• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet

    2024-01-25 07:13:52HuiMinXu許慧敏JingGeGao高敬格PengYingJia賈鵬英JunXiaRan冉俊霞JunYuChen陳俊宇andJinMaoLi李金懋
    Chinese Physics B 2024年1期

    Hui-Min Xu(許慧敏), Jing-Ge Gao(高敬格), Peng-Ying Jia(賈鵬英),Jun-Xia Ran(冉俊霞), Jun-Yu Chen(陳俊宇), and Jin-Mao Li(李金懋),3

    1School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056038,China

    2College of Physics Science and Technology,Hebei University,Baoding 071002,China

    3School of Electrical and Information Engineering,Heilongjiang University of Technology,Jixi 158100,China

    Keywords: plasma jet,diffuse mode,filamentary mode,optical emission spectroscopy

    1.Introduction

    Without the need for a vacuum device, atmospheric pressure plasma jet possesses the merits of low cost and easy operation.[1]More importantly, other than in a confined gap between electrodes, the plasma jet can emanate a remote plasma plume abundant with active species in open space.[2,3]Hence, the plasma jet has been extensively used in various application fields, including material synthesis,[4]surface modification,[5,6]ozone generation,[7]water purification,[8]pollutant degradation,[9]methane conversion,[6]light source,[10]sterilization,[11,12]catalysis,[13]and biomedicine,[14]etc.

    The plasma jet composed of two naked electrodes can be driven by a radio-frequency (RF) voltage, whose plasma plume actually has a high gas temperature(much higher than room temperature).[15–17]The high temperature makes the RF plasma jet unfit for the treatment of vulnerable workpieces or biomaterials.If a dielectric layer is inserted into the two electrodes, a plasma jet in a dielectric barrier discharge (DBD)geometry is constructed.The gas temperature of the DBD plasma jet can be significantly reduced due to the intermittent discharge aspects.Then, a room-temperature plume can be easily emanated downstream of the DBD plasma jet.[18,19]The DBD plasma jet is normally fed with noble gases,such as helium,argon,neon,etc.[20]With helium used as the working gas,the plasma plume is diffuse with a satisfactory length.[18]Namely,a helium plasma jet operates in a diffuse mode.When less expensive argon is used, the plasma plume is often constricted to a filament.[21,22]That is,an argon plasma jet tends to operate in a filamentary mode.[23]Compared to the filamentary mode,the diffuse mode is more desirable in applications such as biomedicine and surface modification.[24]As a result,many efforts have been made to realize the diffuse mode of the argon plasma jet.

    The diffuse mode is achieved when argon is mixed with some impurities, such as ammonia,[24]acetone,[25]hydrogen,[26]and ethanol.[27]The additive content needs to be controlled precisely, otherwise the diffuse mode is destroyed and will return to the filamentary one.With pure argon used as the working gas,the diffuse mode is realized outside of the plasma jet, while the filamentary mode is operated inside the jet.[28]The inner filament is thought to provide a high preionization for the outside discharge,which is important for the realization of the diffuse mode.By deploying a plate electrode downstream of the plasma jet with a single needle electrode,the diffuse mode is obtained with increasing the bias voltage applied to the plate.[23]

    Inspired by the potential applications of the argon plasma jet,a novel discharge device is developed,which gives rise to the diffuse mode by varying the distance from the needle to the stream in this paper.Through visualization, optoelectrical measurement,and fast photography,the mechanism of the diffuse mode is revealed.Moreover, the plasma parameters are investigated by optical emission spectroscopy during the transition from the filamentary mode to the diffuse one.

    2.Experimental setup

    The schematic diagram of the experimental setup is drawn in Fig.1.

    Fig.1.Schematic diagram of the experimental setup.

