偷乱视频一区二区| 露出奶头的视频| 精品国内亚洲2022精品成人| 国产精品三级大全| 久久久久久久久中文| 亚洲国产欧美人成| 免费av观看视频| 91久久精品国产一区二区三区| 天堂av国产一区二区熟女人妻| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| 一级黄片播放器| 日韩精品青青久久久久久| 日韩 亚洲 欧美在线| 国产精品综合久久久久久久免费| 成人av在线播放网站| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 精品一区二区三区视频在线观看免费| 最近在线观看免费完整版| 不卡一级毛片| 可以在线观看的亚洲视频| ponron亚洲| 精品人妻熟女av久视频| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 中文字幕av成人在线电影| 乱系列少妇在线播放| 午夜福利高清视频| 热99re8久久精品国产| 午夜福利高清视频| 久久久久性生活片| 最好的美女福利视频网| 99久国产av精品| 亚洲精品日韩av片在线观看| 老司机福利观看| 男女下面进入的视频免费午夜| 亚洲人成网站在线播| 成人国产麻豆网| 欧美国产日韩亚洲一区| 99热只有精品国产| 国内精品久久久久精免费| 一进一出好大好爽视频| 免费看日本二区| 一进一出抽搐gif免费好疼| 亚洲国产精品成人综合色| 国产色婷婷99| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 欧美人与善性xxx| 十八禁网站免费在线| 成熟少妇高潮喷水视频| 国产精品综合久久久久久久免费| 欧美成人a在线观看| 中文字幕av在线有码专区| 国产精品国产三级国产av玫瑰| 成人鲁丝片一二三区免费| 动漫黄色视频在线观看| 国产伦人伦偷精品视频| 日韩一区二区视频免费看| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 91久久精品电影网| videossex国产| 国产成人一区二区在线| 天堂√8在线中文| 久久精品国产亚洲av天美| 日本与韩国留学比较| 欧美色视频一区免费| 亚洲专区国产一区二区| 欧美成人性av电影在线观看| 色综合婷婷激情| 亚洲精品色激情综合| 男女那种视频在线观看| 国产精品日韩av在线免费观看| 亚洲午夜理论影院| 91在线精品国自产拍蜜月| 国产乱人伦免费视频| 最后的刺客免费高清国语| 精品一区二区三区视频在线观看免费| 一进一出抽搐动态| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 香蕉av资源在线| 国产成人a区在线观看| 免费高清视频大片| 91在线观看av| 啪啪无遮挡十八禁网站| 999久久久精品免费观看国产| 久99久视频精品免费| 99国产极品粉嫩在线观看| 日本黄色片子视频| 婷婷六月久久综合丁香| 成人综合一区亚洲| 18禁在线播放成人免费| 国产精品国产高清国产av| 亚洲精品久久国产高清桃花| 欧美一区二区精品小视频在线| 一级黄片播放器| 97人妻精品一区二区三区麻豆| 欧美高清性xxxxhd video| 国产私拍福利视频在线观看| 欧美最黄视频在线播放免费| 欧美一区二区亚洲| 网址你懂的国产日韩在线| 日本一二三区视频观看| 波多野结衣高清无吗| 蜜桃亚洲精品一区二区三区| 国产精品一及| a级一级毛片免费在线观看| 亚洲性夜色夜夜综合| 日韩一区二区视频免费看| 极品教师在线免费播放| 国产乱人伦免费视频| 亚洲最大成人手机在线| 男插女下体视频免费在线播放| 欧美日韩黄片免| 热99re8久久精品国产| 成人三级黄色视频| 国产综合懂色| 综合色av麻豆| 网址你懂的国产日韩在线| 日本欧美国产在线视频| 人人妻人人澡欧美一区二区| 欧美国产日韩亚洲一区| 亚洲精品粉嫩美女一区| 免费看光身美女| 99riav亚洲国产免费| 国内少妇人妻偷人精品xxx网站| xxxwww97欧美| www.