    The plasma jet is composed of a glass tube (inner and outer diameters of 3.0 mm and 5.0 mm, respectively) and a needle electrode (1.0 mm in diameter) with a tip radius of about 400μm.Different to the ordinary single-needle plasma jet,whose electrode is coaxially wrapped by the tube and parallel to the working gas stream the needle in the novel plasma jet is poised outside the tube end(the jet nozzle),which is perpendicular to the gas stream.The distance from the tip of the needle to the central line of the tube is defined asd, which is an important parameter of the discharge mode of the plasma jet.The plasma jet is fed with argon with a purity of 99.99%,whose flow rate(Q)is controlled by a gas flowmeter(Sevenstar CS200A).The needle is electrically connected with the high-voltage output of a power supply (Suman CTP-2000K),which can provide a sinusoidal voltage with a frequency of 25 kHz and an amplitude (Vp) of up to 20 kV.The applied voltage (Va) is detected by a high voltage probe (Tektronix P6015A) and then displayed by a digital oscilloscope (Tektronix DPO4104).Due to the lack of a ground electrode, it is hard to directly measure the discharge current.As an alternate approach,integrated light emission from the discharge is detected by a photomultiplier tube (PMT) (ET Enterprises 9130/100B), whose window is deployed on the image plane of a convex lens.Then,the light emission signal is simultaneously displayed by the oscilloscope with the waveform ofVa.In addition, the discharge can be recorded by a digital camera(Canon EOS 5D Mark IV)and an intensified charge coupled device(ICCD)(Intelligent Scientific System EYEITS-DHQB-F) with different exposure times (texp).The control of the ICCD gating has been described in detail in our previous work.[29]A spectrometer(ACTON SP2750)with a grating of 2400 grooves/mm is utilized to collect the optical emission spectrum from the discharge.

    3.Results and discussion

    With increasingVphigher than 15.0 kV, a plasma plume emanates from the jet nozzle.The plasma plume operates in the filamentary mode when the distance from the needle tip to the central line of the tube (d) is short, which transits to the diffuse mode whendis increased, as shown in Fig.2.From the end-view images,it is clear that the filament is presented as a bright spot, while the diffuse plume appears as an emission ring in the periphery.Hence,it can be speculated that the discharge initiates in the argon stream for the filamentary mode,while in the interfacial layer between the argon stream and the ambient air for the diffuse mode.Besides the downstream plume, an upstream plume (corresponding to the needle-tube discharge as mentioned below)can also be observed in the filamentary mode.However,it is absent in the diffuse mode.In addition, the plasma plume in both modes elongates with increasingVp.Under a constantVp, the plume is longer in the filamentary mode in contrast to the diffuse one.

    Fig.2.Side-view(the left)and end-view(the right)images with texp of 0.1 s for the argon plume with Q=5.0 L/min,d=5.0 mm for panels(a)and(b),10.0 mm for panels(c)and(d).The tube nozzle is marked as dashed lines for clarity.

    Figure 3 presents waveforms of applied voltage and integrated light emission for the plasma plumes in Fig.2.In the filamentary mode, there is one discharge per voltage cycle, which initiates at the rising edge of the positive voltage(Fig.2(a)).The discharge number per voltage cycle increases with an increase inVp, as shown in Fig.2(b).Moreover, the first discharge with highVpinitiates almost at zero voltage,which is similar to the phenomenon in dielectric barrier discharge(DBD).[30]With low or highVp,there is only one discharge per voltage cycle in the diffuse mode,which always appears at the rising edge of the positive voltage(see Figs.2(c)and 2(d)).The discharge intensity increases with the increasingVp.

    Fig.3.Waveforms of applied voltage and integrated light signal emitted from the argon plume.Panels (a)–(d) correspond to Figs.2(a)–2(d),respectively.

    Fig.4.Single-shot ICCD images for the argon plume operated in the filamentary mode(Fig.2(a)).The texp of the ICCD is the whole discharge duration for the top image and 10 ns for the others.

    Fast photography is implemented for the filamentary mode, as presented in Fig.4.One can see from the top image that the discharge between the needle and the tube (the needle-tube discharge) is striated, while the streamer is continuous.The phenomenon of striation is also observed in DBD.[31]Due to the great difference in mobility between electrons and positive ions, electrons drift toward and enter the needle anode in the needle-tube discharge, depositing positive ions in the discharge channel and on the inner surface of the tube.[32]With the proceeding of the needle-tube discharge, more and more positive ions are accumulated, which can enhance the electric field in the right region of the needle.As a result,the electric field grows with time,inducing a positive streamer when it reaches a threshold.Hence,an emission layer (plasma bullet) appears near the tip of the needle at 0 ns.Then, the plasma bullet, also referred to as streamer head,propagates away from the needle tip in the downstream region from 110 ns to 770 ns.It can also be called a guided streamer owing to the constant propagation direction.In addition to the bright streamer head,weak emission can also be discerned in the channel behind the streamer head.At 770 ns,the head of the guided streamer reaches the plume tail and then the discharge quenches.Hence,it can be concluded that the filamentary mode originates from the propagation of the guided streamer in the argon stream.

    Figure 5 presents temporal evolution of the argon plume in the diffuse mode.It can be found that the needle-tube discharge is almost absent in this mode.The positive streamer originally propagating in the air reaches the vicinity of the interfacial layer between the argon stream and the ambient air at 0 ns.Due to penning ionization between argon and nitrogen,[33]the breakdown threshold in the interfacial layer is lower than that in the argon stream.As a result, other than in the argon stream,the streamer tends to propagate in the interfacial layer under this condition.Moreover, the streamer is branched in the layer.As time elapses from 60 ns to about 420 ns, the branched streamer propagates in the interfacial layer toward the plume end.Behind the bright streamer heads,the emission in the channel is hardly discernible.From Fig.5,one can see that the position and number of the streamer head are random.Hence, it can be concluded that the diffuse mode results from the propagation of the randomly branched streamer in the interfacial layer.In other words, the diffuse plume corresponds to the temporal superposition of branched streamers.[34]

    Fig.5.Single-shot ICCD images with texp of 10 ns for the argon plume operated in the diffuse mode(Fig.2(c)).Due to the randomness of the discharge,three images are given in a column for a given moment.

    Optical emission spectra are compared in Fig.6 for the two modes of the argon plasma jet.The spectra are clearly dominated by Ar atomic lines(Ar I(4p→4s))in the red spectral region(690 nm–800 nm).In the blue spectral region,the spectra are rich in molecular rotational and vibrational bands,for instance, the hydroxyl band (A2Σ+→X2Π) of OH, and the second positive system band (C3Πu→B3Πg) of N2.In fact, the spectra shown in Fig.6 have been normalized at 763 nm.By comparing the spectra emitted from the two modes,one can see that the molecular vibrational band of N2in the diffuse mode has a stronger intensity than in the filamentary mode.The presence of the second positive system band (C3Πu→B3Πg) of N2is attributed to the diffusion of air into argon.[35]Obviously,compared to the argon stream in which the streamer propagates in the filamentary mode,the interfacial layer in which the streamer propagates in the diffuse mode has a higher air content.Resultantly,the intensity of N2(C3Πu→B3Πg) is higher in the diffuse mode in contrast to that in the filamentary mode.

    Fig.6.The scanned spectra for 300 nm–800 nm (normalized at 763 nm)emitted from the argon plume in the filamentary mode (a) and the diffuse mode(b).Panels(a)and(b)correspond to Figs.2(a)and 2(c),respectively.

    The N+2(B2Σ+g) is mainly populated through collisions with electrons above 18.7 eV,whereas N2is primarily excited to N2(C3Πu) via collisions with electrons above 11 eV.[36]Hence, higher electron temperature (Te) results in more population of N+2(B2Σ+g) compared to that of N2(C3Πu).The de-excitation process of the two excited-state species produces spontaneous radiation,corresponding to spectral lines at 391 nm and 394 nm,respectively.That is to say,the more population of N+2(B2Σ+g)than that of N2(C3Πu)leads to a higher intensity ratio of 391 nm to 394 nm.Therefore,Teis represented by the intensity ratio of 391 nm to 394 nm.[34,37–39]According to the collisional-radiative model,the electron density(ne)is related to the population ratio(n1/n2)of the excited states of Ar at the 2p energy level.[40]In addition,the intensity(I)of a spectral line in atmospheric pressure argon plasma can be expressed as a function of the population(n)as follows:[41]

    Forn1andn2, the Einstein coefficientsA1andA2are constants.Therefore,the intensity ratio(I1/I2)is is positively related to the population ratio(n1/n2),which is a function ofne.As a result,the intensity ratio of 738 nm to 750 nm is used as an indicator ofne.[42,43]

    By this method,Teandneare investigated as functions ofd,as shown in Fig.7.It is clear that with increasingd,Tefirst increases,and then decreases.On average,Teis higher in the filamentary mode than in the diffuse mode.In addition, with varyingd,nepresents a trend similar to that ofTe.Moreover,the filamentary mode has a highernethan the diffuse mode.In other words,bothTeandneare higher in the filamentary mode than in the diffuse mode.

    Fig.7.Intensity ratio of the spectral lines for 391 nm to 394 nm (a) and 738 nm to 750 nm(b)as a function of d. Q=5.0 L/min and Vp=16 kV.