色视频.com| 日日夜夜操网爽| 日韩欧美免费精品| 欧美区成人在线视频| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看| 九色国产91popny在线| a级毛片免费高清观看在线播放| 国产精品乱码一区二三区的特点| 欧美3d第一页| 国产私拍福利视频在线观看| 午夜免费男女啪啪视频观看 | 一级av片app| 一进一出好大好爽视频| 小蜜桃在线观看免费完整版高清| 日韩av在线大香蕉| 12—13女人毛片做爰片一| 免费看av在线观看网站| 美女黄网站色视频| 亚洲国产日韩欧美精品在线观看| 久久午夜福利片| 久久热精品热| 精品久久久久久成人av| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 精品欧美国产一区二区三| 国产av在哪里看| 亚洲精品乱码久久久v下载方式| 国产欧美日韩精品亚洲av| 伦精品一区二区三区| 99riav亚洲国产免费| 波多野结衣高清无吗| 亚洲美女搞黄在线观看 | 热99re8久久精品国产| 国产不卡一卡二| 国产成人a区在线观看| 国产精品女同一区二区软件 | 欧美xxxx性猛交bbbb| 五月伊人婷婷丁香| 大又大粗又爽又黄少妇毛片口| 偷拍熟女少妇极品色| 九九在线视频观看精品| 人妻少妇偷人精品九色| 亚洲精品成人久久久久久| 淫妇啪啪啪对白视频| 制服丝袜大香蕉在线| av.在线天堂| 99热这里只有是精品在线观看| 亚洲综合色惰| 在线国产一区二区在线| 一边摸一边抽搐一进一小说| 日本五十路高清| 一本精品99久久精品77| 成人特级av手机在线观看| 国产乱人伦免费视频| 亚洲成人久久爱视频| 一区福利在线观看| 国产在线男女| 欧美xxxx黑人xx丫x性爽| 日韩精品青青久久久久久| 欧美国产日韩亚洲一区| 国产一区二区三区在线臀色熟女| 麻豆成人av在线观看| 国内精品久久久久久久电影| 香蕉av资源在线| 韩国av一区二区三区四区| 18禁裸乳无遮挡免费网站照片| 日韩一本色道免费dvd| 国产久久久一区二区三区| a级毛片免费高清观看在线播放| 亚洲精品一卡2卡三卡4卡5卡| 三级毛片av免费| 亚洲美女视频黄频| 免费av观看视频| a在线观看视频网站| 亚洲精品一区av在线观看| 国产大屁股一区二区在线视频| 久久人人爽人人爽人人片va| 欧美激情久久久久久爽电影| 可以在线观看的亚洲视频| 国产高清激情床上av| 久久久久久久久中文| 亚洲精品久久国产高清桃花| 国产精品福利在线免费观看| 国产高清三级在线| 观看美女的网站| 国产免费一级a男人的天堂| 亚洲av电影不卡..在线观看| 色综合站精品国产| 免费av不卡在线播放| 在线免费观看不下载黄p国产 | 免费一级毛片在线播放高清视频| 校园人妻丝袜中文字幕| 一进一出抽搐gif免费好疼| 欧洲精品卡2卡3卡4卡5卡区| 淫秽高清视频在线观看| 国产熟女欧美一区二区| 亚洲一区高清亚洲精品| 久久人人爽人人爽人人片va| 国产白丝娇喘喷水9色精品| 99热6这里只有精品| 国产精品久久久久久精品电影| av在线亚洲专区| 亚洲欧美日韩高清专用| 久久精品夜夜夜夜夜久久蜜豆| 在线国产一区二区在线| 美女cb高潮喷水在线观看| 精华霜和精华液先用哪个| 国产伦精品一区二区三区四那| 一区二区三区免费毛片| 自拍偷自拍亚洲精品老妇| 真实男女啪啪啪动态图| 少妇裸体淫交视频免费看高清| 国产一区二区三区视频了| 精品午夜福利视频在线观看一区| 琪琪午夜伦伦电影理论片6080| 女同久久另类99精品国产91| 国产单亲对白刺激| 国产一区二区激情短视频| 国产老妇女一区| 老司机午夜福利在线观看视频| 国产精品三级大全| 亚洲人成网站在线播放欧美日韩| 午夜精品久久久久久毛片777| 日本与韩国留学比较| 国产精品永久免费网站| 日韩欧美三级三区| 国产色爽女视频免费观看| 成年女人永久免费观看视频| 中国美白少妇内射xxxbb| 69人妻影院| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| 自拍偷自拍亚洲精品老妇| 九九爱精品视频在线观看| 精品午夜福利在线看| 亚洲国产日韩欧美精品在线观看| 欧美在线一区亚洲| 国产极品精品免费视频能看的| 亚洲人成伊人成综合网2020| 精品久久久久久久久亚洲 | 我的女老师完整版在线观看| 免费一级毛片在线播放高清视频| 男女之事视频高清在线观看| 中文亚洲av片在线观看爽| 热99re8久久精品国产| 午夜福利欧美成人|