    As mentioned before, in addition to the downstream streamer, there is a needle-tube discharge between the glass tube(virtual electrode)and the needle tip,which deposit positive ions in the discharge channel and on the inner surface of the tube.These spatial charges enhance the electric field to direct the streamer propagation in the downstream region.As a result,the electric field will be enhanced more severely if the needle-tube discharge is stronger.The distance between the needle to the tube end decreases with increasingdfrom 0 mm to 1.5 mm,which means that the gap width of the needle-tube discharge decreases accordingly.The decreasing gap width tends to initiate a stronger needle-tube discharge.Accordingly,the stronger needle-tube discharge results in a higher field with increasingdfrom 0 mm to 1.5 mm.Electrons in the streamer can obtain higher energy under a higher electric field.Resultantly,Teincreases with increasingdfrom 0 mm to 1.5 mm.Moreover,a higher electric field corresponds to a higherα(the first Townsend ionization coefficient),which means more electrons are produced in the plasma.Therefore,neincreases with increasingdfrom 0 mm to 1.5 mm.With further increasingd,the needle-tube discharge turns weaker due to the lengthening gap width.Moreover,the applied field of the needle weakens in the argon stream with increasingd(≥1.5 mm).The two abovementioned reasons mutually lead to the weakening field of the downstream streamer with increasingd(≥1.5 mm).As a result,Teandnedecrease with increasingd(≥1.5 mm).Compared to the streamer propagating in the argon stream of the filamentary mode, there is a higher oxygen content in the interfacial layer in which the streamer propagates in the diffuse mode.Oxygen molecules can attach electrons to form negative ions,[44]resulting in a remarkable reduction ofne.[45]As a result,nein the diffuse mode is remarkably lower than in the filamentary mode.

    Fig.8.The Tv (a) and Tr (b) as functions of d. Q=5.0 L/min and Vp=16 kV.

    In addition, the vibrational temperature (Tv) can be estimated via Boltzmann plot from N2(C3Πu→B3Πg).[20,46]Furthermore,the rotational temperature(Tr)can be diagnosed by fitting the experimental data of the first negative system(band head at 391 nm)of N+2.[47]The calculated results ofTvandTrare indicated as functions ofdas shown in Fig.8.It can be found that, compared to those in the diffuse mode, the vibrational temperatureTvand the rotational temperatureTrare higher in the filamentary mode.The higherTvandTrin the filamentary mode come from the higherTeandne.With more energetic electrons in the filamentary mode, more energy is transferred to neutral particles through collisions, leading to higherTvandTr.

    4.Conclusions

    In this paper,a novel plasma jet has been developed with a single needle perpendicular to the argon stream.Through increasing the distancedbetween the needle and the stream,it is found that the diffuse mode has been realized.Compared to the diffuse mode, the plasma plume is longer in the filamentary mode under a constantVp.Waveforms of the applied voltage and the integrated light emission indicate that there is only one discharge per voltage cycle for the diffuse mode, which initiates at the rising edge of positive voltage.Distinctively,the discharge number increases with an increase inVpfor the filamentary mode.Fast photography verifies the existence of the needle-tube discharge in the filamentary mode, which accumulates positive charges in the discharge channel and on the tube inner surface to enhance the electric field.The enhanced field induces the guided positive streamer near the needle tip,which propagates in the argon stream.For the diffuse mode,the branched streamer is induced,which propagates in the interfacial layer due to penning ionization.In addition,the molecular vibrational system of N2has a higher intensity in the diffuse mode in contrast to the filamentary mode.However,the diffuse mode has lowerTe,ne,Tv,andTrvalues than the filamentary mode.Then, the difference of these plasma parameters in the two modes is qualitatively explained based on Penning ionization and the formation of negative ions.The results mentioned above are of great significance for the wide applications of plasma jet.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.51977057, 11875121,and 11805013), the Natural Science Foundation of Hebei Province, China (Grant Nos.A2020201025 and A2022201036), the Funds for Distinguished Young Scientists of Hebei Province, China (Grant No.A2012201045),the Natural Science Interdisciplinary Research Program of Hebei University (Grant No.DXK202011), and the Postgraduate’s Innovation Fund Project of Hebei University(Grant No.HBU2022bs004).

    香蕉丝袜av| 99riav亚洲国产免费| av在线播放免费不卡| 国产黄片美女视频| 国产精品永久免费网站| 这个男人来自地球电影免费观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱色亚洲激情| 国产区一区二久久| 国产精品九九99| 我的老师免费观看完整版| 国产激情欧美一区二区| 国产黄色小视频在线观看| 此物有八面人人有两片| 91九色精品人成在线观看| 法律面前人人平等表现在哪些方面| 亚洲狠狠婷婷综合久久图片| 亚洲真实伦在线观看| 免费在线观看视频国产中文字幕亚洲| 桃色一区二区三区在线观看| av在线天堂中文字幕| 人人妻人人澡欧美一区二区| 婷婷亚洲欧美| 看黄色毛片网站| 在线观看日韩欧美| 91成年电影在线观看| 免费看a级黄色片| 日韩国内少妇激情av| 久久热在线av| 午夜精品久久久久久毛片777| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产精品999在线| 亚洲av五月六月丁香网| tocl精华| 黄色视频不卡| 97碰自拍视频| 老熟妇乱子伦视频在线观看| 欧美大码av| 操出白浆在线播放| 国产成人精品无人区| 亚洲国产精品sss在线观看| 曰老女人黄片| 免费观看精品视频网站| 男女那种视频在线观看| 欧美中文日本在线观看视频| 两个人视频免费观看高清| 天堂√8在线中文| 欧美+亚洲+日韩+国产| 亚洲 欧美 日韩 在线 免费| 99国产精品99久久久久| 日日夜夜操网爽| 97超级碰碰碰精品色视频在线观看| 18美女黄网站色大片免费观看| 国产黄a三级三级三级人| 久久精品国产清高在天天线| 中文亚洲av片在线观看爽| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久亚洲av鲁大| 一级毛片女人18水好多| 亚洲免费av在线视频| 18美女黄网站色大片免费观看| 中文字幕熟女人妻在线| 国产一区在线观看成人免费| 国内少妇人妻偷人精品xxx网站 | 国产精品野战在线观看| 日本一区二区免费在线视频| 99国产精品一区二区蜜桃av| 亚洲av成人av| 亚洲成人中文字幕在线播放| 全区人妻精品视频| 欧美高清成人免费视频www| 欧美一级毛片孕妇| 国产麻豆成人av免费视频| 少妇裸体淫交视频免费看高清 | 制服丝袜大香蕉在线| 99久久精品热视频| av天堂在线播放| 在线观看66精品国产| 男男h啪啪无遮挡| 天堂影院成人在线观看| 特大巨黑吊av在线直播| 久久久久九九精品影院| 成在线人永久免费视频| 美女黄网站色视频| 午夜a级毛片| 国产一区二区三区视频了| 岛国在线观看网站| 日日夜夜操网爽| 天堂影院成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲五月婷婷丁香| 一个人免费在线观看电影 | 丰满人妻一区二区三区视频av | 亚洲成人国产一区在线观看| 97碰自拍视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人精品一区久久| 国产真实乱freesex| 一边摸一边抽搐一进一小说| 精品国产乱码久久久久久男人| 麻豆国产97在线/欧美 | a级毛片a级免费在线| 婷婷六月久久综合丁香| 大型黄色视频在线免费观看| 国产精品亚洲一级av第二区| 老司机深夜福利视频在线观看| 淫秽高清视频在线观看| 一级毛片女人18水好多| 亚洲黑人精品在线| 中文字幕人妻丝袜一区二区| 国产精品久久久人人做人人爽| 全区人妻精品视频| 久久久久久久久中文| 久久国产精品人妻蜜桃| 欧美丝袜亚洲另类 | 人人妻人人看人人澡| 欧美日韩亚洲国产一区二区在线观看| av片东京热男人的天堂| 国模一区二区三区四区视频 | 久久精品国产亚洲av香蕉五月| 久久精品aⅴ一区二区三区四区| 欧美日本亚洲视频在线播放| 久久香蕉精品热| 日韩欧美在线乱码| 高潮久久久久久久久久久不卡| 午夜久久久久精精品| 欧美极品一区二区三区四区| 久久草成人影院| 亚洲成人久久爱视频| 一边摸一边抽搐一进一小说| 亚洲一码二码三码区别大吗| 日本 欧美在线| 亚洲av第一区精品v没综合| 丝袜美腿诱惑在线| 欧美日韩中文字幕国产精品一区二区三区| 一进一出好大好爽视频| 波多野结衣高清作品| 日本 av在线| 国产亚洲精品第一综合不卡| 色哟哟哟哟哟哟| av福利片在线观看| 午夜精品一区二区三区免费看| 国产高清videossex| 久久久久精品国产欧美久久久| 精品午夜福利视频在线观看一区| 国产成人欧美在线观看| 亚洲人成电影免费在线| 久久香蕉激情| 麻豆成人午夜福利视频| 日本一二三区视频观看| 亚洲一码二码三码区别大吗| 最近最新中文字幕大全免费视频| 亚洲性夜色夜夜综合| 一个人免费在线观看的高清视频| 久久久精品欧美日韩精品| 亚洲中文av在线| 亚洲无线在线观看| 黄色视频,在线免费观看| 天堂动漫精品| 一个人免费在线观看的高清视频| 老汉色av国产亚洲站长工具| 19禁男女啪啪无遮挡网站| 一二三四社区在线视频社区8| av在线播放免费不卡| av欧美777| 亚洲全国av大片| 亚洲精品中文字幕在线视频| 亚洲中文字幕一区二区三区有码在线看 | 99riav亚洲国产免费| 亚洲精品久久国产高清桃花| 欧美一区二区国产精品久久精品 | 天天添夜夜摸| 在线免费观看的www视频| 国产精品,欧美在线| 在线永久观看黄色视频| 88av欧美| 宅男免费午夜| 少妇裸体淫交视频免费看高清 | 成人欧美大片| 婷婷亚洲欧美| 久久精品91蜜桃| 男女午夜视频在线观看| 一a级毛片在线观看| 少妇被粗大的猛进出69影院| 国产黄a三级三级三级人| 成人午夜高清在线视频| 一本久久中文字幕| 国产精品美女特级片免费视频播放器 | 欧美又色又爽又黄视频| 国产成人系列免费观看| 亚洲国产精品999在线| 色综合亚洲欧美另类图片| 丰满人妻一区二区三区视频av | 俺也久久电影网| 亚洲中文日韩欧美视频| 国产熟女xx| 老熟妇乱子伦视频在线观看| 国产一区二区三区视频了| 日本五十路高清| 国产高清激情床上av| a级毛片a级免费在线| 丝袜人妻中文字幕| 精品久久蜜臀av无| 精品久久久久久久久久免费视频| 亚洲av片天天在线观看| 三级男女做爰猛烈吃奶摸视频| 村上凉子中文字幕在线| 国产高清视频在线观看网站| 搡老妇女老女人老熟妇| 亚洲欧美日韩高清专用| 欧美中文日本在线观看视频| 国产在线精品亚洲第一网站| 国产免费男女视频| 久久香蕉精品热| 久久国产乱子伦精品免费另类| 国产av不卡久久| 亚洲成av人片免费观看| 免费在线观看亚洲国产| 欧美日韩亚洲国产一区二区在线观看| 一级毛片精品| 亚洲欧美精品综合一区二区三区| 欧美又色又爽又黄视频| 亚洲成人国产一区在线观看| 国产精品一区二区三区四区久久| 精品国产美女av久久久久小说| 琪琪午夜伦伦电影理论片6080| 午夜亚洲福利在线播放| 老鸭窝网址在线观看| 制服诱惑二区| 老司机福利观看| 欧美最黄视频在线播放免费| 亚洲 欧美一区二区三区| 搞女人的毛片| 亚洲欧美精品综合一区二区三区| 婷婷精品国产亚洲av在线| av天堂在线播放| 亚洲精品在线观看二区| av欧美777| 国产一区二区在线av高清观看| 老鸭窝网址在线观看| 国产亚洲av嫩草精品影院| 免费在线观看黄色视频的| 老司机福利观看| 成人永久免费在线观看视频| 国产精品一区二区三区四区免费观看 | 久久久精品欧美日韩精品| 久久人妻福利社区极品人妻图片| 色精品久久人妻99蜜桃| 久9热在线精品视频| 中文字幕久久专区| 又黄又爽又免费观看的视频| 久热爱精品视频在线9| 黄色 视频免费看| 宅男免费午夜| 丝袜人妻中文字幕| 欧美国产日韩亚洲一区| 国产亚洲av高清不卡| 亚洲激情在线av| 好男人在线观看高清免费视频| 国产99久久九九免费精品| 国产爱豆传媒在线观看 | xxx96com| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品999在线| 亚洲狠狠婷婷综合久久图片| 两性夫妻黄色片| 国产精品 欧美亚洲| 免费在线观看视频国产中文字幕亚洲| 国产精品综合久久久久久久免费| 国产精品,欧美在线| 亚洲国产精品成人综合色| 18禁裸乳无遮挡免费网站照片| 无人区码免费观看不卡| 婷婷丁香在线五月| 中文字幕最新亚洲高清| 久久精品国产综合久久久| 欧美激情久久久久久爽电影| 不卡一级毛片| 色噜噜av男人的天堂激情| 亚洲熟妇熟女久久| 大型av网站在线播放| 在线观看日韩欧美| 在线播放国产精品三级| 精品久久久久久久人妻蜜臀av| 欧美精品啪啪一区二区三区| 日韩欧美精品v在线| 制服丝袜大香蕉在线| 日本三级黄在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲男人天堂网一区| 一级作爱视频免费观看| 日日爽夜夜爽网站| 亚洲成人免费电影在线观看| 国产又色又爽无遮挡免费看| 香蕉丝袜av| 99国产综合亚洲精品| 免费在线观看成人毛片| 窝窝影院91人妻| 成人av一区二区三区在线看| 亚洲,欧美精品.| 成人手机av| 免费一级毛片在线播放高清视频| 久久久久久人人人人人| www.999成人在线观看| 午夜福利视频1000在线观看| 国产成人精品久久二区二区免费| 亚洲国产欧美网| 国产伦一二天堂av在线观看| 国产精品国产高清国产av| 老熟妇乱子伦视频在线观看| 欧美日韩瑟瑟在线播放| 亚洲精品在线美女| 日本黄色视频三级网站网址| 日本免费一区二区三区高清不卡| 日韩欧美精品v在线| 宅男免费午夜| 99在线人妻在线中文字幕| or卡值多少钱| 叶爱在线成人免费视频播放| 69av精品久久久久久| 亚洲精品久久国产高清桃花| 久久香蕉激情| 精品久久久久久成人av| 精品第一国产精品| 丁香六月欧美| 日本熟妇午夜| 国产精品综合久久久久久久免费| 黄片小视频在线播放| 国产精品久久视频播放| 欧美国产日韩亚洲一区| 亚洲av五月六月丁香网| 欧美午夜高清在线| 免费看十八禁软件| 正在播放国产对白刺激| 一区二区三区高清视频在线| 日韩欧美精品v在线| 日韩欧美免费精品| 青草久久国产| 成人国语在线视频| 中文字幕久久专区| 在线十欧美十亚洲十日本专区| ponron亚洲| 日韩精品免费视频一区二区三区| 一个人免费在线观看的高清视频| 男女视频在线观看网站免费 | 黄色 视频免费看| 女生性感内裤真人,穿戴方法视频| 久久香蕉激情| 亚洲欧美日韩高清在线视频| 女同久久另类99精品国产91| 黄色女人牲交| 久久九九热精品免费| 亚洲精品av麻豆狂野| 好男人电影高清在线观看| 国产精品爽爽va在线观看网站| 国产区一区二久久| 搞女人的毛片| 国产一区二区在线观看日韩 | x7x7x7水蜜桃| 国产成+人综合+亚洲专区| av国产免费在线观看| 在线观看美女被高潮喷水网站 | 国产精品精品国产色婷婷| 国产区一区二久久| 搞女人的毛片| 国产精品久久久久久亚洲av鲁大| cao死你这个sao货| 日本一本二区三区精品| 亚洲 欧美 日韩 在线 免费| 成在线人永久免费视频| xxxwww97欧美| av福利片在线观看| 国产av一区二区精品久久| 51午夜福利影视在线观看| 成年女人毛片免费观看观看9| 欧美日韩国产亚洲二区| 久久国产乱子伦精品免费另类| 精品国产乱码久久久久久男人| 最新在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| av国产免费在线观看| 在线观看免费日韩欧美大片| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 久久香蕉国产精品| 女人被狂操c到高潮| 在线观看免费视频日本深夜| 国产精品九九99| 成人三级做爰电影| 成人国产综合亚洲| 亚洲成人国产一区在线观看| 亚洲五月婷婷丁香| 一级毛片女人18水好多| 欧美三级亚洲精品| 久久久久久久久久黄片| 久久精品91无色码中文字幕| 正在播放国产对白刺激| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| tocl精华| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 真人做人爱边吃奶动态| 日韩欧美 国产精品| 久久久水蜜桃国产精品网| 在线观看免费午夜福利视频| 日日爽夜夜爽网站| 男人舔奶头视频| 日本免费a在线| 精品久久久久久久久久久久久| ponron亚洲| 午夜福利免费观看在线| 精品久久蜜臀av无| 熟女电影av网| 哪里可以看免费的av片| 精品无人区乱码1区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品一区二区www| 日本 av在线| 国产成人av教育| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品色激情综合| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 成人三级黄色视频| 久9热在线精品视频| 特级一级黄色大片| 亚洲熟妇熟女久久| 午夜福利视频1000在线观看| 欧美最黄视频在线播放免费| av中文乱码字幕在线| 亚洲国产精品成人综合色| 最新美女视频免费是黄的| 色在线成人网| 91国产中文字幕| 国产亚洲精品一区二区www| 欧美黑人欧美精品刺激| 女人被狂操c到高潮| 精品不卡国产一区二区三区| 亚洲无线在线观看| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 国产成人精品久久二区二区91| 人妻丰满熟妇av一区二区三区| 国产男靠女视频免费网站| 久久亚洲真实| 看片在线看免费视频| 色噜噜av男人的天堂激情| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| 大型av网站在线播放| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av在线| 黄色 视频免费看| 哪里可以看免费的av片| 校园春色视频在线观看| 国产精品影院久久| 又大又爽又粗| 国内精品一区二区在线观看| 99在线人妻在线中文字幕| svipshipincom国产片| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 日本成人三级电影网站| 欧美黑人巨大hd| 久久精品亚洲精品国产色婷小说| 国产午夜精品久久久久久| 国产人伦9x9x在线观看| 国产不卡一卡二| 国产精品美女特级片免费视频播放器 | 亚洲全国av大片| 欧美成人性av电影在线观看| 亚洲人成网站高清观看| av中文乱码字幕在线| 麻豆av在线久日| 男男h啪啪无遮挡| 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| 在线a可以看的网站| 久久久精品欧美日韩精品| 国产又黄又爽又无遮挡在线| 精品久久久久久,| 国产精华一区二区三区| 欧美乱码精品一区二区三区| 国产一区二区在线观看日韩 | www国产在线视频色| 每晚都被弄得嗷嗷叫到高潮| 欧美在线一区亚洲| 色综合婷婷激情| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 日韩成人在线观看一区二区三区| 大型av网站在线播放| 国产成人av激情在线播放| 色噜噜av男人的天堂激情| 国产成人av教育| 小说图片视频综合网站| 中文字幕熟女人妻在线| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区mp4| 国产黄a三级三级三级人| 一卡2卡三卡四卡精品乱码亚洲| 少妇粗大呻吟视频| 99久久无色码亚洲精品果冻| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 身体一侧抽搐| 99riav亚洲国产免费| 天堂av国产一区二区熟女人妻 | a级毛片a级免费在线| svipshipincom国产片| 18禁观看日本| 亚洲色图 男人天堂 中文字幕| 一级黄色大片毛片| 国产高清有码在线观看视频 | 国产亚洲精品久久久久久毛片| 久久中文字幕人妻熟女| 久久人妻av系列| 美女大奶头视频| 很黄的视频免费| 妹子高潮喷水视频| 欧美成人性av电影在线观看| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 很黄的视频免费| 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o| 国产熟女xx| 欧美黑人欧美精品刺激| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品在线观看二区| 1024手机看黄色片| 精品福利观看| 叶爱在线成人免费视频播放| 免费在线观看日本一区| 久久99热这里只有精品18| 亚洲一区高清亚洲精品| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 757午夜福利合集在线观看| 久久精品综合一区二区三区| 蜜桃久久精品国产亚洲av| 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 白带黄色成豆腐渣| 亚洲熟妇中文字幕五十中出| 亚洲国产欧美网| 精华霜和精华液先用哪个| 热99re8久久精品国产| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 不卡av一区二区三区| 国产一区二区三区在线臀色熟女| 中文字幕久久专区| 在线免费观看的www视频| 黄色a级毛片大全视频| 色综合亚洲欧美另类图片| 欧美国产日韩亚洲一区| 99久久精品热视频| 亚洲第一欧美日韩一区二区三区| 精品人妻1区二区| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 99在线视频只有这里精品首页| 欧美日韩黄片免| 午夜精品在线福利| 我的老师免费观看完整版| 久久香蕉激情| 999久久久国产精品视频| 国产精品美女特级片免费视频播放器 | 国产精品亚洲av一区麻豆| 亚洲真实伦在线观看| 国产成人aa在线观看| 老熟妇仑乱视频hdxx| tocl精华| 妹子高潮喷水视频| 精品欧美国产一区二区三| 999精品在线视频| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 国产熟女午夜一区二区三区| 成人av一区二区三区在线看| 午夜激情福利司机影院| 亚洲自拍偷在线| 老司机福利观看| 五月伊人婷婷丁香| 精品日产1卡2卡| 国产精品香港三级国产av潘金莲| 校园春色视频在线观看| 亚洲精品久久成人aⅴ小说| 精品久久久久久成人av| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产一区二区精华液| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久久久久| 精品国产美女av久久久久小说| 最新美女视频免费是黄的| 五月玫瑰六月丁香| 亚洲精品av麻豆狂野| 成在线人永久免费视频| 一本综合久久免费| 69av精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 黄片大片在线免费观看| 国产午夜福利久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 12—13女人毛片做爰片一| 热99re8久久精品国产|